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RESUMO

No presente trabalho apresentamos os resultados relacionados ao modelo matemático

que descreve a invasão de células tumorais no tecido circundante. O modelo consiste

em um sistema de equações diferenciais parciais e focana interação entre as células

tumorais e o tecido circundante. Para analisar as soluções do sistema, aplicamos a teoria

de Simetrias de Lie. Como resultado, apresentamos todos os geradores associados

ao grupo de transformações, algumas soluções invariantes encontradas e a análise

biológica de soluções particulares.

Palavras-chave: Câncer, Simetrias de Lie, Modelo matemático.
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ABSTRACT

In this work we present results related to a mathematical model describing the invasion

of tumor cells in a host tissue. The model consists of a system of partial differential

equations and focuses on the interaction among tumor cells and the host tissue. In

order to analyze the system solutions, we apply the theory of Lie symmetries. As a

result, we present all generators from the associated group of transformation and some

invariant solutions that were found and the biological analysis of particular solutions.

Keywords: Cancer, Lie symmetries, Mathematical model.

xv





CONTENTS

1 introduction 1

2 cancer 3

2.1 Cancer growing and spreading 4

2.2 Data 6

2.3 Mathematical model 12

2.3.1 Cancer cells diffusion 15

2.4 Biological parameters 16

3 lie symmetries 19

3.1 Lie groups of transformations 19

3.2 Infinitesimal transformations 20

3.2.1 Generators 23

3.2.2 Invariant functions 25

3.3 Extended transformations 26

3.4 Infinitesimal criterion of invariance 31

3.5 Invariants 33

3.5.1 Invariant Form Method 33

4 group classification 37

4.1 Cases trees 37

4.2 Infinitesimal generators 41

4.3 The determining equations 48

4.3.1 The case p nonzero 51

4.3.2 The case p = 0 59

5 invariant solutions : a construction 85

5.1 General case 85

5.1.1 Exact solution for p, λ nonzeros and µ = 0 90

5.1.2 Exact solution for p = µ = 0 and λ nonzero 98

5.2 Generator X28 100

5.2.1 Case p, ρ and δ nonzeros, and µ = λ = 0 100

5.2.2 Case ρ and δ nonzeros, p = µ = λ = 0 105

xvii



xviii contents

5.3 Generator X27 106

6 concluding remarks and future perspectives 111

References 113

Index 119



1 INTRODUCTION

Noncommunicable diseases (NCDs), also known as chronic diseases, are responsible

for killing approximately 41 million people each year according to the World Health

Organization (WHO) [19]. Although those diseases are frequently associated only with

ageing, evidence has shown that nearly 17 million of them are considered premature

and disproportionately occur in the poorest countries.

NCDs usually result in long-term health consequences and often require a long-term

treatment, typically caused by unhealthy behaviours, but can also result from a combina-

tion of genetic, physiological and environmental factors. The International Federation of

Red Cross and Red Crescent Societies (IFRC), the world’s largest humanitarian network,

states cardiovascular diseases, chronic respiratory diseases, diabetes and cancers as

responsible for over two thirds of deaths globally, being the latter one as the second

leading cause [17].

WHO also estimates that between 30% to 50% of all cancers can currently be prevented

by avoiding risk factors and implementing prevention strategies [19]. Furthermore,

early detection of cancer and appropriate treatment and care of patients who develop

cancer minimize its burden. Towards that way, knowing and understanding how cancer

spreads is crucial for the global fight against it.

Due to the importance of analyzing the spread of cancer, many models have been

developed with different approaches focusing on a variety of cancer types and stages

([1, 2, 3, 4, 5, 9, 13, 22]).

As in as [3], this thesis focuses on the avascular stage of a solid tumour modelling

the interaction among cancer cells, the extracellular matrix and the matrix-degrading

enzyme using a system of partial differential equations. Mainly we use a generalization

of the system in [3] and resolve it analytically.

One of the ways to find solutions to differential equation is by Lie symmetries

[7]. Lie’s theory chiefly treats Lie groups of point symmetries, which are completely

characterized by infinitesimal generators and by them we are able to construct solutions

1



2 introduction

of partial differential equations. All the details on how to develop these solutions and

what conditions to verify and assume are presented in the following chapters.

As far as we know, only [8] and [9] found analytical solutions for this kind of model,

also using Lie symmetries, but for a system with 3 independent variables and constant

diffusions.

In this thesis we propose a generalization of the model in [3] and analyze some

solutions found by Lie symmetries. This work is divided into six chapters. Chapter 2

presents basic facts about cancer, its growing and spreading dynamic, a few data related

to it and the mathematical model to be studied. In chapter 3 we show a summary

of the applied theory with examples strictly constructed from the results obtained in

the present work. We carry out in chapter 4 a complete group classification of the

Lie point symmetries of the system proposed. In chapter 5 we obtain and proceed

an in-depth analysis of some invariant solutions of the model. In the last chapter we

present concluding remarks about the results and future perspectives related to it.



2 CANCER

Worldwide, chronic diseases are responsible for almost 70% of all deaths, according to

the WHO, which includes cancer as the second leading cause, estimated to account for

9.6 million deaths in 2018 and over 10 million in 2020.

Cancer is the name given to a set of more than 200 diseases having in common a

disordered growth of cells, invading tissues and organs [11], see Figure 1
1.

Figure 1: Emergence of tumour cells.

Source: ©Cancer Research UK [2002] All right reserved. Information taken 08/03/20.

https://www.cancerresearchuk.org.

These diseases can be classified according to the locus they start in the body, such

as breast cancer or prostate cancer, known as primary tumour [26]. We can also group

cancer according to the type of cell they start in. There are 5 main groups:

• carcinoma: begins in the skin or in tissues that line or cover internal organs. There

are different subtypes, including adenocarcinoma, basal cell carcinoma, squamous

cell carcinoma and transitional cell carcinoma;

• sarcoma: begins in the connective or supportive tissues such as bone, cartilage, fat,

muscle or blood vessels;

• lymphoma and myeloma: begin in the cells of the immune system;

1 Cancer Research UK is independent from our organisation and a source of trusted information for all.

3



4 cancer

• leukaemia: this is a cancer of the white blood cells. It starts in the tissues that

make blood cells such as the bone marrow;

• brain and spinal cord cancers: known as central nervous system cancers.

Growing abnormally, cells can evolve to a tumour mass which can be classified as

benign or malignant, the latter one known as cancer. According to [8], among all cancer

types, solid tumours cause 80% of all deaths and their growth occur in two different

stages: avascular and vascular. Cancer can sometimes spread to other parts of the body

– this is called a secondary tumour or a metastasis, which is an important stage to

analyse from a biological point of view although the avascular stage is the focus of our

study and it will be explained in detail in the following section.

2.1 cancer growing and spreading

As all our body cells, cancer cells continue to grow encapsulated within a membrane

called basement membrane. As we can see in Figure 2
2, as cancer cells grow, the blood

vessels get further away, and because of their need for nutrients and oxygen to live,

these cells send out signals to trigger the growth of new blood vessels, called capillaries,

within the tumour, culminating in a process known as angiogenesis.

Figure 2: Growing of tumour cells.

Source: ©Cancer Research UK [2002] All right reserved. Information taken 08/01/22.

https://www.cancerresearchuk.org.

2 Cancer Research UK is independent from our organisation and a source of trusted information for all.
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Now with a blood supply of their own, cancer cells can grow even bigger and

throughout some blood vessels or the lymphatic system. They can spread and become

new tumours themselves. This may occur due to tumour cells behavior that, unlike

health body cells, tends to produce substances which stimulate their movement and the

breaking of the membrane that contains them, as illustrated in Figure 3
3, culminating

at the vascular stage.

Figure 3: Spreading of tumour cells.

Source: ©Cancer Research UK [2002] All right reserved. Information taken 08/01/22.

https://www.cancerresearchuk.org.

Although this process may seem fruitful and easily executed, actually it is a compli-

cated roll of steps where many cancer cells die during its evolution.

It is known that tumours can spread into some tissues more easily than others, which

may be related to how circulatory system works, as succinctly represented in Figure 4
4.

3 Cancer Research UK is independent from our organisation and a source of trusted information for all.
4 Cancer Research UK is independent from our organisation and a source of trusted information for all.
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Figure 4: Blood path in circulatory system succinctly represented.

Source: ©Cancer Research UK [2002] All right reserved. Information taken 08/02/22.

https://www.cancerresearchuk.org.

For instance, cancers of the large bowel often spread to the liver, which may happen

since blood circulates from the bowel through the liver on its way back to the heart.

2.2 data

Each year, approximately 400.000 children aged 19 or younger develop cancer world-

wide. The most common cancers vary between countries, but leukemia leads the

occurrences in Figure 5
5.

5 The designations employed and the presentation of the material in this publication do not imply the

expression of any opinion whatsoever on the part of the World Health Organization / International

Agency for Research on Cancer concerning the legal status of any country, territory, city or area or of its

authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on

maps represent approximate borderlines for which there may not yet be full agreement.
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Figure 5: Top cancer per country, estimated age-standardized incidence rates in 2020, both sexes,

ages 0-19.

Source: ©International Agency for Research on Cancer. All rights reserved. Map produced by

GLOBOCAN 2020. https://gco.iarc.fr/today/home. Information taken 20 apr. 22.

Figure 6: Top cancer per country, estimated age-standardized incidence rates in 2020, females,

all ages.

Source: Source: ©International Agency for Research on Cancer. All rights reserved. Map

produced by GLOBOCAN 2020. https://gco.iarc.fr/today/home. Information taken 18 nov. 21.



8 cancer

Figures 6 and 7
6 show the most common cancer in 2020 in each country and the

most deadly one, respectively, considering females without age range.

Figure 7: Top cancer per country, estimated age-standardized mortality rates in 2020, females,

all ages.

Source: Source: ©International Agency for Research on Cancer. All rights reserved. Map

produced by GLOBOCAN 2020. https://gco.iarc.fr/today/home. Information taken 18 nov. 21.

Figures 8 and 9
6 present the same date but about males, also in 2020.

Comparing both genres we can observe that breast, prostate, lung and cervix uteri

cancers represent the majority rates of incidence and mortality in 2020.

"The incidence of cancer rises dramatically with age, most likely due to a

build-up of risks for specific cancers that increase with age. The overall risk

accumulation is combined with the tendency for cellular repair mechanisms to

be less effective as a person grows older." [19, inicial page].

6 The designations employed and the presentation of the material in this publication do not imply the

expression of any opinion whatsoever on the part of the World Health Organization / International

Agency for Research on Cancer concerning the legal status of any country, territory, city or area or of its

authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on

maps represent approximate borderlines for which there may not yet be full agreement.
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Figure 8: Top cancer per country, estimated age-standardized incidence rates in 2020, males, all

ages.

Source: Source: ©International Agency for Research on Cancer. All rights reserved. Map

produced by GLOBOCAN 2020. https://gco.iarc.fr/today/home. Information taken 18 nov. 21.

Figure 9: Top cancer per country, estimated age-standardized mortality rates in 2020, males, all

ages.

Source: Source: ©International Agency for Research on Cancer. All rights reserved. Map

produced by GLOBOCAN 2020. https://gco.iarc.fr/today/home. Information taken 18 nov. 21.
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Figures 10 and 11
7 combined with the aforementioned information lead us to conclude

that countries with higher life expectancy tend to have a higher rate of elderly people

dying from cancer than other countries, simply because they have a greater number of

elderly people among their inhabitants.

Figure 10: Estimated age-standardized mortality rates in 2020, all cancers, both sexes, all ages.

Source: Source: ©International Agency for Research on Cancer. All rights reserved. Map

produced by GLOBOCAN 2020. https://gco.iarc.fr/today/home. Information taken 20 apr. 22.

Considering Figure 11, we can observe that young people, who have fewer risk factors

for developing cancer such as smoking for many years or having lower immunity due to

age and other diseases, are more likely to die from cancer in the poorest countries. This

is probably due to the low investment in health, since there is a high cost of treatment,

such as hospital facilities and medicines. Thus, cancer also exposes a worldwide social

problem.

7 The designations employed and the presentation of the material in this publication do not imply the

expression of any opinion whatsoever on the part of the World Health Organization / International

Agency for Research on Cancer concerning the legal status of any country, territory, city or area or of its

authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on

maps represent approximate borderlines for which there may not yet be full agreement.
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Figure 11: Estimated age-standardized mortality rates in 2020, all cancers, both sexes, ages

0 − 34.

Source: ©International Agency for Research on Cancer. All rights reserved. Map produced by

GLOBOCAN 2020. https://gco.iarc.fr/today/home. Information taken 20 apr. 22.

Figure 12: Estimated number of new cases from 2020 to 2040, both sexes, ages 0 − 85.

Source: ©International Agency for Research on Cancer. All rights reserved. Map produced by

GLOBOCAN 2020. https://gco.iarc.fr/tomorrow. Information taken 23 oct. 22.
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In order to support this previous affirmation, Figure 12
8 presents the prediction of

rising cancer cases in 2040 comparing the Human Development Index (HDI) worldwide,

which is

"a summary measure of average achievement in key dimensions of human

development: a long and healthy life, being knowledgeable and have a decent

standard of living." [23, inicial page].

In this work we will focus on modeling the spread of cancer, without considering

prevention, treatments and social and economic factors involved, although all of them

develop a substantial role in cancer mortality.

2.3 mathematical model

Tumour cells produce a number of matrix degradative enzymes (MDE) in order to in-

vade the surrounding tissue by diffusion, passing by the degradation of the extracellular

matrix (ECM), which is a compound of macromolecules including collagens, proteogly-

cans, and glycoproteins, helping the growth of different tissues to the maintenance of

an entire organ. ECM can be seen as a set of substances produced and also eliminated

by cells. Besides that, the degradation led by cancer forces ECM to reorganize itself,

leading to haptotaxis – the directed migratory response of tumour cells. This local

degradation process of the ECM is a critical aspect of the growth and spread of cancer,

creating a space where the tumour cells may move by diffusion [9].

In [3] a continuous mathematical model describing the invasion of ECM by tumours

cells, at the avascular stage and based on solid tumour growth, is presented, considering

one and two dimensions of it, and also its discrete version. They are proposed to

understand the dynamics of the interactions among the cells in order to predict its

behavior, and focus on the macro-scale structure, considering cell population level.

8 The designations employed and the presentation of the material in this publication do not imply the

expression of any opinion whatsoever on the part of the World Health Organization / International

Agency for Research on Cancer concerning the legal status of any country, territory, city or area or of its

authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on

maps represent approximate borderlines for which there may not yet be full agreement.
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Over time, different models have been developed by a variety of approaches, and

some of these works ([1, 3, 2, 4, 5, 9, 13, 22]) are summarized into the following timeline

presented in Figure 13:

Figure 13: Simplified timeline with some of the key work in the cancer model literature.

Source: The author.

Our work considers the 1-dimensional continuous model introduced in [3] and, for

that, as in [3], we have three dependent variables of time t and space x: cancer cells

density, density of the extracellular matrix (ECM) and concentration of a generic matrix-

degrading enzyme (MDE), which ones are represented by N(x, t), E(x, t) and M(x, t),

respectively.

As for models for population dispersal, in general, cancer cells movement is driven by

random motility with flux Jrandom = −D∇N, where the cell random motility coefficient

D > 0 can, generally, be function of time t, space x, and the solution (E, M, N) ([3, 13,

15]).

Although not widely confirmed in vivo situation, it is reasonable to assume that

cancer cells movement is also driven by a haptotactic response to ECM gradients [3].

Recent works have shown that cancer cells frequently exhibit cell migration behaviour

guided by gradients of some surfaces such as the ECM, in vivo and in vitro situations

[10, 14, 20, 21].

In this model, cancer cells proliferation is deliberately left aside so the haptotaxis can

be properly investigated. According to [3], the haptotaxis flux is taken by Jhaptotaxis =
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ρN∇E, where the constant ρ is the haptotatic coefficient and is assumed to be non-

negative. Then we arrive at the conservation equation for the tumour cell density:

∂N
∂t

+ ∇(Jrandom + Jhaptotaxis) = 0.

Hence, considering a 1-dimensional model, we arrive at the cell density equation (1):

Nt = (DNx)x︸ ︷︷ ︸
di f f usion

− ρ(NEx)x︸ ︷︷ ︸
haptotaxis

. (1)

As a non-motile matter, the ECM changes merely through its local degradation by

MDE upon contact at a positive rate δ, assuming there is no matrix remodelling by

cells, which is completely possible according to the literature [3]. Altogether, these yield

the following evolution equation for the ECM:

Et = −δME︸ ︷︷ ︸
degradation

. (2)

At last, the MDE is assumed to diffuse (D2) freely in the spatial domain, where

enzymes are released at a constant rate µ by the cells and are removed from the system

at a constant rate λ. The latter one happens as a natural decay and also by deactivation

of the enzymes and for simplicity we assume that there is a linear relationship between

the density of tumour cells and the level of active MDE in the surrounding tissues.

Considering MDE diffusion (D2) as a constant, the evolution equation for the MDE

concentration holds

Mt = D2Mxx︸ ︷︷ ︸
di f f usion

+ µN︸︷︷︸
enzyme production

− λM︸︷︷︸
decay

. (3)

Equations (1), (2) and (3) give us the system (4):

Nt = (DNx)x︸ ︷︷ ︸
di f f usion

− ρ(NEx)x︸ ︷︷ ︸
haptotaxis

,

Et = −δME︸ ︷︷ ︸
degradation

,

Mt = D2Mxx︸ ︷︷ ︸
di f f usion

+ µN︸︷︷︸
enzyme production

− λM︸︷︷︸
decay

.

(4)
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2.3.1 Cancer cells diffusion

In [3] the authors studied the solutions of system (4) numerically considering D constant

and also presented simulations assuming that the diffusion D is directly proportional

to MDE concentration.

An interesting review of models of brain cancer spreading in [16] indicates that

diffusion reasonably models the cell spreading dynamics observed in vitro experiences.

In vivo studies with rats state diffusion of brain cancer cells in white matter different

from that in the grey matter cells. So, [16] presents a model of glioma – neoplasm of

neural cells capable of division – invasion by taking the diffusion D to be a function of

the spatial variable taking into account the spatial heterogeneity of brain cells, i.e., with

non-constant diffusion.

The effort to enlarge the dependence of tumour cells with other model variables

is valid, considering that cancers spread into nearby tissues also by the cells directly

moving. According to [26], about a couple years ago scientists discovered a substance

made by cancer cells which stimulates them to move, which might be involved in the

local spread of cancers.

In [15, page 402] one extension of the classical diffusion model for insect dispersal is

presented: due to population pressure, diffusion increases depending on the population

density at a given time. That is, the flux J is given by

J = −D(N)∇N,
dD
dN

> 0.

Also in [15, page 402] is presented a typical form for D(N) as D0(N/N0)p, with p > 0

and D0 and N0 positive constants. Considering one dimension for this case of insect

dispersal suffering the population pressure, we have

Nt = D0

((
N
N0

)p
Nx

)
x

,

which is equivalent to porous media equation [15]. Notice that the solution to this is

fundamentally different when diffusion is a constant – where there exists diffusion even

though there is no tumour.

Particularly related to tumours, [22] assumed a non-constant diffusion with depen-

dence on the tumour given by D = D1N with D1 constant.

In view of these, and taking into account [15, 22, 26], we consider a general diffusion

dependence of the type D = D1Np, with D1 a constant and p ∈ R+. Here, pressure-
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dependent diffusion may vary with tumor type, so the parameter p can represent this.

Then (1) becomes

Nt = (D1NpNx)x︸ ︷︷ ︸
di f f usion

− ρ(NEx)x︸ ︷︷ ︸
haptotaxis

.

Hence, the system (4) can be rewritten and is equivalent to
Nt = D1(NpNxx + pNp−1N2

x ) − ρ(NxEx + NExx),

Et = −δME,

Mt = D2Mxx + µN − λM.

(5)

In the present work we investigate the solutions of (5), a generalization of the model

described in [3], from the point of view of Lie symmetries [7], which is a powerful tool

to look for analytical solutions of equations.

Before presenting the solutions found and the theory that supports them, we briefly

explain in the following section the parameters we used considering biological aspects.

We would like to highlight that the system (5) is already written in a dimensionless

form [see 3]. More details about this can also be seen in the following section.

2.4 biological parameters

The system given in (5) is considered to hold on some spatial domain Ω (a region of

tissue) with appropriate initial conditions for each variable. We assume that tumour

cells, ECM and MDE remain within the domain of tissue under consideration and

therefore no-flux boundary conditions are imposed on ∂Ω, the boundary of Ω [1].

Letting

t̃ =
t
τ

, x̃ =
x
L

, Ñ(t̃, x̃) =
N(t, x)

N0
, Ẽ(t̃, x̃) =

E(t, x)
E0

, M̃(t̃, x̃) =
M(t, x)

M0
, (6)

where L corresponds to the maximum invasion distance at the early stage of tumour

invasion, we non-dimensionalize the system (5).

Based on [3] the constants in (6) are given by

L ∈ [0.1, 1] cm, τ =
L2

D′ ,

where D′ ≈ 10−6cm2s−1 is a chemical diffusion coefficient previous estimated and at

this work we chose L = 1cm.
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The Table (1) shows the parameters u of the dimensional system, the correspondents

non-dimensional parameters ũ and a brief description of each one of them, all constants.

Table 1: Parameters u of dimensional system, the correspondents non-dimensional parameters ũ

and a brief description of each one of them.

u unit ũ Description

D1 cm2s−1 D̃1 = D1
D′ cancer cell motility coefficient

ρ cm2s−1nM−1 ρ̃ = E0ρ
D′ haptotactic coefficient

δ nM−1s−1 δ̃ = τM0δ cancer cell proliferation rate

D2 cm2s−1 D̃2 = D2
D′ MDE diffusion coefficient

µ s−1 µ̃ = τµN0
M0

rate of MDE release by cancer cells

λ s−1 λ̃ = τλ MDE degradation rate

The haptotactic parameter ρ ≈ 2600 cm2 s−1 M−1 was estimated in [3] and the

parameter E0 ∈ [10−11, 10−8]M was taken from the experiments in [25]. Assuming that

a tumour cell has the volume 1.5 · 10−8 cm3 hence N0 = 6.7 · 107 cells cm−3 [1].

