Seminário sexta 24/11

Palestrante: Germán Benitez Monsalve (UFAM)
Horário: às 13hs.
Data: 24/11.
Local: sala S - 310-3. Bloco A, Santo André.
Título: Variedades de Gelfand-Tsetlin para gl(n) e aplicação de Kostant-Wallach.

 

Resumo: Em [1] S. Ovsienko provou que a variedade algébrica V(n) das matrizes fortemente nilponentes (i.e., matrizes n x n, tais que, todas suas submatrizes k x k formadas pelas primeiras k-linhas e k-colunas são nilpotentes), é uma variedade equidimensional com dimensão n(n-1)/2 (i.e., todas suas componentes irredutíveis tem a mesma dimensão). Este resultado é conhecido como Teorema de Ovsienko e V(n) como Variedade de Gelfand-Tsetlin para gl(n).

Este teorema tem fortes consequências na teoria de representações de álgebras, tanto que, usando o mesmo raciocínio, existem interesses para outros tipos de álgebras, por exemplo, para o grupo quântico Yangians e álgebras Bethe.

Por outro lado, existe a aplicação de Kostant-Wallach, determinada por certo sistema de funções integráveis, chamadas de Funções de Gelfand-Tsetlin.

Nesta palestra, se apresentará a linguagem algébrica na qual foi provado o Teorema de Ovsienko, também a aplicação de Kostant-Wallach e como visualizar a variedade de Gelfand-Tsetlin desde o ponto de vista geométrico.

Referências:

[1] S. Ovisienko, Strongly nilpotent matrices and Gelfand-Tsetlin modules, Linear Algebra Appl. 365 (2003) 349-367

logotipocmcc

Pós Graduação em Matemática

Mestrado e Doutorado em Matemática

 

Universidade Federal do ABC - UFABC

UFABC

Email: ppg.matematica@ufabc.edu.br

Telefone para contato: 11-4996-0088 e 4996-0099.

Endereço: Av dos Estados, 5001 - Bairro Bangu - Santo André - SP

Portal Periódicos Capes

periodicosCapes

MathSciNet

mathscinet

Loading ...