Thus the non-dimensional system is given by
Ñt = D̃1(ÑpÑxx + pÑp−1Ñ2

x ) − ρ̃(ÑxẼx + ÑẼxx),

Ẽt = −δ̃M̃Ẽ,

M̃t = D̃2M̃xx + µ̃Ñ − λ̃M̃.

(7)

Dropping the tildes in (7) and using Table (1), the non-dimensionalization leads to

the system (5).

Regarding to the biological meaning, it is worth mentioning that the parameters µ, λ

and δ in system (5) until remain unknown for the in vivo situation as same as M0 [1].

Therefore, those parameters are not obtained from experimental data but estimations

supported by the literature, such as in [1], [3] and [9]. A complete list of the values used

to analyze the solutions of system (5) is in Table 4, Chapter 5.

Also maintaining the purpose of analyzing biological situations of the system (5) in

which there is diffusion of both tumor cells and the matrix of degrading enzymes, we

consider D1D2 ̸= 0.

Although the parameters p, ρ, δ, µ and λ in (5) can be zero, each one of them plays an

important biological role in the process of cancer cells invasion. As we stated earlier,

while ρ ̸= 0 indicates the existence of haptotatic movement of cancer cells, p ̸= 0 is

related to tissue heterogeneity in the process of diffusion of cancer cells. On the other
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hand, if δ = 0, the haptotaxis response has no influence on tumour cells density and

ECM remains the same over time. The latter has no biological significance when we are

interested in analyzing the avascular stage of cancer.

The last two parameters are more flexible regarding their nullity. µ = 0 eliminates the

influence of cancer cells into MDE and so into ECM as well, which means that there is

no enzyme production based on cancer cells density and only its natural decay if λ ̸= 0.



3 L IE SYMMETRIES

In order to organize the jumble of solving techniques of ordinary differential equations

(ODE), until his times, Sophus Lie introduced the idea of a continuous group of

transformations, which generated the area known as Lie Theory [6].

Throughout the coming sections, we present part of this theory so as to enable the

reader to keep up with the results found. For further details, see [6], [7] and [18].

Furthermore, it is worth saying that, in this chapter, the theorems and propositions are

not original.

3.1 lie groups of transformations

A symmetry group of a system of differential equations can be defined as a group

of transformations that apply any solution of the equation to another solution. If a

differential equation or system is invariant under the action of a group of Lie point

transformations, we can find special solutions constructively called invariant solutions,

which are invariant under the action of some subgroup of the admitted total symmetry

group by the equation.

Definition 3.1. A group G is a set of elements with a law of composition ϕ satisfying the

following axioms:

(i) Closure property. For any elements a and b of G, ϕ(a, b) is an element of G.

(ii) Associative property. For any elements a, b, c of G we have ϕ(a, ϕ(b, c)) = ϕ(ϕ(a, b), c).

(iii) Identity element. There exists a unique identity element e of G such that for any element a

of G we have ϕ(a, e) = ϕ(e, a) = a.

(iv) Inverse element. For any element a of G there exists a unique inverse element a−1 in G

such that ϕ(a, a−1) = ϕ(a−1, a) = e.

19
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Definition 3.2. Let x = (x1, x2, . . . , xn) lie in a region D ⊂ Rn. The set of transformations

x = X(x; ϵ) defined for each x in D and parameter ϵ in set S ⊂ R, with ϕ(ϵ, δ) defining a law of

composition of parameters ϵ and δ in S, form a one-parameter group of transformations on D if

the following hold:

(i) For each ϵ in S the transformations are one-to-one onto D; hence x lies in D.

(ii) S with the law of composition ϕ forms a group G.

(iii) For each x in D, x = x when ϵ = ϵ0 corresponds to the identity e, i.e., X(x; ϵ0) = x.

(iv) If x = X(x; ϵ), x̄ = X(x; δ), then x̄ = X(x; ϕ(ϵ, δ)).

Definition 3.3. A one-parameter group of transformations defines a one-parameter Lie group

of transformations if, in addition to satisfying axioms (i) − (iv) of Definition 3.2, the following

hold:

(v) ϵ is a continuous parameter, i.e., S is an interval in R. Without loss of generality, ϵ = 0

corresponds to the identity element e.

(vi) X is infinitely differentiable with respect to x in D and an analytic function of ϵ in S.

(vii) ϕ(ϵ, δ) is an analytic function of ϵ and δ, ϵ ∈ S, δ ∈ S.

Example 3.1. Let (x, t, E, M, N) ∈ Ω ⊆ R5 and ϵ ∈ R. So, (x, t, E, M, N) = X((x, t, E, M, N); ϵ) =

(x + cϵ, t + ϵ, E, M, N) is a one-parameter Lie group of transformations.

3.2 infinitesimal transformations

Consider a one-parameter ϵ Lie group of transformations

x = X(x, ϵ) (8)

with the identity ϵ = 0 and law of composition ϕ. Expanding (8) about ϵ = 0, in some

neighborhood of ϵ = 0, we get

x = x + ϵ

(
∂X(x; ϵ)

∂ϵ

∣∣∣
ϵ=0

)
+

1
2

ϵ2
(

∂2X(x; ϵ)
∂ϵ2

∣∣∣
ϵ=0

)
+ · · · = x + ϵ

(
∂X(x; ϵ)

∂ϵ

∣∣∣
ϵ=0

)
+ O(ϵ2).

Let
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ξ(x) =
∂X(x; ϵ)

∂ϵ

∣∣∣
ϵ=0

. (9)

The transformation x + ϵξ(x) is called the infinitesimal transformation of the Lie group

of transformations (8). The components of ξ(x) are called the infinitesimals of (8).

Example 3.2. In this work we consider the Lie symmetries of (5), with two independent variables

(x, t) and three dependent ones (E, M, N).

A Lie point symmetry of system (5) is a set of transformations with parameter ϵ

x = x + ϵξ1(x, t, E, M, N) + O(ϵ2),

t = t + ϵξ2(x, t, E, M, N) + O(ϵ2),

E = E + ϵη1(x, t, E, M, N) + O(ϵ2),

M = M + ϵη2(x, t, E, M, N) + O(ϵ2),

N = N + ϵη3(x, t, E, M, N) + O(ϵ2).

(10)

Example 3.3. Let (x, t, E, M, N) ∈ Ω ⊆ R5 and ϵ ∈ R. Consider the one-parameter Lie group

of transformations

(x, t, E, M, N) = X((x, t, E, M, N); ϵ)

=
((

ϵ
2 + 1

)
x, (ϵ + 1)t, E, (1 − ϵ)M, (1 − 2ϵ)N

)
.

(11)

Notice that the identity of (11) is 0 and its law of composition is ϕ(a, b) = a + b. Using (9),

the infinitesimals related to this group are ξ1 = x
2 , ξ2 = t, ξ3 = 0, ξ4 = −M and ξ5 = −2N.

Example 3.4. Let (x, t, E, M, N) ∈ Ω ⊆ R5 and τ ∈ R∗
+. Consider the one-parameter Lie

group of transformations

(x, t, E, M, N) = X((x, t, E, M, N); τ)

=
((

eτ

2 + 1
)

x, (eτ + 1)t, E, (1 − eτ)M, (1 − 2eτ)N
)

.
(12)

Notice that the identity of (12) is 1 and its law of composition is ϕ(a, b) = ab. Using (9),

considering τ = 1, we have ξ(x) =
∂X(x; τ)

∂τ

∣∣∣
τ=1

. So, the infinitesimals related to this group are

ξ1 = x
2 , ξ2 = t, ξ3 = 0, ξ4 = −M and ξ5 = −2N.

Observe that the infinitesimals of one-parameter Lie groups of transformations shown

in equations (11) and (12) are the same. This is no accident. The following theorem can

enlighten why.
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Theorem 3.1. (First Fundamental Theorem of Lie) There exists a parameterization τ(ϵ) such

that the Lie group of transformations (8) is equivalent to the solution of an initial value problem

for a system of first-order ODE given by

dx
dτ

= ξ(x),

with x = x when τ = 0.

In particular,

τ(ϵ) =
∫ ϵ

0
Γ(ϵ′)dϵ′,

where

Γ(ϵ) =
∂ϕ(a, b)

∂b

∣∣∣
(a,b)=(ϵ−1,ϵ)

,

Γ(0) = 1 and 0 means the identity of the group.

Proof: See [6], pages 39 and 40. ■

Example 3.5. Consider the one-parameter Lie groups of transformations in examples 3.3 and

3.4. Applying the Theorem 3.1 into the latter one, we obtain:

Γ(ϵ) =
∂ϕ(a, b)

∂b

∣∣∣
(a,b)=(ϵ−1,ϵ)

= a
∣∣∣
a=ϵ−1

=
1
ϵ

and

Γ(0) = 1.

Thus,

τ(ϵ) =
∫ ϵ

0
Γ(ϵ′)dϵ′ = ln ϵ,

which implies ϵ = eτ. This gives us what we need to parameterize a given group into one in

terms of τ with ϕ(a, b) = τ1 + τ2.

Without loss of generality, we assume that a one-parameter ϵ Lie group of transfor-

mations is parameterized such that its law of composition is given by ϕ(a, b) = a + b, so

that ϵ−1 = −ϵ and Γ(ϵ) ≡ 1. Therefore, we can rewrite (8) as

dx
dϵ

= ξ(x), (13)

with x = x when ϵ = 0.
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3.2.1 Generators

Definition 3.4. The infinitesimal generator of the one-parameter Lie group of transformations

(8) is the operator

X = X(x) :=
n

∑
i=1

ξ i(x)
∂

∂xi
=

n

∑
i=1

ξ i(x)∂xi . (14)

So, for any differentiable function F(x) = F(x1, x2, . . . , xn) one has

XF(x) =
n

∑
i=1

ξ i(x)
∂F(x)

∂xi
.

It is worth highlighting that we are going to use the notation ∂xi instead of
∂

∂xi
.

Moreover, sometimes we prefer to use ξ to represent the infinitesimals related to the

independent variables and η to represent the infinitesimals related to the dependent

ones.

Thus, the generator related to (5) is given by

X = ξ1∂x + ξ2∂t + η1∂E + η2∂M + η3∂N , (15)

as we can see in (10).

Theorem 3.2. The one-parameter (ϵ) Lie group of transformations (8) is equivalent to

x = eϵXx = x + ϵXx +
1
2

ϵ2X2x + · · · =
[

1 + ϵX +
1
2

ϵ2X2 + . . .
]

x =
∞

∑
k=0

ϵk

k!
Xkx,

where X=X(x) is the operator defined in (14) and Xk = Xk(x) is given by Xk = XXk−1 for

k = 1, 2, . . . and X0F(x) ≡ F(x).

Proof: See [6], pages 43 and 44. ■

Example 3.6. Consider the infinitesimal generator described by

X =
x
2

∂x + t∂t − M∂M − 2N∂N , (16)

which compared to (15) we have

ξ1 =
x
2

, ξ2 = t, η1 = 0, η2 = −M, η3 = −2N.
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Using (13), we obtain the following results

dx
dϵ

=
x
2
⇒ 2dx

x
= dϵ ⇒ 2 ln x = ϵ + c0,

dt
dϵ

= t ⇒ dt
t

= dϵ ⇒ ln t = ϵ + c1,

dE
dϵ

= 0 ⇒ E = c2,

dM
dϵ

= −M ⇒ dM
M

= −dϵ ⇒ ln M = c3 − ϵ,

dN
dϵ

= −2N ⇒ dN
N

= −2dϵ ⇒ ln N = c4 − 2ϵ,

where c0, c1, c2, c3 and c4 are constants with respect to ϵ. With (x, t, E, M, N) = (x, t, E, M, N)

when ϵ = 0, then

(x, t, E, M, N) = (e
ϵ
2 x, eϵt, E, e−ϵM, e−2ϵN). (17)

Example 3.7. Consider the infinitesimal generator (16). By Theorem 3.2, we can also obtain the

one-parameter (ϵ) Lie group of transformations related to this generator, as following

X0x = x, Xx =
x
2

, X2x =
x
4

, X3x =
x
8

, . . .

x = eϵXx = x +
x
2

+
ϵ2

2!
x
4

+
ϵ3

3!
x
8

+ · · · = x

(
∞

∑
k=0

ϵk

k!
1
2k

)
= e

ϵ
2 x,

X0t = t, Xt = t, X2t = t, X3x = t, . . .

t = eϵXt = t + ϵt +
1
2!

ϵ2t +
1
3!

ϵ3t + · · · = t

(
∞

∑
k=0

ϵk

k!

)
= eϵt,

X0E = E, XE = 0, X2E = 0, X3E = 0, . . .

E = eϵXE = E,



3.2 infinitesimal transformations 25

X0M = M, XM = −M, X2M = M, X3M = −M, . . .

M = eϵX M = M − ϵM +
1
2!

ϵ2M − 1
3!

ϵ3M + · · · = M

(
∞

∑
k=0

ϵk

k!
(−1)k

)
= e−ϵM,

X0N = N, XN = −2N, X2N = 4N, X3N = −8N, . . .

N = eϵX N = N − 2ϵN + 4
1
2!

ϵ2N − 8
1
3!

ϵ3N + · · · = N

(
∞

∑
k=0

ϵk

k!
(−2)k

)
= e−2ϵN.

Thus (x, t, E, M, N) = (e
ϵ
2 x, eϵt, E, e−ϵM, e−2ϵN).

Examples 3.6 and 3.7 have shown two different ways to find a one-parameter (ϵ) Lie

group of transformations related to a given generator: the first one use basically the

infinitesimals and the latter, only the generator. In both cases we have the essential

information to determine the one-parameter (ϵ) Lie group of transformations related to

each one. The importance of this fact impacts the path we trace to find the solutions of

the system modeling the cancer problem that we chose: in order to find it, at first, we

can only determine the generators. The following theory of this chapter completes the

further steps.

3.2.2 Invariant functions

Definition 3.5. An infinitely differentiable function F(x) is an invariant function of the Lie

group of transformations (8) if and only if, for any group transformation (8), F(x) = F(x). If

F(x) is an invariant function of (8), then F(x) is called an invariant of (8) and F(x) is said to be

invariant under (8).

Theorem 3.3. F(x) is invariant under a Lie group of transformations (8) if and only if XF(x) ≡
0.

Proof: See [6], page 46. ■
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Example 3.8. Let F : R5 → R described by F(x, t, E, M, N) = 2E + tM. Consider the

infinitesimal generator (16) and the Lie group of transformations (17). Then,

F(x, t, E, M, N) = 2E + tM = 2E + eϵte−ϵM = 2E + tM = F(x, t, E, M, N).

Hence, the function F(x, t, E, M, N) = 2E + tM is invariant under a Lie group of transformations

(17).

On the other hand,

XF(x, t, E, M, N) = x
2

∂
∂x

F(x, t, E, M, N) + t ∂
∂t

F(x, t, E, M, N) − M ∂
∂M

F(x, t, E, M, N)

−2N ∂
∂N

F(x, t, E, M, N)

= tM − Mt

= 0.

3.3 extended transformations

Definition 3.6. A one-parameter (ϵ) Lie group of point transformations related to a system S is

a group of transformations of the form

x∗ = X(x, u; ϵ),

u∗ = U(x, u; ϵ),
(18)

acting on the space of m + n variables

x = (x1, x2, x3, . . . , xn),

u = (u1, u2, u3, . . . , um),
(19)

where x represents n independent variables and u represents m dependent ones.

A Lie group of point transformations (18) admitted by system S leaves S invariant,

i. e., the form of S is unchanged in terms of transformed variables for any solution

u = θ(x) of S.

Definition 3.7. Consider a Lie group of point transformations related to a system S

x† = X(x, u),

u† = U(x, u),
(20)
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where x = (x1, x2, x3, . . . , xn) represents n independent variables and u = (u1, u2, u3, . . . , um)

represents m dependent ones.

Let

uµ
i =

∂uµ

∂xi
, (uµ

i )† =
∂(uµ)†

∂x†
i

=
∂Uµ

∂Xi

and

Di =
∂

∂xi
+ uµ

i
∂

∂uµ + uµ
ij

∂

∂uµ
j

+ · · · + uµ
ii1i2···in

∂

∂uµ
i1i2···in

+ · · · , (21)

with summation over a repeated index.

Di is called total derivative operators.

Also, let ∂ku denotes the set of coordinates

uµ
i1i2···ik =

∂kuµ

∂xi1∂xi2 · · · ∂xik
,

where µ = 1, 2, . . . , m and ij = 1, 2, . . . , n, j = 1, 2, . . . , k corresponding to all kth-order partial

derivatives of u with respect to x.

The kth-extended transformation of (20) is given by

x† = X(x, u),

u† = U(x, u),

∂u† = ∂U(x, u),
...

∂ku† = ∂kU(x, u, ∂u, . . . , ∂ku),

where (uµ
i )† of ∂u† are determined by

(uµ
1 )†

(uµ
2 )†

...

(uµ
n)†

 =


Uµ

1

Uµ
2
...

Uµ
n

 = A−1


D1Uµ

D2Uµ

...

DnUµ

 ,

A−1 is the assumed existent inverse of the matrix
D1X1 D1X2 · · · D1Xn

D2X1 D2X2 · · · D2Xn
...

...
...

DnX1 DnX2 · · · DnXn


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and (uµ
i1i2...ik

)† of ∂ku† are determined by
(uµ

i1i2···ik−11)†

(uµ
i1i2···ik−12)†

...

(uµ
i1i2···ik−1n)†

 =


Uµ

i1i2···ik−11

Uµ
i1i2···ik−12

...

Uµ
i1i2···ik−1n

 = A−1


D1Uµ

i1i2···ik−1

D2Uµ
i1i2···ik−1
...

DnUµ
i1i2···ik−1

 ,

µ = 1, 2, . . . , m, k = 2, 3, . . . , n and ij = 1, 2, . . . , n, j = 1, 2, . . . , k.

Definition 3.8. Consider the one-parameter (ϵ) Lie group of point transformations related to a

system S in (18) and (19).

The kth-extended transformation of (18) is given by

xi = Xi(x, u; ϵ) = xi + ϵξ i(x, u) + O(ϵ2),

ūµ = Uµ(x, u; ϵ) = uµ + ϵηµ(x, u) + O(ϵ2),

ūµ
i = Uµ

i (x, u, ∂u; ϵ) = uµ
i + ϵη

(1)µ
i (x, u, ∂u) + O(ϵ2),

...
¯uµ

i1i2...ik
= Uµ

i1i2...ik
(x, u, ∂u, . . . , ∂ku; ϵ) = uµ

i1i2...ik
+ ϵη

(k)µ
i1i2...ik

(x, u, ∂u, . . . , ∂ku) + O(ϵ2),

with the extended infinitesimals η
(k)µ
i1i2...ik

given by

η
(1)µ
i = Diη

µ − (Diξ
j)uµ

j (22)

and

η
(k)µ
i1i2...ik

= Dik η
(k−1)µ
i1i2...ik−1

− (Dik ξ j)uµ
i1i2...ik−1 j, (23)

where il = 1, 2, . . . , n for l = 1, 2, . . . , k with k ≥ 2.

Therefore, the kth-extended infinitesimal generator is given by

X(k) = ξ i(x, u) ∂
∂xi

+ ηµ(x, u) ∂
∂uµ + η

(1)µ
i (x, u, ∂u) ∂

∂uµ
i

+ · · ·

+ η
(k)µ
i1i2...ik

(x, u, ∂u, ∂2u, . . . , ∂ku) ∂
∂uµ

i1i2...ik

, k ≥ 1.
(24)

Example 3.9. Consider the general generator of (5) described in (15), where ξ1, ξ2, η1, η2 and

η3 are differentiable functions depending on variables x, t, E, M, N. Thus, its 2nd-extended

infinitesimal generator is given by

X(2) = ξ1∂x + ξ2∂t + η1∂E + η2∂M + η3∂N + η
(1)1
x ∂Ex + η

(1)2
x ∂Mx + η

(1)3
x ∂Nx

+ η
(1)1
t ∂Et + η

(1)2
t ∂Mt + η

(1)3
t ∂Nt + η

(2)1
xx ∂Exx + η

(2)2
xx ∂Mxx + η

(2)3
xx ∂Nxx

+ η
(2)1
xt ∂Ext + η

(2)2
xt ∂Mxt + η

(2)3
xt ∂Nxt + η

(2)1
tt ∂Ett + η

(2)2
tt ∂Mtt + η

(2)3
tt ∂Ntt .
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According to equation (21), the derivative operators Dx and Dt are given by

Dx = ∂x + Ex∂E + Mx∂M + Nx∂N + Exx∂Ex + Mxx∂Mx + Nxx∂Nx

+ Ext∂Et + Mxt∂Mt + Nxt∂Nt ,

Dt = ∂t + Et∂E + Mt∂M + Nt∂N + Etx∂Ex + Mtx∂Mx + Ntx∂Nx

+ Ett∂Et + Mtt∂Mt + Ntt∂Nt .

Hence, based on further definitions within definition 3.8, the first extended infinitesimals are

presented in detail by following expressions. Considering the second extended infinitesimals,

only η
(2)1
xx is shown.

η
(1)1
x = Dxη1 − (Dxξ1)Ex − (Dxξ2)Et

= η1
x + Exη1

E + Mxη1
M + Nxη1

N − (ξ1
x + Exξ1

E + Mxξ1
M + Nxξ1

N)Ex

− (ξ2
x + Exξ2

E + Mxξ2
M + Nxξ2

N)Et

η
(1)2
x = Dxη2 − (Dxξ1)Mx − (Dxξ2)Mt

= η2
x + Exη2

E + Mxη2
M + Nxη2

N − (ξ1
x + Exξ1

E + Mxξ1
M + Nxξ1

N)Mx

− (ξ2
x + Exξ2

E + Mxξ2
M + Nxξ2

N)Mt

η
(1)3
x = Dxη3 − (Dxξ1)Nx − (Dxξ2)Nt

= η3
x + Exη3

E + Mxη3
M + Nxη3

N − (ξ1
x + Exξ1

E + Mxξ1
M + Nxξ1

N)Nx

− (ξ2
x + Exξ2

E + Mxξ2
M + Nxξ2

N)Nt

η
(1)1
t = Dtη

1 − (Dtξ
1)Ex − (Dtξ

2)Et

= η1
t + Etη

1
E + Mtη

1
M + Ntη

1
N − (ξ1

t + Etξ
1
E + Mtξ

1
M + Ntξ

1
N)Ex

− (ξ2
t + Etξ

2
E + Mtξ

2
M + Ntξ

2
N)Et

η
(1)2
t = Dtη

2 − (Dtξ
1)Mx − (Dtξ

2)Mt

= η2
t + Etη

2
E + Mtη

2
M + Ntη

2
N − (ξ1

t + Etξ
1
E + Mtξ

1
M + Ntξ

1
N)Mx

− (ξ2
t + Etξ

2
E + Mtξ

2
M + Ntξ

2
N)Mt

η
(1)3
t = Dtη

3 − (Dtξ
1)Nx − (Dtξ

2)Nt

= η3
t + Etη

3
E + Mtη

3
M + Ntη

3
N − (ξ1

t + Etξ
1
E + Mtξ

1
M + Ntξ

1
N)Nx

− (ξ2
t + Etξ

2
E + Mtξ

2
M + Ntξ

2
N)Nt
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η
(2)1
xx = Dxη

(1)1
x − (Dxξ1)Exx − (Dxξ2)Ext

= Dx(η1
x + Exη1

E + Mxη1
M + Nxη1

N − (ξ1
x + Exξ1

E + Mxξ1
M + Nxξ1

N)Ex

− (ξ2
x + Exξ2

E + Mxξ2
M + Nxξ2

N)Et) − (ξ1
x + Exξ1

E + Mxξ1
M + Nxξ1

N)Exx

− (ξ2
x + Exξ2

E + Mxξ2
M + Nxξ2

N)Ext

= η1
xx + Exη1

xE + Mxη1
xM + Nxη1

xN + Exxη1
E + η1

ExEx + ExExEη1
E + η1

EE(Ex)2

+ MxExMη1
E + MxExη1

EM + NxExNη1
E + NxExη1

EN + Exxη1
E + Mxxη1

M + Mxη1
Mx

+ Ex MxEη1
M + Ex Mxη1

ME + Mx MxMη1
M + (Mx)2η1

MM + Nx MxNη1
M + Nx Mxη1

MN

+ Mxxη1
M + Nxxη1

N + Nxη1
Nx + ExNxEη1

N + ExNxη1
NE + MxNxMη1

N + MxNxη1
NM

+ NxNxNη1
N + (Nx)2η1

NN + Nxxη1
N − ξ1

xxEx − ξ1
xExx − ξ1

xE(Ex)2 − Exξ1
xExE

− Mxξ1
xMEx − Mxξ1

xExM − Nxξ1
xNEx − Nxξ1

xExN − Exxξ1
x − 2ExExxξ1

E

− (Ex)2ξ1
Ex − 2(Ex)2ExEξ1

E − (Ex)3ξ1
EE − 2MxExExMξ1

E − Mx(Ex)2ξ1
EM

− 2NxExExNξ1
E − Nx(Ex)2ξ1

EN − 2ExxExξ1
E − MxxExξ1

M − MxExxξ1
M − MxExξ1

Mx

− MxE(Ex)2ξ1
M − Ex MxExEξ1

M − Mx(Ex)2ξ1
ME − Mx MxMExξ1

M − (Mx)2ExMξ1
M

− (Mx)2Exξ1
MM − Nx MxNExξ1

M − Nx MxExNξ1
M − Nx MxExξ1

MN − Exx Mxξ1
M

− MxxExξ1
M − NxxExξ1

N − NxExxξ1
N − NxExξ1

NxNxE − (Ex)2ξ1
N − ExNxExEξ1

N

− Nx(Ex)2ξ1
NE − MxNxMExξ1

N − MxNxExMξ1
N − MxNxExξ1

NM − NxNxNExξ1
N

− (Nx)2ExNξ1
N − (Nx)2Exξ1

NN − ExxNxξ1
N − NxxExξ1

N − ξ2
xxEt − ξ2

xEtx − Exξ2
xEEt

− Exξ2
xEtE − Mxξ2

xMEt − Mxξ2
xEtM − Nxξ2

xNEt − Nxξ2
xEtN − Extξ

2
x − ExxEtξ

2
E

− ExEtxξ2
E − ExEtξ

2
Ex − ExExEEtξ

2
E − (Ex)2EtEξ2

E − (Ex)2Etξ
2
EE − MxExMEtξ

2
E

− MxExEtMξ2
E − MxExEtξ

2
EM − NxExNEtξ

2
E − NxExEtNξ2

E − NxExEtξ
2
EN

− ExxEtξ
2
E − ExtExξ2

E − MxxEtξ
2
M − MxEtxξ2

M − MxEtξ
2
Mx − Ex MxEEtξ

2
M

− Ex MxEtEξ2
M − Ex MxEtξ

2
ME − Mx MxMEtξ

2
M − (Mx)2EtMξ2

M − (Mx)2Etξ
2
MM

− Nx MxNEtξ
2
M − Nx MxEtNξ2

M − Nx MxEtξ
2
MN − MxxEtξ

2
M − ExtMxξ2

M

− NxxEtξ
2
N − NxEtxξ2

N − NxEtξ
2
Nx − ExNxEEtξ

2
N − ExNxEtEξ2

N − ExNxEtξ
2
NE

− MxNxMEtξ
2
N − MxNxEtMξ2

N − MxNxEtξ
2
NM − NxNxNEtξ

2
N − (Nx)2EtNξ2

N

− (Nx)2Etξ
2
NN − NxxEtξ

2
N − ExtNxξ2

N − ξ1
xExx + Exξ1

EExx + Mxξ1
MExx + Nxξ1

NExx

− ξ2
xExt + Exξ2

EExt + Mxξ2
MExt + Nxξ2

NExt

In a similar way as shown for η
(2)1
xx , we can express η

(2)2
xx , η

(2)3
xx , η

(2)1
xt , η

(2)2
xt , η

(2)3
xt , η

(2)1
tt , η

(2)2
tt

and η
(2)3
tt .
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3.4 infinitesimal criterion of invariance

Theorem 3.4. (The infinitesimal criterion of invariance of a partial differential equation). Let

X = ξ i(x, u)
∂

∂xi
+ ηµ(x, u)

∂

∂uµ (25)

be the infinitesimal generator of the Lie group of point transformations of (18).

Also let (24) be the kth-extended infinitesimal generator of (25), considering (22) and (23).

So, the one-parameter Lie group of point transformations (18) is admitted by the par-

tial differential equation F(x, u, ∂u, ∂2u, . . . , ∂ku), where x = (x1, x2, x3, . . . , xn) and u =

(u1, u2, u3, . . . , um), i.e., is a point Lie symmetry of F(x, u, ∂u, ∂2u, . . . , ∂ku), if and only if

X(k)F(x, u, ∂u, ∂2u, . . . , ∂ku) = 0 when F(x, u, ∂u, ∂2u, . . . , ∂ku) = 0.

Proof: See [18], page 161. ■

Example 3.10. Let

F1 = Nt − D1(NpNxx + pNp−1N2
x ) + ρ(NxEx + NExx),

F2 = Et + δME,

F3 = Mt − D2Mxx − µN + λM.

The infinitesimal criterion of invariance for system (5) is X(2)Fα = 0 (see [7], page 17) when

Fα = 0, α = 1, 2, 3, and where Fα represents the equation α of the system (5) in the format Fα = 0.

Example 3.11. Consider F1, F2 and F3 given by the previous example, where F1 = F2 = F3 = 0,

and the generator W = X1 + cX2, X1 = ∂t, X2 = ∂x.

X(2)
1 F1 = (c3∂t + η

(1)1
x ∂Ex + η

(1)2
x ∂Mx + η

(1)3
x ∂Nx

+ η
(1)1
t ∂Et + η

(1)2
t ∂Mt + η

(1)3
t ∂Nt + η

(2)1
xx ∂Exx + η

(2)2
xx ∂Mxx + η

(2)3
xx ∂Nxx

+ η
(2)1
xt ∂Ext + η

(2)2
xt ∂Mxt + η

(2)3
xt ∂Nxt + η

(2)1
tt ∂Ett + η

(2)2
tt ∂Mtt + η

(2)3
tt ∂Ntt)F1

= 0.

X(2)
1 F2 = (c3∂t + η

(1)1
x ∂Ex + η

(1)2
x ∂Mx + η

(1)3
x ∂Nx

+ η
(1)1
t ∂Et + η

(1)2
t ∂Mt + η

(1)3
t ∂Nt + η

(2)1
xx ∂Exx + η

(2)2
xx ∂Mxx + η

(2)3
xx ∂Nxx

+ η
(2)1
xt ∂Ext + η

(2)2
xt ∂Mxt + η

(2)3
xt ∂Nxt + η

(2)1
tt ∂Ett + η

(2)2
tt ∂Mtt + η

(2)3
tt ∂Ntt)F2

= η
(1)1
t (1).

= 0.
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X(2)
1 F3 = (c3∂t + η

(1)1
x ∂Ex + η

(1)2
x ∂Mx + η

(1)3
x ∂Nx

+ η
(1)1
t ∂Et + η

(1)2
t ∂Mt + η

(1)3
t ∂Nt + η

(2)1
xx ∂Exx + η

(2)2
xx ∂Mxx + η

(2)3
xx ∂Nxx

+ η
(2)1
xt ∂Ext + η

(2)2
xt ∂Mxt + η

(2)3
xt ∂Nxt + η

(2)1
tt ∂Ett + η

(2)2
tt ∂Mtt + η

(2)3
tt ∂Ntt)F3

= η
(1)2
t (1) + η

(2)2
xx (−D2)

= 0.

X(2)
2 F1 = (c2∂x + η

(1)1
x ∂Ex + η

(1)2
x ∂Mx + η

(1)3
x ∂Nx

+ η
(1)1
t ∂Et + η

(1)2
t ∂Mt + η

(1)3
t ∂Nt + η

(2)1
xx ∂Exx + η

(2)2
xx ∂Mxx + η

(2)3
xx ∂Nxx

+ η
(2)1
xt ∂Ext + η

(2)2
xt ∂Mxt + η

(2)3
xt ∂Nxt + η

(2)1
tt ∂Ett + η

(2)2
tt ∂Mtt + η

(2)3
tt ∂Ntt)F1

= η
(1)1
x (ρNx) + η

(1)3
x (−2D1pNp−1Nx) + η

(1)3
t (1) + η

(2)1
xx (ρN) + η

(2)3
xx (−D1Np)

= 0.

X(2)
2 F2 = (c2∂x + η

(1)1
x ∂Ex + η

(1)2
x ∂Mx + η

(1)3
x ∂Nx

+ η
(1)1
t ∂Et + η

(1)2
t ∂Mt + η

(1)3
t ∂Nt + η

(2)1
xx ∂Exx + η

(2)2
xx ∂Mxx + η

(2)3
xx ∂Nxx

+ η
(2)1
xt ∂Ext + η

(2)2
xt ∂Mxt + η

(2)3
xt ∂Nxt + η

(2)1
tt ∂Ett + η

(2)2
tt ∂Mtt + η

(2)3
tt ∂Ntt)F2

= η
(1)1
t (1)

= 0.

X(2)
2 F3 = (c2∂x + η

(1)1
x ∂Ex + η

(1)2
x ∂Mx + η

(1)3
x ∂Nx

+ η
(1)1
t ∂Et + η

(1)2
t ∂Mt + η

(1)3
t ∂Nt + η

(2)1
xx ∂Exx + η

(2)2
xx ∂Mxx + η

(2)3
xx ∂Nxx

+ η
(2)1
xt ∂Ext + η

(2)2
xt ∂Mxt + η

(2)3
xt ∂Nxt + η

(2)1
tt ∂Ett + η

(2)2
tt ∂Mtt + η

(2)3
tt ∂Ntt)F3

= η
(1)2
t (1) + η

(2)2
xx (−D2)

= 0.

Then, W(2)(F1) = W(2)(F2) = W(2)(F3) = 0. Hence, we can affirm that W is a generator of

system (5).

When we apply the invariance condition to a set of differential equations, we obtain

the determining equations for the coefficients of the generator (25). The determining

equations form a set of a homogeneous overdetermined linear system of partial differ-

ential equations (PDE). Then we are able to determine the infinitesimal generators in

an explicit form, which is particularly interesting since through them we can obtain

invariants and then find invariant solutions that are special solutions of the equations.

How to obtain invariants and invariant solutions is the subject of the coming section.
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3.5 invariants

Definition 3.9. Consider a system S and a one-parameter Lie group of point transformations

associated with it defined as in Definition 3.6. Let the system S written as

Fα(x, u, ∂u, ∂2u, . . . , ∂ku) = 0, (26)

where each α represents a different equation of system S. Consider as well the generator

associated with this group as described in equation (25). So u = θ(x), which its components are

(u1, u2, · · · , um) = (θ1(x), θ2(x), . . . , θm(x)), is an invariant solution of the system S if and only

if:

1. ui = θi(x) is an invariant surface of generator (25) for each i = 1, 2, . . . , m;

2. u = θ(x) solves (26).

Definition 3.10. Consider the situation in Definition 3.9. Then ui = θi(x) is an invariant

surface of generator (25) for each i = 1, 2, . . . , m if u = θ(x) satisfies:

X(ui − θi(x)) = 0, when u = θ(x) for each i = 1, 2, . . . , m. (27)

According to [6], invariant solutions can be determined by two procedures: Invariant

Form Method and Direct Substitution Method. At this present work, we chose the first

one to apply into system (5), hence we briefly present the method here. The latter one

can be seen in [6, page 333].

3.5.1 Invariant Form Method

We can solve the invariant surface conditions (27) by explicitly solving the corresponding

characteristic equations for u = θ(x) given by

dx1

ξ1(x, u)
=

dx2

ξ2(x, u)
= · · · =

dxn

ξn(x, u)
=

du1

η1(x, u)
=

du2

η2(x, u)
= · · · =

dum

ηm(x, u)
. (28)

Solving the m + n − 1 first-order ODE system (28) we obtain m + n − 1 independent

functions named here as w1(x, u), w2(x, u), . . . , wn−1(x, u), J1(x, u), J2(x, u), . . . , Jm(x, u).

In addition to that, when the Jacobian

∂(J1, J2, . . . , Jm)
∂(u1, u2, . . . , um)

̸= 0,
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the general solution u = θ(x) of the system of PDE (27) is given implicitly by the

invariant form

Ji(x, u) = Φi(w1(x, u), w2(x, u), . . . , wn−1(x, u)), (29)

where Φi is an arbitrary differentiable function of w1(x, u), w2(x, u), . . . , wn−1(x, u) for

i = 1, 2, . . . , m.

Example 3.12. Consider the system given in Example 3.10 and the information in Example

3.11.

According to (28), the characteristic equation associated with generator X1 + cX2 is given by

dx
c

=
dt
1

=
dN
0

=
dE
0

=
dM

0
.

In order to search for invariants, we have to solve the m + n − 1 = 3 + 2 − 1 = 4 first-order

system given by 
dx
c = dt

1 ,
dt
1 = dN

0 ,
dt
1 = dE

0 ,
dt
1 = dM

0 .

(30)

From integration applied to system (30), the invariants associated with generator X1 + cX2

can be set by

w = x − ct, J1 = N, J2 = E, J3 = M. (31)

Then, the Jacobian

∂(J1, J2, J3)
∂(N, E, M)

=

∣∣∣∣∣∣∣∣
∂J1
∂N

∂J1
∂E

∂J1
∂M

∂J2
∂N

∂J2
∂E

∂J2
∂M

∂J3
∂N

∂J3
∂E

∂J3
∂M

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣ = 1 ̸= 0.

So, using (29) and assume J1 = Φ1(w), J2 = Φ2(w), J3 = Φ3(w), where w is as in (31), we

have

N = Φ1(w), E = Φ2(w), M = Φ3(w). (32)

Thus, considering (31) and (32), the system given in (5) can be rewritten as
−cΦ′

1 = D1(Φp
1Φ′′

1 + pΦp−1
1 Φ

′2
1 ) − ρ(Φ′

1Φ′
2 + Φ1Φ′′

2 ),

cΦ′
2 = δΦ3Φ2,

−cΦ′
3 = D2Φ′′

3 + µΦ1 − λΦ3.

(33)
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The system of PDE (26) has invariant solutions given implicitly by the invariant

form (29), which one found by solving a reduced system of differential equations with

n − 1 independent variables w1(x, u), w2(x, u), . . . , wn−1(x, u) and m dependent variables

J1(x, u), J2(x, u), . . . , Jm(x, u). For details see [6, page 332].

Example 3.13. Considering the previous example, we can solve the system given in Examples

3.10 and 3.11 by solving the ODE system (33) with w as the independent variable, which was

done in Section 5.1.

In Figure 14 we summarize the process to find solutions of an ODE system using Lie

Symmetries.

Figure 14: Summarized process to find solutions of an ODE system using Lie Symmetries.

Source: the author.
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Chapter 3 gives us the tools we need to solve system (5). As we mentioned at the end

of previous chapter, we can apply the invariance criterion to the system (5) in order to

obtain an overdetermined system of partial differential equations whose coefficients are

the infinitesimal generators and their derivatives. The solution leads us to all generators

related to system (5).

Applying the invariance condition to a set of partial differential equations usually is a

hard and mechanical work. Thus, using a package of software Mathematica [27] called

SYM developed by [12], we obtained 107 determining equations. Assuming D1D2 ̸= 0,

we reduce the number of these equations to 24 partial differential equations to be solved,

whose variables are now the coefficients of the generator (15).

In the solving process we were led to split it into 35 cases based on constraints

satisfied by the parameters D1, D2, p, ρ, µ, δ, λ. These cases are shown in schemes in the

first section of the present chapter.

In the second section we present all the generators found, whereas in the last section

we solve the already mentioned 24 equations and show how to obtain the findings

reported in the second section of this chapter.

A highlight of this chapter is that all propositions and theorems are original and

based on the system we want to solve.

4.1 cases trees

In this section we show how the cases split according to the parameters. In order to do

it we present the cases in a tree format.

37
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p
=

0

D
1

=
D

2

ρ
=

0

λ
=

0

µ
=

0

δ
=

0
δ
̸=

0

µ
̸=

0

δ
=

0
δ
̸=

0

λ
̸=

0

µ
̸=

0

δ
=

0
δ
̸=

0

µ
=

0

δ
=

0
δ
̸=

0

ρ
̸=

0

δ
=

0

µ
̸=

0

λ
̸=

0
λ

=
0

µ
=

0

λ
=

0
λ
̸=

0

δ
̸=

0

µ
̸=

0

λ
̸=

0
λ

=
0

µ
=

0

λ
=

0
λ
̸=

0
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p
=

0

D
1
̸=

D
2

ρ
=

0

µ
̸=

0

δ
̸=

0

λ
=

0
λ
̸=

0

δ
=

0

λ
=

0
λ
̸=

0

µ
=

0

δ
̸=

0
δ

=
0

ρ
̸=

0

µ
=

0

δ
=

0
δ
̸=

0

λ
=

0
λ
̸=

0

µ
̸=

0

δ
̸=

0

λ
=

0
λ
̸=

0

δ
=

0

λ
=

0
λ
̸=

0
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p
̸=

0

ρ
̸=

0

δ
̸=

0

µ
̸=

0
ou

λ
̸=

0
µ

=
0

e
λ

=
0

δ
=

0

µ
̸=

0

λ
̸=

0
λ

=
0

µ
=

0

ρ
=

0

µ
̸=

0

δ
̸=

0

λ
=

0
λ
̸=

0

δ
=

0

λ
̸=

0
λ

=
0

µ
=

0

δ
̸=

0

λ
=

0
λ
̸=

0

δ
=

0
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4.2 infinitesimal generators

Theorem 4.1. The infinitesimal generators associated with the system (5) are presented in Tables

(2) - (3).

Proof: See section 4.3. ■

Table 2: Table of generators - p = 0 (corresponds to the cases of trees 1 and 2).

Parameters Coefficients and generators

1 ρ = 0, λ = 0, µ = 0, X1 = ∂t, X2 = ∂x, X3 = x
2 ∂x + t∂t, X4 = M∂M, X5 = N∂M,

δ = 0, D1 = D2 X6 = M∂N , X7 = N∂N , Xz = z(x, E)∂E, Yh = h(x, t)∂M,

Zg = g(x, t)∂N ,

ht = D2hxx, gt = D2gxx

ξ1 = c1
2 x + c3, ξ2 = c1t + c2, η1 = h(x, E),

η2 = c11M + k1N + f3(x, t), η3 = kM + c10N + g3(x, t),
∂
∂t ( f3(x, t)) − D2

∂2

∂x2 ( f3(x, t)) = 0,
∂
∂t (g3(x, t)) − D2

∂2

∂x2 (g3(x, t)) = 0

2 ρ = 0, λ = 0, µ = 0, X1, X2, X6, X7, X8 = x
2 ∂x + t∂t + E ln E∂E,

δ ̸= 0, D1 = D2 X9 = M∂M + E ln E∂E, Yh, Zg, Yf E = f (x, t)E∂E,

δh = − ft, ht = D2hxx, gt = D2gxx

ξ1 = c1
2 x + c3, ξ2 = c1t + c2,

η1 = E((c11 + c1) ln E + f5(x, t)),

η2 = c11M + f3(x, t), η3 = kM + c10N + g3(x, t),

δ f3(x, t) = − ∂
∂t ( f5(x, t)), ∂

∂t (g3(x, t)) − D2
∂2

∂x2 (g3(x, t)) = 0,
∂
∂t ( f3(x, t)) − D2

∂2

∂x2 ( f3(x, t)) = 0

3 ρ = 0, λ = 0, µ ̸= 0, X1, X2, X5, X10 = M∂M − µtN∂M,

δ = 0, D1 = D2 X11 = M∂N + µt(M∂M − N∂N − µtN∂M),

X12 = N∂N + µtN∂M, X13 = x
2 ∂x + t∂t + µtN∂M, Xz, Yh,

Zg,

ht − D2hxx = µg, gt = D2gxx

ξ1 = c1
2 x + c3, ξ2 = c1t + c2, η1 = h(x, E),
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Parameters Coefficients and generators

η2 = (µkt + c11)M + (−µ2kt2 + µt(c10 − c11 + c1) + k1)N

+ f3(x, t), η3 = kM + (−µkt + c10)N + g3(x, t),
∂
∂t (g3(x, t)) − D2

∂2

∂x2 (g3(x, t)) = 0,
∂
∂t ( f3(x, t)) − µg3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0

4 ρ = 0, λ = 0, µ ̸= 0, X1, X2, X14 = x
2 ∂x + t∂t + E ln E∂E − N∂N ,

δ ̸= 0, D1 = D2 X15 = M∂M + E ln E∂E + N∂N , Zg, Yh, Yf E,

δh = − ft, ht − D2hxx = µg, gt = D2gxx

ξ1 = c1
2 x + c3, ξ2 = c1t + c2,

η1 = E((c11 + c1) ln E + f5(x, t)),

η2 = c11M + f3(x, t), η3 = (c11 − c1)N + g3(x, t),

δ f3(x, t) = − ∂
∂t ( f5(x, t)), ∂

∂t (g3(x, t)) − D2
∂2

∂x2 (g3(x, t)) = 0,
∂
∂t ( f3(x, t)) − µg3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0

5 ρ = 0, λ ̸= 0, µ ̸= 0, X1, X2,

δ = 0, D1 = D2 X16 = x
2 ∂x + t∂t + µtN∂M − λtM∂M + ( µ

λ − µ)N∂M,

X17 = µ
λ eλt(M∂M − µ

λ N∂M) + eλt(M∂N − µ
λ N∂N),

X18 = M∂M − µ
λ N∂M, X19 = N∂N + µ

λ N∂M,

X20 = e−λtN∂M, Xz, Yh, Zg,

λh + ht − D2hxx = µg, gt = D2gxx

ξ1 = c1
2 x + c3, ξ2 = c1t + c2, η1 = h(x, E),

η2 =
(

µk
λ eλt − c1λt + c6

)
M + f3(x, t)

+
(

µ
λ

(
−µk

λ eλt + c5 − c6 + c1 + c1λt
)
− µc1 + k1

eλt

)
N,

η3 = (keλt)M +
(
−µk

λ eλt + c5

)
N + g3(x, t),

∂
∂t (g3(x, t)) − D2

∂2

∂x2 (g3(x, t)) = 0,
∂
∂t ( f3(x, t)) + λ f3(x, t) − µg3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0

6 ρ = 0, λ ̸= 0, µ ̸= 0, δ ̸= 0 X1, X2, X15, Yh, Yf E, Zg,

λh + ht − D2hxx = µg, δh = − ft, gt = D2gxx

ξ1 = c3, ξ2 = c2, η1 = E(c6 ln E + f5(x, t)),

η2 = c6M + f3(x, t), η3 = c6N + g3(x, t),

δ f3(x, t) = − ∂
∂t ( f5(x, t)), ∂

∂t (g3(x, t)) − D1
∂2

∂x2 (g3(x, t)) = 0,
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Parameters Coefficients and generators
∂
∂t ( f3(x, t)) + λ f3(x, t) − µg3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0

7 ρ = 0, λ ̸= 0, µ = 0, X1, X2, X4, X7, X20, X21 = x
2 ∂x + t∂t − λtM∂M,

δ = 0, D1 = D2 X22 = eλtM∂N , Xz, Yh, Zg,

λh + ht − D2hxx = 0, gt = D2gxx

ξ1 = c1x
2 + c3; ξ2 = c1t + c2, η1 = h(x, E),

η2 = (−λc1t + c6)M + f3(x, t) + k1e−λtN,

η3 = keλtM + g3(x, t) + c5N,
∂
∂t (g3(x, t)) = D2

∂2

∂x2 (g3(x, t)),

λ f3(x, t) + ∂
∂t ( f3(x, t)) − D2

∂2

∂x2 ( f3(x, t)) = 0

8 ρ = 0, λ ̸= 0, µ = 0, X1, X2, X7, X9, X22, Yh, Yf E, Zg,

δ ̸= 0, D1 = D2 λh + ht − D2hxx = 0, δh = − ft, gt = D2gxx

ξ1 = c3, ξ2 = c2, η1 = E(c6 ln E + f5(x, t)),

η2 = c6M + f3(x, t), η3 = (keλt)M + c5N + g3(x, t),

δ f3(x, t) = − ∂
∂t ( f5(x, t)), ∂

∂t (g3(x, t)) − D2
∂2

∂x2 (g3(x, t)) = 0,
∂
∂t ( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0

9 ρ ̸= 0, δ = 0, µ ̸= 0, λ ̸= 0 X1, X2, X23 = M∂M + N∂N , X24 = ∂E, Yh,

λh + ht − D2hxx = 0

ξ1 = c3, ξ2 = c2, η1 = c4, η2 = c6M + f3(x, t), η3 = c6N,
∂
∂t ( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0

10 ρ ̸= 0, δ = 0, µ ̸= 0, X1, X2, X23, X24, X25 = x
2 ∂x + t∂t − N∂N , Yh,

λ = 0, D1 = D2 ht − D2hxx = 0

ξ1 = c1
2 x + c3, ξ2 = c1t + c2, η1 = c4, η2 = c6M + f3(x, t),

η3 = (c6 − c1)N,
∂
∂t ( f3(x, t)) − D2

∂2

∂x2 ( f3(x, t)) = 0

11 ρ ̸= 0, δ = 0, µ = 0, X1, X2, X3, X4, X7, X24, X26 = e
ρE
D1 ∂N , Yh,

λ = 0, D1 = D2 ht − D2hxx = 0

ξ1 = c1
2 x + c3, ξ2 = c1t + c2, η1 = c4, η2 = c6M + f3(x, t),

η3 = c7N + keρE/D1 ,
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Parameters Coefficients and generators
∂
∂t ( f3(x, t)) − D2

∂2

∂x2 ( f3(x, t)) = 0

12 ρ ̸= 0, δ = 0, µ = 0, X1, X2, X4, X7, X24, X26, Yh,

λ ̸= 0, D1 = D2 λh + ht − D2hxx = 0

ξ1 = c3, ξ2 = c2, η1 = c4, η2 = c6M + f3(x, t),

η3 = c7N + keρE/D1 ,
∂
∂t ( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0

13 ρ ̸= 0, δ ̸= 0, µ ̸= 0, λ ̸= 0 X1, X2

ξ1 = c3, ξ2 = c2, η1 = 0, η2 = 0, η3 = 0

14 ρ ̸= 0, δ ̸= 0, µ ̸= 0, λ = 0 X1, X2, X27 = x
2 ∂x + t∂t − 2N∂N − M∂M

ξ1 = c1x
2 + c3, ξ2 = c1t + c2, η1 = 0, η2 = −c1M,

η3 = −2c1N

15 ρ ̸= 0, δ ̸= 0, µ = 0, λ = 0 X1, X2, X7, X28 = x
2 ∂x + t∂t − M∂M

ξ1 = c1x
2 + c3, ξ2 = c1t + c2, η1 = 0, η2 = −c1M, η3 = c7N

16 ρ ̸= 0, δ ̸= 0, µ = 0, λ ̸= 0 X1, X2, X7

ξ1 = c3, ξ2 = c2, η1 = 0, η2 = 0, η3 = c7N

17 ρ = 0, µ ̸= 0, δ ̸= 0, X1, X2, X15, X29 = x
2 ∂x + t∂t + E ln E∂E − N∂N , Yh, Yf E,

λ = 0, D1 ̸= D2 Zg,

ht − D2hxx = µg, δh = − ft, gt = D1gxx

ξ1 = c1
2 x + c3, ξ2 = c1t + c2, η1 = E((c6 + c1) ln E + f5(x, t)),

η2 = c6M + f3(x, t), η3 = (c6 − c1)N + g3(x, t),
∂
∂t ( f3(x, t)) − D2

∂2

∂x2 ( f3(x, t)) − µg3(x, t) = 0,

δ f3(x, t) = − ∂
∂t ( f5(x, t)), ∂

∂t (g3(x, t)) = D1
∂2

∂x2 (g3(x, t))

18 ρ = 0, µ ̸= 0, δ = 0, X1, X2, X23, X30 = x
2 ∂x + t∂t − N∂N , Xz, Yh, Zg,

λ = 0, D1 ̸= D2 ht − D2hxx = µg, gt = D1gxx

ξ1 = c1
2 x + c3, ξ2 = c1t + c2, η1 = h(x, E),

η2 = c6M + f3(x, t),
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Parameters Coefficients and generators

η3 = (c6 − c1)N + g3(x, t),
∂
∂t ( f3(x, t)) − D2

∂2

∂x2 ( f3(x, t)) − µg3(x, t) = 0,
∂
∂t (g3(x, t)) = D1

∂2

∂x2 (g3(x, t))

19 ρ = 0, µ ̸= 0, δ = 0 X1, X2, X23, Xz, Yh, Zg,

λ ̸= 0, D1 ̸= D2 λh + ht − D2hxx = µg, gt = D1gxx

ξ1 = c3, ξ2 = c2, η1 = h(x, E), η2 = c6M + f3(x, t),

η3 = c6N + g3(x, t),
∂
∂t ( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) − µg3(x, t) = 0,
∂
∂t (g3(x, t)) = D1

∂2

∂x2 (g3(x, t))

20 ρ = 0, µ = 0, δ ̸= 0, X1, X2, X7, X8, X9, Yh, Zg,

∀λ, D1 ̸= D2 λh + ht − D2hxx = 0, δh = − ft, gt = D1gxx

ξ1 = c1
2 x + c3, ξ2 = c1t + c2, η1 = E((c6 + c1) ln E + f5(x, t)),

η2 = c6M + f3(x, t), η3 = c7N + g3(x, t),
∂
∂t ( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0,

δ f3(x, t) = − ∂
∂t ( f5(x, t)), ∂

∂t (g3(x, t)) = D1
∂2

∂x2 (g3(x, t))

21 ρ = 0, µ = 0, δ = 0, X1, X2, X4, X7, X21, Xz, Yh, Zg,

∀λ, D1 ̸= D2 λh + ht − D2hxx = 0, gt = D1gxx

ξ1 = c1
2 x + c3, ξ2 = c1t + c2, η1 = h(x, E),

η2 = (c6 − c1λt)M + f3(x, t), η3 = c7N + g3(x, t),

∂
∂t (g3(x, t)) = D1

∂2

∂x2 (g3(x, t)),
∂
∂t ( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0

22 ρ ̸= 0, µ = 0, δ = 0, X1, X2, X4, X7, X21, X24, X26, Yh, λh + ht − D2hxx = 0

∀λ, D1 ̸= D2

ξ1 = c1
2 x + c3, ξ2 = c1t + c2, η1 = c4,

η2 = (c6 − c1λt)M + f3(x, t),
∂
∂t ( f3(x, t)) + λ f3(x, t) = D2

∂2

∂x2 ( f3(x, t)),

η3 = c5N + keρE/D1

23 ρ ̸= 0, µ ̸= 0, δ = 0, λ = 0 X1, X2, X23, X24, X31 = x
2 ∂x + t∂t + M∂M, Yh,

ht − D2hxx = 0
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Parameters Coefficients and generators

ξ1 = c1
2 x + c3, ξ2 = c1t + c2, η1 = c4,

η2 = (c5 + c1)M + f3(x, t), η3 = c5N,
∂
∂t ( f3(x, t)) = D2

∂2

∂x2 ( f3(x, t))

Table 3: Table of generators - p ̸= 0 (corresponds to the cases of tree 3).

Parameters Coefficients and generators

24 ρ ̸= 0, δ ̸= 0, (µ ̸= 0 ou λ ̸= 0) X1, X2

ξ1 = c3; ξ2 = c2; η1 = 0; η2 = 0; η3 = 0

25 ρ ̸= 0, δ ̸= 0, (µ = 0 e λ = 0) X1, X2, X28

ξ1 = c1
2 x + c3, ξ2 = c1t + c2, η1 = 0, η2 = −c1M,

η3 = 0

26 ρ ̸= 0, δ = 0, µ = 0, ∀λ X1, X2, X4, X21, X24, Yh,

λh + ht − D2hxx = 0

ξ1 = c1
2 x + c3; ξ2 = c1t + c2; η1 = c4;

η2 = (c5 − λc1t)M + f3(x, t);
∂
∂t ( f3(x, t)) + λ f3(x, t) = D2

∂2

∂x2 ( f3(x, t)); η3 = 0

27 ρ ̸= 0, δ = 0, µ ̸= 0, λ ̸= 0 X1, X2, X24, Yh,

λh + ht − D2hxx = 0

ξ1 = c3, ξ2 = c2; η1 = c4;

η2 = f3(x, t),
∂
∂t ( f3(x, t)) + λ f3(x, t) = D2

∂2

∂x2 ( f3(x, t)),

η3 = 0

28 ρ ̸= 0, δ = 0, µ ̸= 0, λ = 0 X1, X2, X24, X31, Yh,

ht − D2hxx = 0

ξ1 = c1
2 x + c3, ξ2 = c1t + c2, η1 = c4,

η2 = c1M + f3(x, t), ∂
∂t ( f3(x, t)) = D2

∂2

∂x2 ( f3(x, t)),



4.2 infinitesimal generators 47

Parameters Coefficients and generators

η3 = 0

29 ρ = 0, µ ̸= 0, δ ̸= 0, λ = 0 X1, X2, X32 = x
2 ∂x + t∂t + 2E ln E∂E + M∂M, Yh, Yf E,

ht − D2hxx = 0, δh = − ft

ξ1 = c1
2 x + c3, ξ2 = c1t + c2,

η1 = (2c1 ln E + f5(x, t))E,

η2 = c1M + f3(x, t),

δ f3(x, t) = − ∂
∂t ( f5(x, t)),

∂
∂t ( f3(x, t)) = D2

∂2

∂x2 ( f3(x, t)),

η3 = 0

30 ρ = 0, µ ̸= 0, δ ̸= 0, λ ̸= 0 X1, X2, Yh, Yf E,

λh + ht − D2hxx = 0, δh = − ft

ξ1 = c3, ξ2 = c2, η1 = f5(x, t)E,

η2 = f3(x, t), δ f3(x, t) = − ∂
∂t ( f5(x, t)),

∂
∂t ( f3(x, t)) + λ f3(x, t) = D2

∂2

∂x2 ( f3(x, t)), η3 = 0

31 ρ = 0, µ ̸= 0, δ = 0, λ = 0 X1, X2, X31, Yh, Xz,

ht − D2hxx = 0

ξ1 = c1
2 x + c3; ξ2 = c1t + c2; η1 = h(x, E);

η2 = c1M + f3(x, t), ∂
∂t ( f3(x, t)) = D2

∂2

∂x2 ( f3(x, t));

η3 = 0

32 ρ = 0, µ ̸= 0, δ = 0, λ ̸= 0 X1, X2, Yh, Xz,

λh + ht − D2hxx = 0

ξ1 = c3; ξ2 = c2; η1 = h(x, E);

η2 = f3(x, t),
∂
∂t ( f3(x, t)) + λ f3(x, t) = D2

∂2

∂x2 ( f3(x, t));

η3 = 0

33 ρ = 0, µ = 0, δ ̸= 0, λ = 0 X1, X2, X8, X9, Yh, Yf E,

ht − D2hxx = 0, δh = − ft

ξ1 = c1x
2 + c3; ξ2 = c1t + c2;
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Parameters Coefficients and generators

η1 = E((c5 + c1) ln E + f5(x, t)),

η2 = c5M + f3(x, t), δ f3(x, t) = − ∂
∂t ( f5(x, t));

∂
∂t ( f3(x, t)) = D2

∂2

∂x2 ( f3(x, t)); η3 = 0

34 ρ = 0, µ = 0, δ ̸= 0, λ ̸= 0 X1, X2, X9, Yh, Yf E,

λh + ht − D2hxx = 0, δh = − ft

ξ1 = c3; ξ2 = c2; η1 = E(c5 ln E + f5(x, t)),

η2 = c5M + f3(x, t),

δ f3(x, t) = − ∂
∂t ( f5(x, t));

∂
∂t ( f3(x, t)) = D2

∂2

∂x2 ( f3(x, t)) − λ f3(x, t); η3 = 0

35 ρ = 0, µ = 0, δ = 0, ∀λ X1, X2, X4, X21, Xz, Yh,

λh + ht − D2hxx = 0

ξ1 = c1x
2 + c3; ξ2 = c1t + c2; η1 = h(x, E);

η2 = (−c1λt + c5)M + f3(x, t),
∂
∂t ( f3(x, t)) = D2

∂2

∂x2 ( f3(x, t)) − λ f3(x, t); η3 = 0

4.3 the determining equations

Using the software Mathematica [27] and its package SYM [12] to obtain the determining

equations, assuming D1D2 ̸= 0, we can reduce the determining equations for the system

(5) as following:

ξ1
N = ξ1

E = ξ1
M = ξ1

t = 0, (34)

ξ2
x = ξ2

E = ξ2
M = ξ2

N = 0, (35)

ξ2
t − 2ξ1

x = 0, (36)

η1
N = η1

M = 0, (37)
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η2
xE = η2

EE = η2
EM = η2

MM = η2
xN = η2

MN = 0, (38)

η3
xM = η3

MM = 0, (39)

pη3 = 0, (40)

(D2 − D1Np)η3
M = 0, (41)

2η2
xM − ξ1

xx = 0, (42)

(D2 − D1Np)η2
N = 0, (43)

ρNη2
N + D2η2

E = 0, (44)

ρη2
N + 2D2η2

EN = 0, (45)

pD1Npη2
N − D2Nη2

NN = 0, (46)

ρ(η3
E + Nη1

EE) − D1Npη3
EE = 0, (47)

η3
t + ρNη1

xx − δEMη3
E − D1Npη3

xx + (µN − λM)η3
M = 0, (48)

ρ(η3
x + 2Nη1

xE) − 2D1Npη3
xE − Npξ1

xx = 0, (49)

ρη3
M − 2D1Npη3

EM = 0, (50)

ρ(η3 − Nη3
N + Nη1

E) − D1Npη3
E = 0, (51)

pη3
M + Nη3

MN = 0, (52)
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η1
t + δ(Mη1 + Eη2 − EMη1

E + EMξ2
t ) = 0, (53)

ρNη1
x − 2D1Np(pη3

x + Nη3
xN) + D1Np+1ξ1

xx = 0, (54)

ρNη1
E − 2D1Np(pη3

E − Nη3
EN) = 0, (55)

η2
t + λη2 − µη3 − λMη2

M + µNη2
M − δEMη2

E + λMξ2
t − µNξ2

t − D2η2
xx = 0, (56)

Np(p − 1)pη3 + Np+1(pη3
N + Nη3

NN) = 0. (57)

Proposition 4.1. If ξ1 and ξ2 satisfy (34), (35) and (36), then

ξ1 =
c1x
2

+ c3, (58)

ξ2 = c1t + c2,

where c1, c2 and c3 are arbitrary constants.

Proof: Equations (34) and (35) imply, respectively, that ξ1 = ξ1(x) and ξ2 = ξ2(t). In

addition, taking (36) into account, we obtain the result. ■

Proposition 4.2. If η1 satisfies (37), η2 satisfies (38) and (42), and ξ1 satisfies (58), then

η1 = h(x, t, E) and η2 = f1(t)M + f2(t, N)E + f3(x, t) + f4(t, N), where h, f1, f2, f3 and f4 are

smooth functions.

Proof: From equations (37), we have η1 = h(x, t, E), where h is an arbitrary smooth

function. Since ξ1 = c1x
2 + c3, then ξ1

xx = 0 and from (42) we obtain η2
xM = 0. From

equation (38) and the fact that η2
xM = 0, we conclude that

η2 = f1(t)M + f2(t, N)E + f3(x, t) + f4(t, N), (59)

where f1, f2, f3 and f4 are arbitrary smooth functions. ■

Proposition 4.3. If η3 satisfies (39), then

η3 = g(t, E, N)M + g1(x, t, E, N). (60)

Proof: The second equation in (39) implies that η3 is linear in M whereas the first

equation says that coefficient of M does not depend on x and this proves the result. ■
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4.3.1 The case p nonzero

Through this subsection we will assume p ̸= 0.

Proposition 4.4. If η3 satisfies equations (40) and (60), then η3 = 0. In particular, g = g1 = 0.

Proof: It follows immediately from (40). ■

Proposition 4.5. If η2 satisfies equations (43) and (44), then η2 = f1(t)M + f3(x, t).

Proof: From (43) we obtain η2
N = 0. By (59), this condition is equivalent to f2N = 0 and

f4N = 0. For simplicity f4(t) can be merged with f3(x, t). On the other hand, (44) implies

η2
E = 0, which gives f2 = 0. These conditions give the result. ■

Until this point, the system of determining equations can be written as:

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2, (61)

η1 = h(x, t, E), (62)

η2 = f1(t)M + f3(x, t), (63)

η3 = 0, (64)

η1
t + δ(Mη1 + Eη2 − EMη1

E + c1EM) = 0, (65)

ρNη1
x = 0, (66)

ρNη1
E = 0, (67)

η2
t + λη2 − λM f1(t) + µN f1(t) + c1λM − c1µN − D2η2

xx = 0. (68)
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The case ρ ̸= 0:

In addition to the condition p ̸= 0, we add the condition ρ ̸= 0.

Proposition 4.6. If η1 satisfies equations (62), (66) and (67), then η1
x = 0 and η1

E = 0. In

particular, h = h(t).

Proof: It is immediate from equations (62), (66) and (67). ■

Deriving equation (65) with respect to E and by Proposition 4.6, we have:

δ(η2 + c1M) = 0. (69)

Equation (69) suggests that we can divide this case into two: δ = 0 and δ ̸= 0.

Proposition 4.7. If δ = 0, Proposition 4.6 is satisfied and η1 satisfies equation (65), then

η1 = c4, where c4 is a constant.

Proof: By Proposition 4.6 we have η1 = h(t). From (65) we have h′(t) = 0 and we obtain

the desired result. ■

Proposition 4.8. If δ = 0 and η2 satisfies equations (63) and (68), then f1 = c5 − λc1t,

µ( f1(t) − c1) = 0 and

∂

∂t
( f3(x, t)) + λ f3(x, t) = D2

∂2

∂x2 ( f3(x, t)).

Proof: Replacing equation (63) into (68), we have the identity

M( f ′1(t) + c1λ) + N(µ f1 − µc1) + ∂
∂t ( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0.

Then,

f ′1(t) + λc1 = 0 ⇒ f1(t) = c5 − λc1t,

µ( f1(t) − c1) = 0, (70)
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∂

∂t
( f3(x, t)) + λ f3(x, t) = D2

∂2

∂x2 ( f3(x, t)).

■

Proposition 4.9. If δ = 0, µ ̸= 0, λ ̸= 0 and Proposition 4.8 is satisfied, then f1 = 0.

Proof: If µ ̸= 0, equation (70) gives λc1 = 0 and c5 = c1. Since λ ̸= 0, c1 = 0 and we

have the result. ■

Proposition 4.10. If δ = 0, µ ̸= 0, λ = 0 and Proposition 4.8 is satisfied, then f1 = c1.

Proof: If µ ̸= 0, equation (70) gives λc1 = 0 and c5 = c1. ■

Therefore, as long as p ̸= 0, ρ ̸= 0, δ = 0 and µ = 0, the solution of the determining

equations is:

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = c4,

η2 = (c5 − λc1t)M + f3(x, t),

η3 = 0,

where
∂

∂t
( f3(x, t)) + λ f3(x, t) = D2

∂2

∂x2 ( f3(x, t)).

Considering p ̸= 0, ρ ̸= 0, δ = 0, µ ̸= 0 and λ ̸= 0, the solution is:

ξ1 = c3, ξ2 = c2,

η1 = c4,

η2 = f3(x, t),
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η3 = 0,

where
∂

∂t
( f3(x, t)) + λ f3(x, t) = D2

∂2

∂x2 ( f3(x, t)).

Whilst for p ̸= 0, ρ ̸= 0, δ = 0, µ ̸= 0 and λ = 0, we have the solution:

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = c4,

η2 = c1M + f3(x, t),

η3 = 0,

with
∂

∂t
( f3(x, t)) = D2

∂2

∂x2 ( f3(x, t)).

Proposition 4.11. If δ ̸= 0, ξ1 and ξ2 satisfy equations (61), η1 and η2 satisfy equations (65),

(68) and (69), and Proposition 4.6 is satisfied, then η2 = −c1M and η1 = 0. In particular, if

λ ̸= 0 or µ ̸= 0, then η2 = 0, ξ1 = c3 and ξ2 = c2.

Proof: Condition (69) implies η2 = −c1M when δ ̸= 0. Substituting this into (68) we

have λc1M = 0 and hence −2µc1N + λc1M = 0, which implies µc1 = 0 and λc1 = 0. If

λ ̸= 0 or µ ̸= 0 , then c1 = 0 which implies η2 = 0, ξ1 = c3 and ξ2 = c2.

Equation (65) jointly with Proposition 4.6, η2 = −c1M and the condition δ ̸= 0, yield

η1 = 0. ■

Then, for p ̸= 0, ρ ̸= 0, δ ̸= 0, λ ̸= 0 and ∀µ:

ξ1 = c3, ξ2 = c2,

η1 = 0, η2 = 0, η3 = 0.

If p ̸= 0, ρ ̸= 0, δ ̸= 0, ∀λ and µ ̸= 0, we have:

ξ1 = c3, ξ2 = c2,
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η1 = 0, η2 = 0, η3 = 0.

And the solution of the determining equations for p ̸= 0, ρ ̸= 0, δ ̸= 0, λ = 0 and µ = 0

is given by

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = 0, η2 = −c1M, η3 = 0.

The case ρ = 0:

In addition to the condition p ̸= 0, we add the condition ρ = 0.

Proposition 4.12. If η2 satisfies equations (63) and (68), then f1 = c5 − λc1t, µ( f1(t)− c1) = 0

and ∂
∂t ( f3(x, t)) + λ f3(x, t) = D2

∂2

∂x2 ( f3(x, t)).

Proof: From equation (63) we know η2
tM = f ′1(t). So, deriving equation (68) with

respect to M and N, respectively, we have:

f ′1(t) + λc1 = 0,

µ( f1(t) − c1) = 0. (71)

Then, we have that f ′1(t) = −λc1, which implies f1(t) = c5 − λc1t, and µ( f1(t) − c1) = 0.

Using both information into (68), we conclude ∂
∂t ( f3(x, t)) + λ f3(x, t) = D2

∂2

∂x2 ( f3(x, t)). ■

Proposition 4.13. If δ ̸= 0, ξ1 and ξ2 satisfy equations (61), η1 satisfies equation (62), η1 and

η2 satisfy equation (65), and Proposition 4.12 is satisfied, then η1 = ((c5 + c1) ln E + f5(x, t))E,

where δ f3(x, t) = − ∂
∂t ( f5(x, t)), and η2 = c5M + f3(x, t). In particular, if λ ̸= 0, then ξ1 = c3,

ξ2 = c2 and η1 = (c5 ln E + f5(x, t))E.

Proof: Since η1 = h(x, t, E), η2 = f1(t)M + f3(x, t) = (c5 − λc1t)M + f3(x, t) and δ ̸= 0,

considering the independent variables, from equation (65) we have:

η1 + E(c5 + c1 − η1
E − λc1t) = 0, (72)

η1
t + δE f3(x, t) = 0. (73)
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From equation (73), we obtain η1
t = −δE f3(x, t). Comparing that with the derivative

of equation (72) with respect to t, obtain λc1 = 0. Therefore, resolving equation (72) by

integrating factor, we can affirm

η1 = ((c5 + c1) ln E + f5(x, t))E. (74)

From equations (73) and (74), we have δ f3(x, t) = − ∂
∂t ( f5(x, t)).

In particular, if λ ̸= 0, then c1 = 0, which implies ξ1 = c3, ξ2 = c2 and η1 = (c5 ln E +

f5(x, t))E. ■

Proposition 4.14. If δ = 0, then η1 = h(x, E).

Proof: It comes directly from equation (65). ■

Proposition 4.15. If µ ̸= 0, Proposition 4.12 is satisfied and ξ1 and ξ2 satisfy equations (61),

then f1 = c1, i.e., c5 = c1 and λc1 = 0. In particular, if λ ̸= 0, then ξ1 = c3, ξ2 = c2 and

η2 = f3(x, t).

Proof: If µ ̸= 0, equation (71) gives f1 = c1. Since f1(t) = c5 − λc1t, then c5 = c1 and

λc1 = 0, which implies η2 = c1M + f3(x, t). In particular, if λ ̸= 0, then c1 = 0, i.e., ξ1 = c3

and ξ2 = c2 come directly from equations (61), and η2 = f3(x, t). ■

Hence, when p ̸= 0, ρ = 0, δ ̸= 0, µ ̸= 0 and λ ̸= 0, we can rewrite the system as:

ξ1 = c3, ξ2 = c2,

η1 = f5(x, t)E,

η2 = f3(x, t),

η3 = 0,

where

δ f3(x, t) = − ∂

∂t
( f5(x, t)),

∂

∂t
( f3(x, t)) + λ f3(x, t) = D2

∂2

∂x2 ( f3(x, t)).
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Considering p ̸= 0, ρ = 0, δ ̸= 0, µ ̸= 0 and λ = 0, we can rewrite the system as:

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = (2c1 ln E + f5(x, t))E,

η2 = c1M + f3(x, t),

η3 = 0,

with

δ f3(x, t) = − ∂

∂t
( f5(x, t)),

∂

∂t
( f3(x, t)) = D2

∂2

∂x2 ( f3(x, t)).

Since p ̸= 0, ρ = 0, δ = 0, µ ̸= 0 and λ ̸= 0, the system is rewritten as:

ξ1 = c3, ξ2 = c2,

η1 = h(x, E),

η2 = f3(x, t),

η3 = 0,

where
∂

∂t
( f3(x, t)) + λ f3(x, t) = D2

∂2

∂x2 ( f3(x, t)).

Setting p ̸= 0, ρ = 0, δ = 0, µ ̸= 0 and λ = 0, we obtain the system :

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = h(x, E),
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η2 = c1M + f3(x, t),

η3 = 0,

with
∂

∂t
( f3(x, t)) = D2

∂2

∂x2 ( f3(x, t)).

On the other hand, for p ̸= 0, ρ = 0, δ ̸= 0, µ = 0 and λ = 0, the system becomes:

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = E((c5 + c1) ln E + f5(x, t)),

η2 = c5M + f3(x, t),

η3 = 0,

where

δ f3(x, t) = − ∂

∂t
( f5(x, t)),

∂

∂t
( f3(x, t)) = D2

∂2

∂x2 ( f3(x, t)).

Considering p ̸= 0, ρ = 0, δ ̸= 0, µ = 0 and λ ̸= 0, we can rewrite the system as:

ξ1 = c3, ξ2 = c2,

η1 = E(c5 ln E + f5(x, t)),

η2 = c5M + f3(x, t),

η3 = 0,

where

δ f3(x, t) = − ∂

∂t
( f5(x, t)),
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∂

∂t
( f3(x, t)) = D2

∂2

∂x2 ( f3(x, t)) − λ f3(x, t).

For p ̸= 0, ρ = 0, δ = 0 and µ = 0, we obtain the system :

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = h(x, E),

η2 = (c5 − c1λt)M + f3(x, t),

η3 = 0,

where
∂

∂t
( f3(x, t)) + λ f3(x, t) = D2

∂2

∂x2 ( f3(x, t)).

4.3.2 The case p = 0

Through this subsection we assume p = 0.

Proposition 4.16. If η2 satisfies equations (44) - (46) and Proposition 4.2 is satisfied, then

η2 = f1(t)M + f2(t)E + f3(x, t) + f4(t)N.

Proof: Replacing p = 0 in equation (46), we have η2
NN = 0. So, deriving equation (44)

with respect to N, we obtain ρη2
N + ρNη2

NN + D2η2
EN = 0. Then, we have:

ρη2
N + D2η2

EN = 0. (75)

Making equation (45) - equation (75), we have η2
EN = 0. Taking into account equation

(59) within Proposition 4.2 and the results above, we obtain η2 = f1(t)M + f2(t)E +

f3(x, t) + f4(t)N. ■

Proposition 4.17. If η1 satisfies equations (37), (51) and (55), η3 satisfies Proposition 4.3 and

equations (50) - (52), (55) and (57), then η3 = g(t)M + Ng2(x, t) + g3(x, t, E).
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Proof: Assuming that Proposition 4.3 holds and replacing p = 0 into equations (52)

and (57), we have η3
MN = 0 and η3

NN = 0, respectively, which implies η3 = g(t, E)M +

Ng2(x, t, E) + g3(x, t, E).

Deriving equation (51) with respect to N, we obtain ρη3
N − ρη3

N − Nρη3
NN + ρη1

E +

Nρη1
EN − D1η3

EN = 0, and we can replace η3
NN = 0 into this equation. Besides, we know

that η1
N = 0 from equations (37). So, we have:

ρη1
E − D1η3

EN = 0. (76)

Doing equation (55) - N × equation (76), we have η3
EN = 0.

On the other hand, the derivative of equation (51) with respect to M is ρη3
M − ρNη3

NM +

ρNη1
EM − D1η3

EM = 0. We can replace η3
NM = 0 into this last equation obtained and we

also know η1
M = 0 from equations (37). So, we have:

ρη3
M − D1η3

EM = 0. (77)

Doing equation (50) - equation (77), we have that η3
EM = 0.

Therefore, η3 = g(t)M + Ng2(x, t) + g3(x, t, E). ■

Then, the system can be rewritten as:

ξ1 =
c1x
2

+ c3, ξ2 = c1t + c2, (78)

η1 = h(x, t, E), (79)

η2 = f1(t)M + f2(t)E + f3(x, t) + f4(t)N, (80)

η3 = g(t)M + g2(x, t)N + g3(x, t, E), (81)

(D2 − D1)g(t) = 0, (82)

(D2 − D1)η2
N = 0, (83)

ρNη2
N + D2 f2(t) = 0, (84)
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ρη2
N = 0, (85)

ρ(η3
E + Nη1

EE) − D1η3
EE = 0, (86)

η3
t + ρNη1

xx − δEMη3
E − D1η3

xx + (µN − λM)g(t) = 0, (87)

ρ(η3
x + 2Nη1

xE) − 2D1η3
xE = 0, (88)

ρη3
M = 0, (89)

ρ(η3 − Nη3
N + Nη1

E) − D1η3
E = 0, (90)

η1
t + δ(Mη1 + Eη2 − EMη1

E + c1EM) = 0, (91)

ρη1
x − 2D1η3

xN = 0, (92)

ρη1
E = 0, (93)

η2
t + λη2 − µη3 − λM f1(t) + µN f1(t) − δEM f2(t) + c1λM − c1µN − D2η2

xx = 0. (94)

The case D1 ̸= D2:

In addition to the condition p = 0, we add the condition D1 ̸= D2.

Proposition 4.18. If η2 satisfies equations (80), (83) and (84), η3 satisfies equations (81) and

(82), then η2 = f1(t)M + f3(x, t) and η3 = Ng2(x, t) + g3(x, t, E).

Proof: Setting D1 ̸= D2, from equation (82) we have g(t) = 0, which implies

η3 = Ng2(x, t) + g3(x, t, E). From equations (80) and (83) we have f4(t) = 0. Replac-

ing it into equation (84), we have that f2(t) = 0. So, η2 = f1(t)M + f3(x, t). ■
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Proposition 4.19. If ρ ̸= 0, η1 satisfies equations (79), (88), (90), (92) and (93), η3 satisfies

Proposition 4.18 and equations (88), (90) and (92), then η1 = h(t) and η3 = Ng2(t) + g3(t, E).

Proof: Substituting ρ ̸= 0 in equation (93), we have η1
E = 0, which implies η1 = h(x, t).

The derivative of equation (90) with respect to x is given by

ρ(η3
x − Nη3

Nx) − D1η3
Ex = 0. (95)

Making the difference between (88) and (95), we have D1η3
Ex + Nη3

Nx = 0. Analysing

these variables involved in the last equation and Proposition 4.18, we can affirm that

η3
xE = 0 and η3

Nx = 0. Replacing these into equations (88) and (92), we obtain η3
x = 0 and

η1
x = 0, respectively.

Since (79) holds and Proposition 4.18 is satisfied, we can conclude η1 = h(t) and

η3 = Ng2(t) + g3(t, E). ■

Proposition 4.20. If ρ ̸= 0, δ ̸= 0, η1 satisfies equation (91), η2 satisfies (91) and (94), η3

satisfies (87) and (94), and Propositions 4.18 and 4.19 hold, then η2 = −c1M, η1 = 0, η3 = c4N

and c1λ = 0. In particular, if λ ̸= 0, then η2 = 0, η1 = 0, η3 = c4N, ξ1 = c3, and ξ2 = c2; and if

µ ̸= 0, then η3 = −2c1N.

Proof: Using the derivative of equation (91) with respect to E and M and the Proposi-

tions 4.18 and 4.19, we have:

δ(η2 + c1M) = 0, (96)

δ(η1 + E f1(t) + c1E) = 0. (97)

Considering δ ̸= 0 in equations (96) and (97), we have η2 = −c1M and η1 = −E( f1(t) +

c1), which implies f1(t) = −c1, f3(x, t) = 0, since Propositions 4.18 and 4.19 hold. Thus,

η1 = 0.

Also, deriving equation (87) with respect to M and taking δ ̸= 0, we obtain η3
E = 0.

Replacing this into equation (87), we have that η3
t = 0. So, η3 = c4N.

Besides that, the equation (94) can be rewritten as

µη3 + 2c1µN − c1λM = 0, (98)

and its derivative with respect to M gives c1λ = 0.
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In particular, if λ ̸= 0, then c1 = 0. So, η2 = 0, η1 = 0, η3 = c4N, ξ1 = c3, and ξ2 = c2.

On the other hand, deriving equation (98) with respect to N, we have:

µ(c4 + 2c1) = 0 (99)

In particular, if µ ̸= 0, from equation (99) we can affirm η3 = −2c1N. ■

Therefore, the rewritten system for p = 0, D1 ̸= D2, ρ ̸= 0, δ ̸= 0, µ ̸= 0 and λ ̸= 0 is:

ξ1 = c3, ξ2 = c2,

η1 = 0,

η2 = 0,

η3 = 0.

If p = 0, D1 ̸= D2, ρ ̸= 0, δ ̸= 0, µ ̸= 0 and λ = 0, we can rewrite the system as:

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = 0,

η2 = −c1M,

η3 = −2c1N.

For p = 0, D1 ̸= D2, ρ ̸= 0, δ ̸= 0, µ = 0 and λ ̸= 0, we obtain the system :

ξ1 = c3, ξ2 = c2,

η1 = 0,

η2 = 0,
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η3 = c4N.

Furthermore, for p = 0, D1 ̸= D2, ρ ̸= 0, δ ̸= 0, µ = 0 and λ = 0, the system becomes:

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = 0,

η2 = −c1M,

η3 = c4N.

Proposition 4.21. If ρ ̸= 0 and δ = 0, η1 satisfies equation (91), η2 satisfies equation (94), η3

satisfies equation (87), and Propositions 4.18 and 4.19 hold, then η1 = c4, η2 = (c6 − c1λt)M +

f3(x, t), where ∂
∂t ( f3(x, t)) + λ f3(x, t) = D2

∂2

∂x2 ( f3(x, t)), η3 = c5N + keρE/D1 , where c5, c6, k are

constants. In particular, if µ ̸= 0, then η2 = (c5 + c1)M + f3(x, t) and η3 = c5N.

Proof: Assuming that Proposition 4.19 holds and δ = 0 in equations (87) and (91), we

obtain η3
t = 0 and η1

t = 0. Then η1 = c4 and η3 = c5N + g4(E).

On the other hand, the equation (90) can be rewritten as

ρg4(E) − D1g′4(E) = 0.

So, g4(E) = keρE/D1 . Then η3 = c5N + keρE/D1 .

Deriving equation (94) with respect to M and N and considering Proposition 4.18,

we have, respectively:

f ′1(t) + c1λ = 0 (100)

and

µ( f1(t) − c5 − c1) = 0, (101)

which implies f1(t) = c6 − c1λt and then µ(c6 − c5 − c1 − c1λt) = 0. From Proposition

4.18 and equation (100), we have η2 = (c6 − c1λt)M + f3(x, t).

Therefore, equation (101) indicates that we can analyze this case for µ ̸= 0 and µ = 0.
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In particular, if µ ̸= 0, from equation (101) we can affirm that c6 = c5 + c1 and λc1 = 0.

Rewriting equation (94) we obtain k = 0 and ∂
∂t ( f3(x, t)) + λ f3(x, t) = D2

∂2

∂x2 ( f3(x, t)). So,

η2 = (c5 + c1)M + f3(x, t) and η3 = c5N.

If µ = 0, from equation (94) we also have ∂
∂t ( f3(x, t)) + λ f3(x, t) = D2

∂2

∂x2 ( f3(x, t)). ■

Thus, if p = 0, D1 ̸= D2, ρ ̸= 0, δ = 0, µ ̸= 0 and λ = 0, we can rewrite the system as:

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = c4,

η2 = (c5 + c1)M + f3(x, t),

η3 = c5N,

where
∂

∂t
( f3(x, t)) = D2

∂2

∂x2 ( f3(x, t)).

Setting the parameters as p = 0, D1 ̸= D2, ρ ̸= 0, δ = 0, µ ̸= 0 and λ ̸= 0, the system

becomes:

ξ1 = c3, ξ2 = c2,

η1 = c4,

η2 = c5M + f3(x, t),

η3 = c5N,

where
∂

∂t
( f3(x, t)) + λ f3(x, t) = D2

∂2

∂x2 ( f3(x, t)).

On the other hand, p = 0, D1 ̸= D2, ρ ̸= 0, δ = 0 and µ = 0 lead us to the following

system :
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ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = c4,

η2 = (c6 − c1λt)M + f3(x, t),

η3 = c5N + keρE/D1 ,

where
∂

∂t
( f3(x, t)) + λ f3(x, t) = D2

∂2

∂x2 ( f3(x, t)).

Proposition 4.22. If ρ = 0, η1 and η3 satisfy equations (87), (90) and (92), η2 and η3

satisfy equation (94), and Proposition 4.18 holds, then η2 = (c6 − c1λt)M + f3(x, t) and η3 =

c7N + g3(x, t), where ∂
∂t ( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) − µg3(x, t) = 0, ∂
∂t (g3(x, t)) =

D1
∂2

∂x2 (g3(x, t)) and c7 is a constant. In particular, if µ ̸= 0, then η2 = c6M + f3(x, t) and

η3 = (c6 − c1)N + g3(x, t), where ∂
∂t ( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) − µg3(x, t) = 0,
∂
∂t (g3(x, t)) = D1

∂2

∂x2 (g3(x, t)) and λc1 = 0; if µ = 0, then η2 = (c6 − c1λt)M + f3(x, t) and

η3 = c7N + g3(x, t), where ∂
∂t ( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0 and ∂
∂t (g3(x, t)) =

D1
∂2

∂x2 (g3(x, t)).

Proof: Considering Proposition 4.18 and ρ = 0 in equations (90) and (92), we have

η3
E = 0 and η3

xN = 0, which implies η3 = Ng2(t) + g3(x, t).

From equation (87), we have Ng′2(t) + ∂
∂t (g3(x, t)) − D1

∂2

∂x2 (g3(x, t)) = 0. Thus, g′2(t) =

0 and ∂
∂t (g3(x, t)) − D1

∂2

∂x2 (g3(x, t)) = 0, which implies g2(t) = c7 and ∂
∂t (g3(x, t)) =

D1
∂2

∂x2 (g3(x, t)), where c7 is a constant.

Deriving equation (94) with respect to M we have:

f ′1(t) + c1λ = 0,

which implies f1(t) = c6 − c1λt then η2 = (c6 − c1λt)M + f3(x, t) and we have the result.

Rewriting equation (94) we obtain

∂

∂t
( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) − µg3(x, t) + µN(c6 − c7 − c1λt − c1) = 0. (102)

From equation (102), we can conclude that µ = 0 or c6 − c7 − c1λt − c1 = 0. So, µ = 0

or µ ̸= 0 ⇒ c1λ = 0, c7 = c6 − c1. Then, we have the expected result. ■
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Proposition 4.23. Consider ρ = 0. If δ ̸= 0, η1 satisfies equations (79) and (91), and Proposition

4.22 is satisfied, then η1
t = −Eδ f3(x, t). If δ = 0, η1 satisfies equations (79) and (91), then

η1 = h(x, E).

Proof: Consider δ ̸= 0. The following equations are the derivatives of (91) with respect

to M and E, respectively:

δ(η1 + E f1(t) − Eη1
E + c1E) = 0, (103)

η1
tE + δ[ f3(x, t) + M( f1(t) − Eη1

EE + c1)] = 0. (104)

Since δ ̸= 0 and f1(t) = c6 − c1λt, equation (103) implies η1 + E(c6 − c1λt − η1
E + c1) = 0.

Deriving this last equation with respect to t and E, we have, respectively:

η1
t + E(−c1λ − η1

Et) = 0, (105)

Eη1
EE = c6 − c1λt + c1. (106)

Substituting equation (106) into equation (104), we have

η1
tE + δ f3(x, t) = 0. (107)

Also, the derivative of equations (105) and (107) with respect to E give c1λ + Eη1
tEE = 0

and η1
tEE = 0. So, c1λ = 0, and replacing it into equation (103) and resolving this new

equation it by integrating factor, we can affirm

η1 = ((c6 + c1) ln E + f5(x, t))E. (108)

Taking into account equations (105), (107) and (108), then δ f3(x, t) = − ∂
∂t ( f5(x, t)).

If δ = 0, η1 = h(x, E) comes directly from equations (79) and (91). ■

Hence, p = 0, D1 ̸= D2, ρ = 0, µ ̸= 0, δ ̸= 0 and λ = 0 give the system :

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = E((c6 + c1) ln E + f5(x, t)),
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η2 = c6M + f3(x, t),

η3 = (c6 − c1)N + g3(x, t),

where

δ f3(x, t) = − ∂

∂t
( f5(x, t)),

∂

∂t
( f3(x, t)) − D2

∂2

∂x2 ( f3(x, t)) − µg3(x, t) = 0,

∂

∂t
(g3(x, t)) = D1

∂2

∂x2 (g3(x, t)).

For p = 0, D1 ̸= D2, ρ = 0, µ ̸= 0, δ ̸= 0 and λ ̸= 0, we can rewrite the system as:

ξ1 = c3, ξ2 = c2,

η1 = E(c6 ln E + f5(x, t)),

η2 = c6M + f3(x, t),

η3 = c6N + g3(x, t),

where

δ f3(x, t) = − ∂

∂t
( f5(x, t)),

∂

∂t
( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) − µg3(x, t) = 0,

∂

∂t
(g3(x, t)) = D1

∂2

∂x2 (g3(x, t)).

Since p = 0, D1 ̸= D2, ρ = 0, µ ̸= 0, δ = 0 and λ = 0, the system rewritten is:

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = h(x, E),
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η2 = c6M + f3(x, t),

η3 = (c6 − c1)N + g3(x, t),

where
∂

∂t
( f3(x, t)) − D2

∂2

∂x2 ( f3(x, t)) − µg3(x, t) = 0,

∂

∂t
(g3(x, t)) = D1

∂2

∂x2 (g3(x, t)).

Let p = 0, D1 ̸= D2, ρ = 0, µ ̸= 0, δ = 0 and λ ̸= 0, then the system becomes :

ξ1 = c3, ξ2 = c2,

η1 = h(x, E),

η2 = c6M + f3(x, t),

η3 = c6N + g3(x, t),

where
∂

∂t
( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) − µg3(x, t) = 0,

∂

∂t
(g3(x, t)) = D1

∂2

∂x2 (g3(x, t)).

Considering p = 0, D1 ̸= D2, ρ = 0, µ = 0, and δ ̸= 0, we can rewrite the system as:

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = E((c6 + c1) ln E + f5(x, t)),

η2 = c6M + f3(x, t),

η3 = c7N + g3(x, t),
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where

δ f3(x, t) = − ∂

∂t
( f5(x, t)),

∂

∂t
( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0,

∂

∂t
(g3(x, t)) = D1

∂2

∂x2 (g3(x, t)).

Setting p = 0, D1 ̸= D2, ρ = 0, µ = 0 and δ = 0, we obtain the following system :

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = h(x, E),

η2 = (c6 − c1λt)M + f3(x, t),

η3 = c7N + g3(x, t),

where
∂

∂t
( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0,

∂

∂t
(g3(x, t)) = D1

∂2

∂x2 (g3(x, t)).

The case D1 = D2:

In addition to the condition p = 0, we add the condition D1 = D2.

Proposition 4.24. If ρ ̸= 0, η2 satisfies (80), (84), (85), (93) and (94), η3 satisfies equations

(81), (89) and (94), and it is also as the result of the Proposition 4.19, then η1 = h(t), η2 =

(c6 − c1λt)M + f3(x, t) and η3 = Ng2(t) + g3(t, E).

Proof: Let ρ ̸= 0. From equations (80) and (85) we have f4(t) = 0. Replacing it into

equation (84), we have f2(t) = 0. So, η2 = f1(t)M + f3(x, t). From equations (81) and (89)

we have g(t) = 0, which implies η3 = Ng2(x, t) + g3(x, t, E).

Those last two results are the same in the Proposition 4.18 without forcing conditions

about D1 and D2. It is also worth to stress that Proposition 4.19 does not use as well the

condition about D1 and D2, only p = 0, ρ ̸= 0 and the result of Proposition 4.18.



4.3 the determining equations 71

So, we have the same conclusion of Proposition 4.19, i.e., η1 = h(t) and η3 = Ng2(t) +

g3(t, E).

Deriving equation (94) with respect to M, we have f ′1(t) + c1λ = 0, which implies

f1(t) = c6 − c1λt.

Thus, we have the desired outcome. ■

Considering the conditions and results of Proposition 4.24, we can derive equation

(94) with respect to N, so

µ(c6 − g2(t) − c1λt − c1) = 0. (109)

This result suggests that we can divide this case into µ ̸= 0 and µ = 0.

Using the result in equation (109) into equation (94), we found

∂

∂t
( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) − µg3(t, E) = 0. (110)

Proposition 4.25. If ρ ̸= 0, µ ̸= 0, Proposition 4.24 is satisfied, η1 satisfies equations (87),

(90) and (91), η2 satisfies equation (91) and η3 satisfies equations (87) and (90), then η2 =

c6M + f3(x, t) and η3 = N(c6 − c1). In particular, if λ ̸= 0, then c1 = 0; if λ = 0 then
∂
∂t ( f3(x, t)) − D2

∂2

∂x2 ( f3(x, t)) = 0; if δ ̸= 0, then η1 = 0, η2 = −c1M and η3 = −2c1N; if δ = 0,

then η1 = c4.

Proof: If µ ̸= 0 into (110), then g3E = 0, i.e.,

g3 = g3(t) (111)

and
∂

∂t
( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0. (112)

Also if Proposition 4.24 holds and µ ̸= 0, from equation (109) we obtain c6 − c1 −
g2(t) − c1λt = 0, and replacing η1

E = 0 and equation (111) into (90) we have η3 = Nη3
N,

i.e., g3(t) = 0.

Using Proposition 4.24 and equation (87) we have η3
t = 0, which implies c1λ = 0

by equation (109), and that means g2 = c6 − c1. In particular, if λ ̸= 0, then c1 = 0;

and if λ = 0, equation (112) gives ∂
∂t ( f3(x, t)) − D2

∂2

∂x2 ( f3(x, t)) = 0. So far, we have

η2 = c6M + f3(x, t) and η3 = N(c6 − c1).

On the other hand, we can derive equation (91) with respect to M and E, respectively:
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δ(h(t) + c6E + c1E) = 0, (113)

δ(η2 + c1M) = 0. (114)

In particular, if we consider δ ̸= 0 into equations (113) and (114), we can conclude

that h(t) = 0, c6 = −c1 and η2 = c6M.

If δ = 0, from equation (91) we have η1
t = 0, then η1 = c4.

Therefore, we have the result. ■

Thus, if p = 0, D1 = D2, ρ ̸= 0, µ ̸= 0, λ ̸= 0 and δ = 0, we can rewrite the system as:

ξ1 = c3, ξ2 = c2,

η1 = c4, η2 = c6M + f3(x, t),

η3 = c6N,

where
∂

∂t
( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0.

Since p = 0, D1 = D2, ρ ̸= 0, µ ̸= 0, λ = 0 and δ = 0, the system remains as:

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = c4, η2 = c6M + f3(x, t),

η3 = (c6 − c1)N,

where
∂

∂t
( f3(x, t)) − D2

∂2

∂x2 ( f3(x, t)) = 0.

For p = 0, D1 = D2, ρ ̸= 0, µ ̸= 0, λ ̸= 0 and δ ̸= 0, the rewritten system is:

ξ1 = c3, ξ2 = c2,

η1 = 0, η2 = 0, η3 = 0.
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On the other hand, p = 0, D1 = D2, ρ ̸= 0, µ ̸= 0, λ = 0 and δ ̸= 0 give the system

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = 0, η2 = −c1M, η3 = −2c1N.

Proposition 4.26. If ρ ̸= 0, µ = 0, δ ̸= 0, Proposition 4.24 is satisfied, η1 = 0 and η2 satisfy

equation (91), then η1 = 0, η2 = −c1M and η3 = c7N. In particular, if λ ̸= 0, then c1 = 0.

Proof: Consider δ ̸= 0 and deriving the equation (91) with respect to M and E, we

have, respectively:

η1 = E(c1λt − c1 − c6), (115)

η2 = −c1M.

Since η1 = h(t), equation (115) implies η1 = 0, c6 = −c1 and c1λ = 0; in particular, if

λ ̸= 0, then c1 = 0. Therefore, the expected result has been achieved. ■

Proposition 4.27. If ρ ̸= 0, µ = 0, δ = 0, Proposition 4.24 is satisfied and η1 satisfies equations

(87), (90) and (91), η2 satisfies equation (91) and η3 satisfies equations (87) and (90), then

η1 = c4 and η3 = c7N + keρE/D1 .

Proof: Consider that Proposition 4.24 holds and δ = 0 into equations (87) and (91). So,

we have η3
t = 0 and η1

t = 0, respectively, which implies η3 = c7N + g3(E) and η1 = c4.

Besides that, equation (90) gives ρg3(E) − D1g′3(E) = 0, then g3(E) = keρE/D1 .

Thus, the proof has been done. ■

Hence, p = 0, D1 = D2, ρ ̸= 0, µ = 0, δ ̸= 0 and λ = 0 lead to the system

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = 0, η2 = −c1M, η3 = c7N.

If p = 0, D1 = D2, ρ ̸= 0, µ = 0, δ ̸= 0 and λ ̸= 0 the system becomes :
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ξ1 = c3, ξ2 = c2,

η1 = 0, η2 = 0, η3 = c7N.

Considering p = 0, D1 = D2, ρ ̸= 0, µ = 0, δ = 0 and λ = 0, we can rewrite the system

as:

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = c4, η2 = c6M + f3(x, t),

η3 = c7N + keρE/D1 ,

where
∂

∂t
( f3(x, t)) − D2

∂2

∂x2 ( f3(x, t)) = 0.

And making p = 0, D1 = D2, ρ ̸= 0, µ = 0, δ = 0 and λ ̸= 0, we obtain the system

ξ1 = c3, ξ2 = c2,

η1 = c4, η2 = c6M + f3(x, t),

η3 = c7N + keρE/D1 ,

where
∂

∂t
( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0.

Proposition 4.28. If ρ = 0, η2 satisfies (80), (84) and (94), η3 satisfies (81), (87), (90), (92) and

(94), then η2 = f1(t)M + f3(x, t) + f4(t)N and η3 = (keλt)M + Ng2(t) + g3(x, t). In particular,

if λ = 0, then η3 = kM + Ng2(t) + g3(x, t).

Proof: Substituting ρ = 0 in equations (84), (90) and (92) we have f2(t) = 0, η3
E = 0 and

η3
xN = 0, which implies η2 = f1(t)M + f3(x, t) + f4(t)N and η3 = g(t)M + Ng2(t) + g3(x, t)

by equations (80) and (81).
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Replacing ρ = 0 and η3
E = 0 into equation (87) and calculating its derivative with

respect to M, we have g′(t) = λg(t). Hence, g(t) = keλt. Particularly, if λ = 0, then g(t) = k.

The result suggests that we can split this case into λ ̸= 0 and λ = 0. ■

Before analyzing other equations of the system (78)-(94) for λ ̸= 0 and λ = 0, and

assuming the Proposition 4.28 holds, we will present some of these equations rewritten

or its derivatives, which can assist the analysis for both cases of λ.

So, we can derive equation (87) with respect to N:

g′2(t) = −µg(t). (116)

Conversely, deriving equation (94) with respect to M and N, respectively:

f ′1(t) = µg(t) − c1λ, (117)

f ′4(t) + λ f4(t) − µg2(t) + µ f1(t) − µc1 = 0. (118)

Proposition 4.29. If ρ = 0, λ ̸= 0, η1 satisfies equations (79), (87) and (91), η2 satis-

fies equation (91), and the Proposition 4.28 is satisfied, then η1 = h(x, t, E), η2 = f3(x, t) +(
µ
λ

(
c5 + c1 − c6 − µk

λ eλt + c1λt
)
− µc1 + k1

eλt

)
N +

(
µk
λ eλt + c6 − c1λt

)
M and η3 = (keλt)M +

N
(

c5 − µk
λ eλt

)
+ g3(x, t), where ∂

∂t (g3(x, t))−D1
∂2

∂x2 (g3(x, t)) = 0 and ∂
∂t ( f3(x, t)) + λ f3(x, t)−

µg3(x, t)− D2
∂2

∂x2 ( f3(x, t)) = 0. Particularly, if µ = 0, then η2 = (c6 − c1λt)M + k1
eλt N + f3(x, t)

and η3 = (keλt)M + c5N + g3(x, t), where ∂
∂t (g3(x, t)) − D1

∂2

∂x2 (g3(x, t)) = 0 and ∂
∂t ( f3(x, t)) +

λ f3(x, t) − D2
∂2

∂x2 ( f3(x, t)) = 0; if δ = 0, then η1 = h(x, E).

Proof: In view of Proposition 4.28 and setting λ ̸= 0 in equations (116) and (117), we

obtain, respectively:

g2(t) = c5 −
µk
λ

eλt, (119)

f1(t) =
µk
λ

eλt − c1λt + c6. (120)

Accordingly, the condition

f ′4(t) + λ f4(t) + µ

(
µk
λ

eλt + c6 +
µk
λ

eλt − c1λt − c5 − c1

)
= 0 (121)
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comes directly from equation (118), replacing (119) and (120) into it. Thus,

f4(t) =
µ

λ

(
c5 −

µk
λ

eλt − c6 + c1 + c1λt
)

+
k1

eλt − µc1. (122)

Besides that, rewriting the equations (87) and (94), we have the conditions

∂

∂t
(g3(x, t)) − D1

∂2

∂x2 (g3(x, t)) = 0

and
∂

∂t
( f3(x, t)) + λ f3(x, t) − µg3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0,

respectively.

Particularly, if µ = 0, then equation (122) gives f4(t) = k1
eλt , which implies η2 = (c6 −

c1λt)M + k1
eλt N + f3(x, t) and η3 = (keλt)M + Nc5 + g3(x, t), ∂

∂t (g3(x, t)) − D1
∂2

∂x2 (g3(x, t)) = 0

and ∂
∂t ( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0.

In particular, if δ = 0, then equations (79) and (91) give η1 = h(x, E). ■

Proposition 4.30. If ρ = 0, λ ̸= 0, δ ̸= 0, ξ1 and ξ2 satisfy equations (78), η1 satisfies

equations (79) and (91), η2 satisfies equation (91), and the Proposition (4.29) is satisfied, then

ξ1 = c3, ξ2 = c2, η1 = ((c6 + c1) ln E + f5(x, t))E, η2 = c6M + f3(x, t) and η3 = (keλt)M +

Nc5 + g3(x, t), where δ f3(x, t) = − ∂
∂t ( f5(x, t)) and µ(−c5 + c6) = 0. Particularly, if µ ̸= 0,

then η3 = Nc6 + g3(x, t); if µ = 0, then the additional conditions on η1, η2 and η3 become
∂
∂t (g3(x, t)) − D1

∂2

∂x2 (g3(x, t)) = 0 and ∂
∂t ( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0.

Proof: In view of Proposition 4.29, equation (91) becomes

η1
t + δE f3(x, t) = −δM

(
η1 + E

µk
λ

eλt − Ec1λt + Ec6 − Eη1
E + c1E

)
− δEN f4(t). (123)

Considering equation (79), δ ̸= 0 into equation (123) and knowing that the variables

of f3 are x and t, we obtain

f4(t) = 0, (124)

η1
t = −δE f3(x, t), (125)

η1 = E
(

c1λt + η1
E − µk

λ
eλt − c6 − c1

)
. (126)



4.3 the determining equations 77

Comparing equation (125) to the derivatives of equations (125) with respect to E and

(126) with respect to t, we can affirm µkeλt = c1λ, since λ ̸= 0, that implies µk = 0 and

c1 = 0. Analyzing equations (78), this last condition implies ξ1 = c3 and ξ2 = c2.

Accordingly, resolving equation (126) by integrating factor, we can affirm

η1 = ((c6 + c1) ln E + f5(x, t))E. (127)

From equations (125), (126) and (127) we obtain δ f3(x, t) = − ∂
∂t ( f5(x, t)).

On the other hand, the condition µ(c6 − c5) = 0 comes directly from replacing µk = 0,

c1 = 0 and (124) into equation (121).

So, if µ ̸= 0, then k = 0 and c5 = c6. Consequently, η3 = Nc6 + g3(x, t).

Particularly, if µ = 0, then the additional conditions on η1, η2 and η3 become
∂
∂t (g3(x, t)) − D1

∂2

∂x2 (g3(x, t)) = 0 and ∂
∂t ( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0. ■

Proposition 4.31. If ρ = 0, λ = 0, η1 satisfies equations (79), (87) and (91), η2 satisfies equation

(91), and the Proposition (4.28) is satisfied, then η1 = h(x, t, E), η2 = (µkt + c11)M + f3(x, t) +

f4(t)N and η3 = kM + N(c10 − µkt) + g3(x, t), where ∂
∂t (g3(x, t)) − D1

∂2

∂x2 (g3(x, t)) = 0,
∂
∂t ( f3(x, t)) − µg3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0 and c10, c11 are arbitrary constants. In partic-

ular, if δ = 0, then η1 = h(x, E); if µ = 0, then η2 = c11M + Nk1 + f3(x, t) and η3 = kM +

Nc10 + g3(x, t), where ∂
∂t ( f3(x, t)) − D2

∂2

∂x2 ( f3(x, t)) = 0, ∂
∂t (g3(x, t)) − D1

∂2

∂x2 (g3(x, t)) = 0 and

k1 is a constant.

Proof: In view of Proposition 4.28 and setting λ = 0 in equations (116) and (117), we

obtain, respectively:

g2(t) = c10 − µkt, (128)

f1(t) = µkt + c11, (129)

where c10, c11 are constants.

Accordingly, the condition

f ′4(t) + µ(2µkt − c10 + c11 − c1) = 0 (130)

comes directly from equation (118), replacing (128) and (129) into it. Then,

f4(t) = µ(c10 − c11 + c1)t − µ2kt2 + k1,
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where k1 is a constant.

Besides that, rewriting equations (87) and (94), we have the conditions

∂

∂t
(g3(x, t)) − D1

∂2

∂x2 (g3(x, t)) = 0 (131)

and
∂

∂t
( f3(x, t)) − µg3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0, (132)

respectively.

In particular, if δ = 0, then equations (79) and (91) give η1 = h(x, E).

If µ = 0, then η2 = c11M + k1N + f3(x, t) and η3 = kM + c10N + g3(x, t), where
∂
∂t ( f3(x, t)) − D2

∂2

∂x2 ( f3(x, t)) = 0 and ∂
∂t (g3(x, t)) − D1

∂2

∂x2 (g3(x, t)) = 0. ■

Proposition 4.32. If ρ = 0, λ = 0, δ ̸= 0, η1 satisfies equations (79) and (91), and the

Proposition (4.31) is satisfied, then η1 = ((c11 + c1) ln E + f5(x, t))E, η2 = c11M + f3(x, t) and

η3 = kM + c10N + g3(x, t), where µ(c11 − c10 − c1) = 0, δ f3(x, t) = − ∂
∂t ( f5(x, t)), ∂

∂t (g3(x, t))−
D1

∂2

∂x2 (g3(x, t)) = 0 and ∂
∂t ( f3(x, t)) − µg3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0. Particularly, if µ ̸= 0,

then η3 = c10N + g3(x, t); if µ = 0, then the only additional conditions on η1, η2 and η3 are
∂
∂t (g3(x, t)) − D1

∂2

∂x2 (g3(x, t)) = 0 and ∂
∂t ( f3(x, t)) − D2

∂2

∂x2 ( f3(x, t)) = 0.

Proof: In view of Proposition 4.31, equation (91) becomes

η1
t + δE f3(x, t) = −δM(η1 + Eµkt + Ec11 − Eη1

E + c1E) − δEN f4(t). (133)

Considering equation (79), δ ̸= 0 into equation (133) and knowing that the variables

of f3 are x and t, we obtain

f4(t) = 0, (134)

η1
t = −δE f3(x, t), (135)

η1 = E(η1
E − µkt − c11 − c1). (136)

Accordingly, the conditions µ(c11 − c10 − c1) = 0 and µk = 0 come directly from

equation (130) whereas (134) holds. So, if µ ̸= 0, then k = 0 and, consequently, η3 =

c10N + g3(x, t).
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On the other hand, resolving equation (136) by integrating factor, we can affirm

η1 = ((c11 + c1) ln E + f5(x, t))E. (137)

Equations (135), (136) and (137) give δ f3(x, t) = − ∂
∂t ( f5(x, t)).

Since equations (131) and (132) still hold, so ∂
∂t (g3(x, t)) − D1

∂2

∂x2 (g3(x, t)) = 0 and
∂
∂t ( f3(x, t)) − µg3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0.

Particularly, if µ = 0, then the additional conditions on η1, η2 and η3 become
∂
∂t (g3(x, t)) − D1

∂2

∂x2 (g3(x, t)) = 0 and ∂
∂t ( f3(x, t)) − D2

∂2

∂x2 ( f3(x, t)) = 0. ■

Thus, if p = 0, D1 = D2, ρ = 0, λ ̸= 0, δ ̸= 0 and µ ̸= 0, we can rewrite the system as:

ξ1 = c3, ξ2 = c2,

η1 = E(c6 ln E + f5(x, t)),

η2 = c6M + f3(x, t),

η3 = c6N + g3(x, t),

where

δ f3(x, t) = − ∂

∂t
( f5(x, t)),

∂

∂t
(g3(x, t)) − D1

∂2

∂x2 (g3(x, t)) = 0,

∂

∂t
( f3(x, t)) + λ f3(x, t) − µg3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0.

Setting p = 0, D1 = D2, ρ = 0, λ ̸= 0, δ ̸= 0 and µ = 0, we obtain the system

ξ1 = c3, ξ2 = c2,

η1 = E(c6 ln E + f5(x, t)),

η2 = c6M + f3(x, t),
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η3 = (keλt)M + c5N + g3(x, t),

where

δ f3(x, t) = − ∂

∂t
( f5(x, t)),

∂

∂t
(g3(x, t)) − D2

∂2

∂x2 (g3(x, t)) = 0,

∂

∂t
( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0.

For p = 0, D1 = D2, ρ = 0, λ ̸= 0, δ = 0 and µ ̸= 0 the system becomes

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = h(x, E),

η2 =
(

µk
λ

eλt − c1λt + c6

)
M +

(
µ

λ

(
c5 −

µk
λ

eλt + c1 + c1λt − c6

)
+

k1

eλt − µc1

)
N + f3(x, t),

η3 = (keλt)M +
(

c5 −
µk
λ

eλt
)

N + g3(x, t),

where
∂

∂t
(g3(x, t)) − D2

∂2

∂x2 (g3(x, t)) = 0,

∂

∂t
( f3(x, t)) + λ f3(x, t) − µg3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0.

Taking p = 0, D1 = D2, ρ = 0, λ ̸= 0, δ = 0 and µ = 0, the rewritten system is:

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = h(x, E),

η2 = (c6 − c1λt)M + k1e−λtN + f3(x, t),

η3 = (keλt)M + c5N + g3(x, t),
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where
∂

∂t
(g3(x, t)) − D2

∂2

∂x2 (g3(x, t)) = 0,

∂

∂t
( f3(x, t)) + λ f3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0.

If p = 0, D1 = D2, ρ = 0, λ = 0, δ ̸= 0 and µ ̸= 0, then the system remains as following:

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = E((c11 + c1) ln E + f5(x, t)),

η2 = c11M + f3(x, t),

η3 = (c11 − c1)N + g3(x, t),

where

δ f3(x, t) = − ∂

∂t
( f5(x, t)),

∂

∂t
(g3(x, t)) − D2

∂2

∂x2 (g3(x, t)) = 0,

∂

∂t
( f3(x, t)) − µg3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0.

Considering p = 0, D1 = D2, ρ = 0, λ = 0, δ ̸= 0 and µ = 0, we can rewrite the system

as:

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = E((c11 + c1) ln E + f5(x, t)),

η2 = c11M + f3(x, t),

η3 = kM + c10N + g3(x, t),
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where

δ f3(x, t) = − ∂

∂t
( f5(x, t)),

∂

∂t
(g3(x, t)) − D2

∂2

∂x2 (g3(x, t)) = 0,

∂

∂t
( f3(x, t)) − D2

∂2

∂x2 ( f3(x, t)) = 0.

On the other hand, p = 0, D1 = D2, ρ = 0, λ = 0, δ = 0 and µ ̸= 0 imply the system

rewritten as following:

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = h(x, E),

η2 = (µkt + c11)M + (k1 − µ2kt2 + µ(c10 − c11 + c1)t)N + f3(x, t),

η3 = kM + (c10 − µkt)N + g3(x, t),

where
∂

∂t
(g3(x, t)) − D2

∂2

∂x2 (g3(x, t)) = 0,

∂

∂t
( f3(x, t)) − µg3(x, t) − D2

∂2

∂x2 ( f3(x, t)) = 0.

Setting the parameters as p = 0, D1 = D2, ρ = 0, λ = 0, δ = 0 and µ = 0, we can rewrite

the system as:

ξ1 =
c1

2
x + c3, ξ2 = c1t + c2,

η1 = h(x, E),

η2 = c11M + k1N + f3(x, t),

η3 = kM + c10N + g3(x, t),
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where
∂

∂t
( f3(x, t)) − D2

∂2

∂x2 ( f3(x, t)) = 0,

∂

∂t
(g3(x, t)) − D2

∂2

∂x2 (g3(x, t)) = 0.





5 INVARIANT SOLUTIONS : A

CONSTRUCTION

In this chapter we use the Lie point symmetries and the Invariant Form Method

presented in chapter 3 to construct explicit invariant solutions to the system.

Based on Invariant Form Method we obtain an ordinary differential equations (ODE)

system but unfortunately not all the obtained ODE systems are easy to be solved, so

we will show in the following chapter the results considering some of the generators

associated with the system (5).

Hence, several graphics were made using parameters from [1], [3], [9] and [25]. Some

of them, such as µ, λ and δ, as mentioned in chapter 2, are estimations supported by

the literature and not obtained from experimental data until now.

5.1 general case

The system (5) is given by
Nt = D1(NpNxx + pNp−1N2

x ) − ρ(NxEx + NExx),

Et = −δME,

Mt = D2Mxx + µN − λM.

We notice from section 4.2 that the translations X1 = ∂t and X2 = ∂x are generators

related to system (5) for all parameters. Thus, the linear combination of X1 and X2 as

X1 + cX2, where c is an arbitrary constant, is a common generator in all cases as well.

Considering the invariants construction process and the Example 3.12, we have to

solve the system (33), rewritten here:
−cΦ′

1 = D1(Φp
1Φ′′

1 + pΦp−1
1 Φ

′2
1 ) − ρ(Φ′

1Φ′
2 + Φ1Φ′′

2 ),

cΦ′
2 = δΦ3Φ2,

−cΦ′
3 = D2Φ′′

3 + µΦ1 − λΦ3.

In order to do so, we can divide this new system into some subcases as follows:

85
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1. p ̸= 0, λ ̸= 0 and µ = 0:

Taking µ = 0 and λ ̸= 0 in third equation of (33), we obtain

Φ3 = c1e
1
2 w

(
−
√

c2+4D2λ

D2
− c

D2

)
+ c2e

1
2 w

(√
c2+4D2λ

D2
− c

D2

)
. (138)

Then, using this result into second equation of (33), we have

Φ2 = c3e

δD2
c

 2c2e

w
(√

c2+4D2λ−c
)

2D2√
c2+4D2λ−c

− 2c1e
−

w
(

c+
√

c2+4D2λ

)
2D2

c+
√

c2+4D2λ


. (139)

At last, we can solve the first equation of (33) considering p ̸= 0 and then

Φ1 =
(

p
D1

) 1
p


−cw + k + c3ρe

δ
c

− 2c1D2e
−

w
(

c+
√

c2+4D2λ

)
2D2

c+
√

c2+4D2λ
− 2c2D2e

−
w
(

c−
√

c2+4D2λ

)
2D2

c−
√

c2+4D2λ




1/p

.

Now taking α1 = c+
√

c2+4D2λ
2D2

and α2 = c−
√

c2+4D2λ
2D2

, knowing that w = x − ct and

(32) holds, we find the solution to system (5) when p ̸= 0, λ ̸= 0 and µ = 0:


N(x, t) =

(
p

D1

) 1
p

−cx + c2t + k + c3ρe
− δ

c

(
c1e−α1(x−ct)

α1
+ c2e−α2(x−ct)

α2

)1/p

,

E(x, t) = c3e
− δ

c

(
c2e−α2(x−ct)

α2
+ c1e−α1(x−ct)

α1

)
,

M(x, t) = c1e−α1(x−ct) + c2e−α2(x−ct).

(140)

2. p = 0, λ ̸= 0 and µ = 0:

Let µ = 0 and λ ̸= 0. Then Φ3 and Φ2 are given by (138) and (139), respectively.
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Now, considering p = 0 into the first equation of (33), we obtain

Φ1 = e


k− cw

D1
+ c3ρ

D1
e


δD2

c


2c2e

w
(√

c2+4D2λ−c
)

2D2√
c2+4D2λ−c

− 2c1e
−

w
(

c+
√

c2+4D2λ

)
2D2

c+
√

c2+4D2λ






.

Knowing that w = x − ct and (32) holds, we find the solution to system (5) when

µ = 0, λ ̸= 0 and p = 0:

N(x, t) = e


k− c(x−ct)

D1
+ c3ρ

D1
e


δD2

c


2c2e

(x−ct)
(√

c2+4D2λ−c
)

2D2√
c2+4D2λ−c

− 2c1e
−

(x−ct)
(

c+
√

c2+4D2λ

)
2D2

c+
√

c2+4D2λ






,

E(x, t) = c3e

δD2
c

 2c2e

(x−ct)
(√

c2+4D2λ−c
)

2D2√
c2+4D2λ−c

− 2c1e
−

(x−ct)
(

c+
√

c2+4D2λ

)
2D2

c+
√

c2+4D2λ


,

M(x, t) = c1e
1
2 (x−ct)

(
−
√

c2+4D2λ

D2
− c

D2

)
+ c2e

1
2 (x−ct)

(√
c2+4D2λ

D2
− c

D2

)
.

More directly, we present the solutions for the other cases below:

3. p = 0, λ = 0 and µ = 0:

N(x, t) = e
c3ρe

δ

 c1D2
2e
− c(x−ct)

D2
c +cc2(x−ct)


c2

D1
− c(x−ct)

D1
+k

E(x, t) = c3e

δ

c2c2(x−ct)+c1D2
2e
− c(x−ct)

D2


c3

M(x, t) = c2 − c1D2e
− c(x−ct)

D2
c
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4. p = 0, λ ̸= 0 and ρ = 0:

N(x, t) = c2 − c1D1e
− c(x−ct)

D1
c

E(x, t) = c5e
δ(c2µ(x−ct))

cλ +

δ

(c+α)c4e
(x−ct)(α−c)

2D2 +(c−α)c3e
− (x−ct)(c+α)

2D2


2cλ +

δc1D4
1µe

− c(x−ct)
D1

c3(c2(D1−D2)+D2
1λ)

M(x, t) = −c1D3
1µe

− c(x−ct)
D1

c(c2(D1−D2)+D2
1λ)

+ c
(

c2µe
(x−ct)(c+α)

2D2 + c4λe
(x−ct)α

D2 + c3λ

)
e−

(x−ct)(c+α)
2D2 ,

where α =
√

c2 + 4D2λ

5. p = 0, λ = 0, ρ = 0 and D1 ̸= D2:

N(x, t) = c2 − c1D1e
− c(x−ct)

D1
c

E(x, t) = c4e

δ

−c2c3D2e
− c(x−ct)

D2 −c2k(x−ct)− 1
2 c2c2µ(x−ct)2+

c1D4
1µe

− c(x−ct)
D1

c(D1−D2) +cc2D2µ(x−ct)


c4

M(x, t) = e−
c(x−ct)

D2

c3 −
e

c(x−ct)
(

1
D2

− 1
D1

)(
c1D3

1 D2µ

cD1−cD2
+D2e

c(x−ct)
D1 (c(k+c2µ(x−ct))−c2D2µ)

)
c2D2


6. p = 0, λ = 0, ρ = 0 and D1 = D2:

N(x, t) = c2 − c1D2e
− c(x−ct)

D2
c

E(x, t) = c4e

δe
− c(x−ct)

D2

−c3

(x−ct)e
c(x−ct)

D2 (2k+c2µ(x−ct))+2c3D2

+2c2c2D2µ(x−ct)e
c(x−ct)

D2 +2cc1D2
2µ(x−ct)+2c1D3

2µ


2c5

M(x, t) = −
c2c3

(
−e

− c(x−ct)
D2

)
+c1D2µ(x−ct)e

− c(x−ct)
D2 +ck+cc2µ(x−ct)−c2D2µ

c2

7. p = 0, D1 = D2, λ ̸= 0 and δ = 0:

N(x, t) = c2 − c1D2e
− c(x−ct)

D2
c

E(x, t) = c1

M(x, t) =

cλe
−

(x−ct)
(

c+
√

c2+4D2λ

)
2D2

c4e
(x−ct)

√
c2+4D2λ

D2 +c3

+c1(−D2)µe
− c(x−ct)

D2 +cc2µ

cλ
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8. p = 0, λ ̸= 0 and δ = 0:

N(x, t) = c2 − c1D1e
− c(x−ct)

D1
c

E(x, t) = c1

M(x, t) =

c(c2(D1 − D2) + D2
1λ)

c2µe
(x−ct)

(
c+
√

c2+4D2λ

)
2D2 + c4λe

(x−ct)
√

c2+4D2λ

D2 + c3λ


−c1D3

1λµe
(x−ct)

(
c+
√

c2+4D2λ

)
2D2

− c(x−ct)
D1

 e
−

(x−ct)(c+
√

c2+4D2λ)
2D2

cλ(c2(D1−D2)+D2
1λ)


9. p ̸= 0, λ ̸= 0 and δ = 0:

N(x, t) =
(

p(k−c(x−ct))
D1

)1/p

E(x, t) = c1

M(x, t) = 1
2λα((

2cD2 p
D1(c−α)

)1/p
µ (α + c) e

(
(c(x−ct)−k)(α−c)

2cD2

)
Γ
(

1 + 1
p , (k−c(x−ct))(c−α)

2cD2

)
+
(

2pcD2
D1(c+α)

)1/p
µ (α − c) e

(k−c(x−ct))(c+α)
2cD2 Γ

(
1 + 1

p , (k−c(x−ct))(c+α)
2cD2

)
+2λα

(
c1e

(−c(x−ct))(c+α)
2cD2 + c2e

−c2(x−ct)+(α)(−2k+c(x−ct))
2cD2

))
,

where α =
√

c2 + 4D2λ.

10. p ̸= 0, λ = 0 and δ = 0:

N(x, t) =
(

p(k−c(x−ct))
D1

)1/p

E(x, t) = c1

M(x, t) = e
c(x−ct)

D2

−
D2µpe

− k
D2
(

p(k−c(x−ct))
D1

)1/p( c(x−ct)−k
D2

)−1/p
Γ
(

2+ 1
p , c(x−ct)−k

D2

)
c2(p+1) + c1


11. p = 0, λ = 0 and δ = 0:

N(x, t) = c2e−
c(x−ct)

D1 + c1D1
c

E(x, t) = c1

M(x, t) = c2D2
1µe

− c(x−ct)
D1

c2(D1−D2) + c1D1µ(x−ct)
c2 − c3D2e

− c(x−ct)
D2

c + c4
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5.1.1 Exact solution for p, λ nonzeros and µ = 0

Consider the solution to system (5) when p ̸= 0, λ ̸= 0, µ = 0 and the biological

parameters estimated in section 2.4. Particularly, analyzing equation (138) we conclude

c2 ̸= 0 does not hold in the biological sense, then c2 = 0. This is due to the fact that we

are searching for a solution moving to the right over time. Furthermore, there is no

tumour on the wavefront, defined as the point where N(x, t) = 0, which does not hold

if c2 ̸= 0. On the other hand, equation (140) gives lim
x→∞

E(x, t) = c3 and lim
x→∞

M(x, t) = 0,

then we set c3 = 1 and c1 = 1.

Rewriting solution (140) considering the parameters set and α1 = c+
√

c2+4D2λ
2D2

we have

N(x, t) =


(

p
D1

) 1
p

(
−cx + c2t + k + ρe

− δ
c

(
e−α1(x−ct)

α1

))1/p

, if x ≤ x0(t)

0 , if x > x0(t)

E(x, t) = e
− δ

c

(
e−α1(x−ct)

α1

)
,

M(x, t) = e−α1(x−ct).

The solution N(x, t) was built based on the same idea as the porous media equation

[15] which represents a traveling wave – a wave that advances in time with a constant

velocity and maintaining its shape – with front x0(t). In our model the solution N(x, t)

is a traveling wave with constant wave speed dx0
dt = c. When haptotaxis is zero, a limit

case because it is not a solution, we can calculate the front x0(t). In this case the wave

front is x0(t) = ct + c−1k. The haptotaxis effect increases at the wave front.

In addition to that, we chose k = 0 since k gives a translation of the solution and

c = 0.045 so that the tumour is within the expected range. All parameters related to the

graphics for this solution were combined into Table 4.

Table 4: Values of parameters set to the graphics of the solution to system (5) when µ = 0, λ ̸= 0

and p ̸= 0.

Parameters D1 D2 ρ δ λ c c1 c2 c3 k

Values 0.001 0.001 0.005 10 0.5 0.045 1 0 1 0

Figures 15, 16 and 17 show respectively MDE concentration, density of ECM and

cancer cells density for p = 1 at t = 5, t = 10, t = 15 and t = 20. We also can see a

travelling wave solution with speed c = 0.045.
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Figure 15: MDE concentration for p = 1 at t = 5, t = 10, t = 15 and t = 20 with other parameters

into Table 4.

Source: the author.

Figure 16: Density of ECM for p = 1 at t = 5, t = 10, t = 15 and t = 20 with other parameters into

Table 4.

Source: the author.

Figure 15 also shows that MDE disseminates by diffusion D2 and its density does not

increase as time evolves due to µ = 0. Moreover, the ECM profile presented in Figure

16 shows its degradation by the MDE at t = 5, t = 10, t = 15 and t = 20.



92 invariant solutions : a construction

In Figure 17 we can observe an interesting phenomenon in the front of the wave:

there is a cluster of cells invading tissue further than the main body of the tumour,

moving to the right.

Figure 17: Cancer cells density for p = 1 at t = 5, t = 10, t = 15 and t = 20 with other parameters

into Table 4.

Source: the author.

Figure 18: Cancer cells density for p = 2 at t = 5, t = 10, t = 15 and t = 20 with other parameters

into Table 4.

Source: the author.
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In order to investigate the phenomenon seen in Figure 17 we maintain parameters set

into Table 4 and take p = 2 at t = 5, t = 10, t = 15 and t = 20, presented in Figure 18, and

also p = 1, 2, 3 at different values of t presented into Figures 19, 20, 21 and 22.

Figure 19: Cancer cells density for p = 1, 2, 3, at t = 5 with other parameters into Table 4.

Source: the author.

Figure 20: Cancer cells density for p = 1, 2, 3, at t = 10 with other parameters into Table 4.

Source: the author.
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Figure 21: Cancer cells density for p = 1, 2, 3, at t = 15 with other parameters into Table 4.

Source: the author.

Figure 22: Cancer cells density for p = 1, 2, 3, at t = 20 with other parameters into Table 4.

Source: the author.

From these graphics we can carefully infer that this effect in cancer cells density can

be associated to the dependence diffusion by tumour cells and haptotaxis, which can

also be seen in Figure 23 when p = 2, x ∈ [0, 2] and t ∈ [0, 20].
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Figure 23: Cancer cells density for p = 2, x ∈ [0, 2] and t ∈ [0, 20] with other parameters into

Table 4.

Source: the author.

In Figure 23 the traveling wave moves to right over time with a constant shape.

Moreover, at the wavefront we observe the haptotaxis effect.

Figure 24: Cancer cells density for p = 1, 2, 3 at t = 20 with other parameters into Table 4 except

ρ taken here as ρ = 0.0025.

Source: the author.
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Analysing N(x, t) for the same preceding parameters changing only ρ = 0.0025, i.e.,

half of the value of ρ tested at t = 20, we have Figure 24. Furthermore, we can observe

that haptotaxis effect is imperceptible at this scale.

Figure 25: MDE concentration, cancer cells density and density of ECM for p = 1 at t = 5 with

other parameters into Table 4.

Source: the author.

Figure 26: MDE concentration, cancer cells density and density of ECM for p = 1 at t = 10 with

other parameters into Table 4.

Source: the author.
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Figure 27: MDE concentration, cancer cells density and density of ECM for p = 1 at t = 15 with

other parameters into Table 4.

Source: the author.

Figure 28: MDE concentration, cancer cells density and density of ECM for p = 1 at t = 20 with

other parameters into Table 4.

Source: the author.

Now analysing MDE concentration, cancer cells density and density of ECM for p = 1

at t = 5, 10, 15, 20 and parameters in Table 4 in a combined way, we have Figures 25, 26,

27 and 28, respectively. Those graphics show the travelling wave solutions with wave

speed c = 0.045 with wavefront approximately at x = 0.334944, x = 0.559944, 0.784944

and 1.00994, respectively. Comparing these results with one dimensional numerical

simulations in [3] we observe a similar behaviour reinforcing the set velocity at the

present work.
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5.1.2 Exact solution for p = µ = 0 and λ nonzero

Figures 29, 30, 31 and 32 show a comparison of MDE concentration, cancer cells density

and density of ECM for p = 0 at t = 5, 10, 15, 20 and parameters in Table 4, respectively.

Figure 29: MDE concentration, cancer cells density and density of ECM for p = 0 at t = 5 with

other parameters into Table 4.

Source: the author.

Figure 30: MDE concentration, cancer cells density and density of ECM for p = 0 at t = 10 with

other parameters into Table 4.

Source: the author.
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Figure 31: MDE concentration, cancer cells density and density of ECM for p = 0 at t = 15 with

other parameters into Table 4.

Source: the author.

Figure 32: MDE concentration, cancer cells density and density of ECM for p = 0 at t = 20 with

other parameters into Table 4.

Source: the author.

From all these graphics we can observe that the behaviour of the solution when p = 0

is similar when p ̸= 0 although we obtained different analytical solutions. Thus the

biological analysis here is the same as the one of the previous subsection, including the

haptotaxis effect at the wavefront.
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5.2 generator X28

In this section, we will analyse generator X28 = x
2 ∂x + t∂t − M∂M.

5.2.1 Case p, ρ and δ nonzeros, and µ = λ = 0

Generator X28 is valid when the system parameters are given by p ̸= 0, ρ ̸= 0, δ ̸= 0, µ = 0

and λ = 0.

Original system (5) for this case can be written as
Nt = D1(pNp−1NxNx + NpNxx) − ρ(NxEx + NExx),

Et = −δME,

Mt = D2Mxx.

(141)

Characteristic system associated with generator X28 is given by

dx
x
2

=
dt
t

=
dN
0

=
dE
0

=
dM
−M

and its associated invariants can be set by

w =
x2

t
, J1 = N, J2 = E, J3 = Mx2. (142)

Assuming J1 = Φ1(w), J2 = Φ2(w), J3 = Φ3(w), where w is as in (142), we have

N = Φ1(w), E = Φ2(w), M =
Φ3(w)

x2 . (143)

In order to rewrite the system (141) considering the new variables, we need to find

Nt, Nx, Nxx, Et, Ex, Exx, Mt, Mxx considering (143). Thus,

Nt = −
x2Φ′

1
t2 (144)

Nx =
2Φ′

1x
t

(145)

Nxx =
4x2Φ′′

1
t2 +

2Φ′
1

t
(146)

Et = −x2Φ′
2

t2 (147)
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Ex =
2xΦ′

2
t

(148)

Exx =
4x2Φ′′

2
t2 +

2Φ′
2

t
(149)

Mt = −Φ′
3

t2 (150)

Mx =
2Φ′

3
tx

− 2Φ3

x3 (151)

Mxx =
4Φ′′

3
t2 − 6Φ′

3
tx2 +

6Φ3

x4 (152)

Substituting w = x2

t and (143)-(152) into system (141), we obtain:


−wΦ′

1 = D1(4pwΦp−1
1 Φ′

1
2 + 4wΦp

1Φ′′
1 + 2Φp

1Φ′
1) − ρ(4wΦ′

1Φ′
2 + 4wΦ1Φ′′

2 + 2Φ1Φ′
2),

w2Φ′
2 = δΦ3Φ2,

−w2Φ′
3 = D2(4w2Φ′′

3 − 6wΦ′
3 + 6Φ3).

(153)

Third and second equations in (153) provide, respectively,

Φ3 = c2w3/2e−
w

4D2

and

Φ2 = c3e−2c2δ
√

D2Γ
(

1
2 , w

4D2

)
,

where Γ
(

1
2 , w

4D2

)
is the incomplete gamma function given by

Γ
(

1
2

,
w

4D2

)
=
∫ ∞

w
4D2

t−
1
2 e−tdt.

Substituting

Φ′
2 =

c2c3δe−2δc2
√

D2Γ
(

1
2 , w

4D2

)
− w

4D2
√

w
and

Φ′′
2 = −

c2c3δe−2δc2
√

D2Γ
(

1
2 , w

4D2

)
− w

2D2

(
2D2e

w
4D2 − 4D2c2δ

√
w + we

w
4D2

)
4D2w3/2

into first equation of (153), we have
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−wΦ′
1 = D1(4pwΦp−1

1 Φ′
1

2 + 4wΦp
1Φ′′

1 + 2Φp
1Φ′

1)

−ρ4wΦ′
1

 c2c3δe
−2δc2

√
D2Γ

(
1
2 , w

4D2

)
− w

4D2√
w


+4wρΦ1

 c2c3δe
−2δc2

√
D2Γ

(
1
2 , w

4D2

)
− w

2D2

(
2D2e

w
4D2 −4D2c2δ

√
w+we

w
4D2

)
4D2w3/2


−2ρΦ1

 c2c3δe
−2δc2

√
D2Γ

(
1
2 , w

4D2

)
− w

4D2√
w

 .

(154)

Rewriting (154), we obtain

−wΦ′
1 = D1(4pwΦp−1

1 Φ′
1

2 + 4wΦp
1Φ′′

1 + 2Φp
1Φ′

1)

+
(

−4δc2Φ1

e
w

2D2
+

√
wΦ1

D2e
w

4D2
− 4

√
wΦ′

1

e
w

4D2

)(
c2c3δρe−2δc2

√
D2Γ

(
1
2 , w

4D2

))
.

(155)

We have not been able to find any analytical solution to (155), i.e., N(x, t). However

we can analyze E(x, t) and M(x, t) given by E(x, t) = c3e−2c2δ
√

D2Γ
(

1
2 , x2

4D2t

)
and M(x, t) = c2

x
t3/2

e−
x2

4D2t .

Figure 33: Density of ECM at t = 5, t = 10, t = 15 and t = 20 with c3 = 1, D2 = 0.001 and δ = 10.

Source: the author.
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Figure 34: MDE concentration at t = 5, t = 10, t = 15 and t = 20 with c2 = 1, D2 = 0.001.

Source: the author.

So we maintain the expected scale and biological meaning, we set c3 = 1 and c2 > 0,

c2 = 1 at first.

The ECM profile presented in Figure 33 shows its degradation by the MDE at

t = 5, t = 10, t = 15 and t = 20, with a slowly rate decreasing. Moreover, Figure 34 shows

that MDE disseminates by diffusion D2 and its density decrease as time evolves. Here,

we no longer have travelling waves whose shape changes over time.

Figure 35: MDE concentration at t = 5, t = 10, t = 15 and t = 20 with c2 = 0.1, D2 = 0.001.

Source: the author.
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Although the MDE concentration range appears to be low in this case, the result is

similar to the [3, figure 4b, page 137] when some parameters were changed to test their

effect on the solution. Figures 35 and 36 show that a modification in c2 causes a change

in the density scale MDE, with the same behavior.

Figure 36: MDE concentration at t = 5, t = 10, t = 15 and t = 20 with c2 = 10, D2 = 0.001.

Source: the author.

Moreover, Figures 37 and 38 present similar behaviour of density of ECM when

compared to c2 = 1 profile.

Figure 37: Density of ECM at t = 5, t = 10, t = 15 and t = 20 with c2 = 0.1, D2 = 0.001.

Source: the author.
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Figure 38: Density of ECM at t = 5, t = 10, t = 15 and t = 20 with c2 = 10, D2 = 0.001.

Source: the author.

5.2.2 Case ρ and δ nonzeros, p = µ = λ = 0

Generator X28 is also valid when the system parameters are given by p = 0, ρ ̸= 0, δ ̸=
0, µ = 0 and λ = 0.

The original system (5) for this case can be written as
Nt = D1Nxx − ρ(NxEx + NExx),

Et = −δME,

Mt = D2Mxx.

Similarly to the previous case, we obtain

N = Φ1(w), E = Φ2(w), M =
Φ3(w)

x2 ,

where w = x2

t .

Besides that, we have

Φ2 = c3e−2c2δ
√

D2Γ
(

1
2 , w

4D2

)
,

Φ3 = c2w3/2e−
w

4D2 ,

and

−wΦ′
1 = D1(4wΦ′′

1 + 2Φ′
1)

+
(

−4δc2Φ1

e
w

2D2
+

√
wΦ1

D2e
w

4D2
− 4

√
wΦ′

1

e
w

4D2

)(
c2c3δρe−2δc2

√
D2Γ

(
1
2 , w

4D2

))
,
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i.e.,
0 = Φ′′

1 (4D1w)

+Φ′
1

(
w + 2D1 − 4

√
w

e
w

4D2
c2c3δρe−2δc2

√
D2Γ

(
1
2 , w

4D2

))
+Φ1

(
−4δc2

e
w

2D2
+

√
w

D2e
w

4D2

)(
c2c3δρe−2δc2

√
D2Γ

(
1
2 , w

4D2

))
.

The solutions found here for E(x, t) and M(x, t) are the same as the previous case

where p ̸= 0. Then the biological analysis for both variables remains the same as well.

Also in this case, we have been unable to express N(x, t).

5.3 generator X27

Section 4.2 gave us all the generators related to system (5). In this section, we will

analyse generator X27 = x
2 ∂x + t∂t − 2N∂N − M∂M, which is valid when the system

parameters are given by p = 0, D1 = D2, ρ ̸= 0, δ ̸= 0, µ ̸= 0 and λ = 0.

Original system (5) for this case can be written as
Nt = D1Nxx − ρ(NxEx + NExx),

Et = −δME,

Mt = D1Mxx + µN.

(156)

Characteristic system associated with generator X27 is given by

dx
x
2

=
dt
t

=
dN
−2N

=
dE
0

=
dM
−M

and invariants associated with this generator can be set by

w =
x2

t
, J1 = Nx4, J2 = E, J3 = Mx2. (157)

Assuming J1 = Φ1(w), J2 = Φ2(w), J3 = Φ3(w), where w is as in (157), we have

N =
Φ1(w)

x4 , E = Φ2(w), M =
Φ3(w)

x2 . (158)

In order to rewrite system (156) considering the new variables, we need to find

Nt, Nx, Nxx, Et, Ex, Exx, Mt, Mxx in view of (158). Thus:

Nt = −
Φ′

1
x2t2 (159)
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Nx =
2Φ′

1
tx3 − 4Φ1

x5 (160)

Nxx =
4Φ′′

1
t2x2 −

14Φ′
1

tx4 +
20Φ1

x6 (161)

Et = −x2Φ′
2

t2 (162)

Ex =
2xΦ′

2
t

(163)

Exx =
4x2Φ′′

2
t2 +

2Φ′
2

t
(164)

Mt = −Φ′
3

t2 (165)

Mx =
2Φ′

3
tx

− 2Φ3

x3 (166)

Mxx =
4Φ′′

3
t2 − 6Φ′

3
tx2 +

6Φ3

x4 (167)

Substituting w = x2

t and (158)-(167) into system (156), we obtain the new system:


−w2Φ′

1 = D1(4w2Φ′′
1 − 14wΦ′

1 + 20Φ1) − ρ(4w2Φ′
1Φ′

2 − 6wΦ1Φ′
2 + 4w2Φ1Φ′′

2 ),

w2Φ′
2 = δΦ3Φ2,

−w2Φ′
3 = D1(4w2Φ′′

3 − 6wΦ′
3 + 6Φ3) + µΦ1.

(168)

In order to solve system (168), we assume

Φ1 = f (w)e
−w
4D1 , Φ2 = 0, Φ3 = g(w)e

−w
4D1 , (169)

which implies N =
f (w)e

−w
4D1

x4 , E = 0 and M =
g(w)e

−w
4D1

x2 .



108 invariant solutions : a construction

Thus, we have the following possibilities for functions f (w) and g(w):

f (w) = w
5
2 c1(−6D1 + w)

+
c2w2

(
8D3/2

1 e
w

4D1 +
√

πw3/2 erfi
( √

w
2
√

D1

)
−6

√
πD1

√
w erfi

( √
w

2
√

D1

)
−2

√
D1we

w
4D1

)
24D5/2

1

g(w) = c1µw5/2 + c3w3/2

+
c2µw3/2

(
−2

√
πD1 erfi

( √
w

2
√

D1

)
+
√

πw erfi
( √

w
2
√

D1

)
−2

√
D1

√
we

w
4D1

)
24D5/2

1

,

(170)

where c1, c2 and c3 are integration constants, and erfi
( √

w
2
√

D1

)
is the imaginary error

function defined by

erfi
( √

w
2
√

D1

)
= −erf

(
i
√

w
2
√

D1

)
= − 2

π

∫ i
√

w
2
√

D1

0
t−

1
2 e−t2

dt.

So, one solution for system (168) is given by

N(x, t) =
e−

x2
4D1t

x4

(
c1

(
x2

t

)5/2(
−6D1 +

x2

t

)
+

c2x4

24D5/2
1 t2
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1 e

x2
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+ c2x4
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,

E(x, t) = 0,

M(x, t) =
e−

x2
4D1t

x2

(
c1µ

(
x2

t

)5/2

+ c3

(
x2

t

)3/2

+
c2µ
(

x2
t

)3/2

24D5/2
1

(
−2

√
πD1 erfi

( √
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2
√
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)
+
√
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t erfi
( √

x2

2
√

D1t

)
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√
D1

√
x2

t e
x2

4D1t

).

When we assumed Φ2 = 0, we have forced cancer cells density and density of

degrading enzymes without haptotaxis. So, we make use of Perturbation Theory [24], as

well as in [9]. Roughly speaking, this theory allows us to obtain approximate solutions

to problems involving a very small parameter.

We are assuming ρ ≪ 1 since we set ρ = 0.005 to graph some solutions along this

chapter. Taking ρ 7→ ρ0 and also Φ1, Φ2 and Φ3 as the targeted solutions approximated

by a truncated Taylor series in first-order terms, we have Φi = Φi0 + ρ0Φi1 + O(ρ2
0),

i = 1, 2, 3, where Φi0 are the ones in (169) with (170). We are assuming that the

dependence of the solution with respect to ρ0 is sufficiently smooth.
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So, rewriting (168) we have



−w2(Φ10 + ρ0Φ11)′ = D1(4w2(Φ10 + ρ0Φ11)′′ − 14w(Φ10 + ρ0Φ11)′ + 20(Φ10 + ρ0Φ11))

−ρ0(4w2(Φ10 + ρ0Φ11)′(Φ20 + ρ0Φ21)′

−6w(Φ10 + ρ0Φ11)(Φ20 + ρ0Φ21)′

+4w2(Φ10 + ρ0Φ11)(Φ20 + ρ0Φ21)′′),

w2(Φ20 + ρ0Φ21)′ = δ(Φ30 + ρ0Φ31)(Φ20 + ρ0Φ21),

−w2(Φ30 + ρ0Φ31)′ = D1(4w2(Φ30 + ρ0Φ31)′′ − 6w(Φ30 + ρ0Φ31)′ + 6(Φ30 + ρ0Φ31))

+µ(Φ10 + ρ0Φ11),

i.e.,



−w2Φ′
10 − w2ρ0Φ′

11 = D1(4w2Φ′′
10 + 4w2ρ0Φ′′

11 − 14wΦ′
10 − 14wρ0Φ′

11 + 20Φ10 + 20ρ0Φ11)

−ρ0(4w2Φ′
10Φ′

20 + 4w2ρ0Φ′
11Φ′

20 + 4w2ρ0Φ′
10Φ′

21 + 4w2ρ2
0Φ′

11Φ′
21

−6wΦ10Φ′
20 − 6wρ0Φ11Φ′

20 − 6wρ0Φ10Φ′
21 − 6wρ2

0Φ11Φ′
21

+4w2Φ10Φ′′
20 + 4w2ρ0Φ11Φ′′

20 + 4w2ρ0Φ10Φ′′
21 + 4w2ρ2

0Φ11Φ′′
21),

w2Φ′
20 + w2ρ0Φ′

21 = δ(Φ30Φ20 + ρ0Φ31Φ20 + ρ0Φ30Φ21 + ρ2
0Φ21Φ31),

−w2Φ′
30 − w2ρ0Φ′

31 = D1(4w2Φ′′
30 + 4w2ρ0Φ′′

31 − 6wΦ′
30 − 6wρ0Φ′

31 + 6Φ30 + 6ρ0Φ31)

+µΦ10 + µρ0Φ11.

Then, disregarding O(ρ2
0) terms we obtain both systems (171) and (172):

O(1) :


−w2Φ′

10 = D1(4w2Φ′′
10 − 14wΦ′

10 + 20Φ10),

w2Φ′
20 = δΦ30Φ20,

−w2Φ′
30 = D1(4w2Φ′′

30 − 6wΦ′
30 + 6Φ30) + µΦ10,

(171)

O(ρ0) :


−w2Φ′

11 = D1(4w2Φ′′
11 − 14wΦ′

11 + 20Φ11)

−(4w2Φ′
10Φ′

20 − 6wΦ10Φ′
20 + 4w2Φ10Φ′′

20),

w2Φ′
21 = δ(Φ31Φ20 + Φ30Φ21),

−w2Φ′
31 = D1(4w2Φ′′

31 − 6wΦ′
31 + 6Φ31) + µΦ11.

(172)



110 invariant solutions : a construction

Thus,

Φ11 = Φ10 = w
5
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Φ21 = c4e
δ
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,
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 .

Since ρ 7→ ρ0 and Φi ≈ Φi0 + ρ0Φi1, i = 1, 2, 3, then we have

Φ1 = (1 + ρ)w
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2 c1e
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δ
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Therefore, the approximated solution is given by:

N(x, t) = (1 + ρ)
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).

The biological analysis for this case will remain as future work.



6 CONCLUDING REMARKS AND

FUTURE PERSPECTIVES

In this thesis we apply Lie symmetries to the model (5) that describes the interac-

tion among cancer cell density, extracellular matrix density and concentration of a

generic matrix-degrading enzyme. This model is a generalization of the continuous

1-dimensional one proposed in [3], where it was solved numerically and presented sim-

ulations assuming constant diffusion and also diffusion D directly proportional to MDE

concentration. In [16] it was considered a spatially dependence diffusion of tumour

cells related to brain cancer whilst [22] used a dependence of tumour cells. In view of

these, here we studied the model analytically, considering diffusion as a constant, but

also non-constant with a wider dependence of cancer cells density. Indeed, [3] points

out that models like this look very similar to histological observations, especially when

a heterogeneous ECM is introduced into them.

Using Lie’s theory we carried out a complete group classification of the Lie point

symmetries of the system presented into Tables (2) - (3) and then found analytical

solutions to the system (5). Therefore, the method is consistent for finding solutions

to a system of partial differential equations that model tumor invasion as highlighted

in [8] and [9], where was published also analytical solutions but to a similar model

considering constant diffusion and (x, y, z) as spatial variables.

Through the linear combination of the infinitesimal generators X1 and X2 we obtained

11 particular solutions for the system (5) and analyzed their biological consistency

completely in 2 of these cases: µ = 0, λ ̸= 0, p ̸= 0 (non-constant diffusion) and also

µ = 0, λ ̸= 0, p = 0 (constant diffusion).

For the first case we were able to set some constants such as c2 = 0, c1 = 1 and

c = 0.045, to maintain the biological sense of the solution. We conclude that N(x, t) is

a traveling wave solution with constant wave speed c = 0.045 and that the haptotaxis

effect increases the wave front. Recent works have shown that cancer cells movement is

also driven by a haptotactic response to ECM gradients, in vivo and in vitro situations

[10, 14, 20, 21].
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While the ECM profile indicates its degradation by the MDE, cancer cells invade

tissue toward the right and break into 2 clusters when the haptotatic parameter ρ is

set in 0.005. The division in clusters slowly disappears as ρ decreases, showing clearly

its influence on this phenomenon. If a group of cells behaves similarly breaking away

from the main body of a tumour, the metastatic cascade has the potential to be initiated:

these cells can reach the vascular stage with a blood supply of their own.

From a medical point of view, the findings are of significant importance. In case of

a resection surgery of the primary tumour, the smaller cluster of cells may escape the

surgeon’s scrutiny and lead to a possible recurrence. Moreover, the speed of invasion of

cancer cells can also be a relevant factor for cancer treatment and care.

Furthermore, MDE disseminates by diffusion D2 and its density does not increase

as time evolves due to parameter µ = 0. The case µ = 0, λ ̸= 0, p = 0 corroborates the

findings of the first one.

In order to graph those exact solutions, the parameters used at the present work

were essentially based on works [2], [3] and [9] and are summarized into Table 4. As

far as we know, those are the only analytical solutions for system (5) where diffusion

is non-constant. The main advantage of finding exact solutions lies in the fact that

numerical methods often require one to be aware of more details of the problem in

order to make a solution work correctly. We can also easily incorporate probabilistic

factors into analytical solutions compared to numerical ones.

Solutions related to other infinitesimal generators are still under analysis. In section

5.2 we present partial solutions for the cases p ̸= 0, ρ ̸= 0, δ ̸= 0, µ = λ = 0, and

ρ ̸= 0, δ ̸= 0, p = µ = λ = 0 using generator X28. Both cases show a slow decrease

in the degradation rate of ECM by MDE over time and show that MDE spreads by

diffusion D2, which density also decreases over time. In addition to the parameters set

as ρ = 0.005, δ = 10, µ = λ = 0, D1 = 0.001, we analyzed different values for the constant

c1 to see its effect on the solution found, since for c1 = 1 the enzyme density was low

compared to previous results. From this we conclude that constant c1 changes the range

of E(x, t) and M(x, t) without modifying the solution behaviour. The solution regarding

tumour cells remains for future work.

In section 5.3 we present a complete mathematical solution for the case p = 0, D1 =

D2, ρ ̸= 0, δ ̸= 0, µ ̸= 0 and λ = 0 without biological considerations, which demands

a careful analysis that we also suggest for future research. In this case, due to the

difficulties in finding exact solutions, we have forced E(x, t) as zero and then used
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perturbation theory to find approximate solutions describing the phenomenon in a

complete form. As a result, we obtain approximated solutions to system (5).
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