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RESUMO

No presente trabalho apresentamos os resultados relacionados ao modelo matematico
que descreve a invasdo de células tumorais no tecido circundante. O modelo consiste
em um sistema de equagdes diferenciais parciais e focana intera¢do entre as células
tumorais e o tecido circundante. Para analisar as solugdes do sistema, aplicamos a teoria
de Simetrias de Lie. Como resultado, apresentamos todos os geradores associados
ao grupo de transformagdes, algumas solug¢des invariantes encontradas e a andlise

biolégica de solugdes particulares.

Palavras-chave: Cancer, Simetrias de Lie, Modelo matematico.
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ABSTRACT

In this work we present results related to a mathematical model describing the invasion
of tumor cells in a host tissue. The model consists of a system of partial differential
equations and focuses on the interaction among tumor cells and the host tissue. In
order to analyze the system solutions, we apply the theory of Lie symmetries. As a
result, we present all generators from the associated group of transformation and some

invariant solutions that were found and the biological analysis of particular solutions.

Keywords: Cancer, Lie symmetries, Mathematical model.
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INTRODUCTION

Noncommunicable diseases (NCDs), also known as chronic diseases, are responsible
for killing approximately 41 million people each year according to the World Health
Organization (WHO) [19]. Although those diseases are frequently associated only with
ageing, evidence has shown that nearly 17 million of them are considered premature

and disproportionately occur in the poorest countries.

NCDs usually result in long-term health consequences and often require a long-term
treatment, typically caused by unhealthy behaviours, but can also result from a combina-
tion of genetic, physiological and environmental factors. The International Federation of
Red Cross and Red Crescent Societies (IFRC), the world’s largest humanitarian network,
states cardiovascular diseases, chronic respiratory diseases, diabetes and cancers as
responsible for over two thirds of deaths globally, being the latter one as the second

leading cause [17].

WHO also estimates that between 30% to 50% of all cancers can currently be prevented
by avoiding risk factors and implementing prevention strategies [19]. Furthermore,
early detection of cancer and appropriate treatment and care of patients who develop
cancer minimize its burden. Towards that way, knowing and understanding how cancer

spreads is crucial for the global fight against it.

Due to the importance of analyzing the spread of cancer, many models have been
developed with different approaches focusing on a variety of cancer types and stages
([, 2,3, 4,5, 9,13, 22]).

As in as [3], this thesis focuses on the avascular stage of a solid tumour modelling
the interaction among cancer cells, the extracellular matrix and the matrix-degrading
enzyme using a system of partial differential equations. Mainly we use a generalization
of the system in [3] and resolve it analytically.

One of the ways to find solutions to differential equation is by Lie symmetries
[7]. Lie’s theory chiefly treats Lie groups of point symmetries, which are completely

characterized by infinitesimal generators and by them we are able to construct solutions
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of partial differential equations. All the details on how to develop these solutions and
what conditions to verify and assume are presented in the following chapters.

As far as we know, only [8] and [9] found analytical solutions for this kind of model,
also using Lie symmetries, but for a system with 3 independent variables and constant
diffusions.

In this thesis we propose a generalization of the model in [3] and analyze some
solutions found by Lie symmetries. This work is divided into six chapters. Chapter 2
presents basic facts about cancer, its growing and spreading dynamic, a few data related
to it and the mathematical model to be studied. In chapter 3 we show a summary
of the applied theory with examples strictly constructed from the results obtained in
the present work. We carry out in chapter 4 a complete group classification of the
Lie point symmetries of the system proposed. In chapter 5 we obtain and proceed
an in-depth analysis of some invariant solutions of the model. In the last chapter we

present concluding remarks about the results and future perspectives related to it.
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Worldwide, chronic diseases are responsible for almost 70% of all deaths, according to
the WHO, which includes cancer as the second leading cause, estimated to account for
9.6 million deaths in 2018 and over 10 million in 2020.

Cancer is the name given to a set of more than 200 diseases having in common a

disordered growth of cells, invading tissues and organs [11], see Figure 1 *.

Maormal cells Cancer cells

Cancer Research UK

Figure 1: Emergence of tumour cells.
Source: ©Cancer Research UK [2002] All right reserved. Information taken 08/03/20.

https:/ /www.cancerresearchuk.org.

These diseases can be classified according to the locus they start in the body, such
as breast cancer or prostate cancer, known as primary tumour [26]. We can also group

cancer according to the type of cell they start in. There are 5 main groups:

* carcinoma: begins in the skin or in tissues that line or cover internal organs. There
are different subtypes, including adenocarcinoma, basal cell carcinoma, squamous

cell carcinoma and transitional cell carcinoma;

¢ sarcoma: begins in the connective or supportive tissues such as bone, cartilage, fat,

muscle or blood vessels;

* lymphoma and myeloma: begin in the cells of the immune system;

1 Cancer Research UK is independent from our organisation and a source of trusted information for all.
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¢ leukaemia: this is a cancer of the white blood cells. It starts in the tissues that

make blood cells such as the bone marrow;
* brain and spinal cord cancers: known as central nervous system cancers.

Growing abnormally, cells can evolve to a tumour mass which can be classified as
benign or malignant, the latter one known as cancer. According to [8], among all cancer
types, solid tumours cause 80% of all deaths and their growth occur in two different
stages: avascular and vascular. Cancer can sometimes spread to other parts of the body
— this is called a secondary tumour or a metastasis, which is an important stage to
analyse from a biological point of view although the avascular stage is the focus of our

study and it will be explained in detail in the following section.

2.1 CANCER GROWING AND SPREADING

As all our body cells, cancer cells continue to grow encapsulated within a membrane
called basement membrane. As we can see in Figure 2 ?, as cancer cells grow, the blood
vessels get further away, and because of their need for nutrients and oxygen to live,
these cells send out signals to trigger the growth of new blood vessels, called capillaries,

within the tumour, culminating in a process known as angiogenesis.

Capillaries
Lymph vessel -

Normal cells
next to the
tumour have
their own
blood supply

Cancer cells e L S L
are getting PO 9 e @ O e
further away ot R A il Wi, S, IR
from the blood L 2. AN J L B I X 3T N
supply e —

Cancer Research LIK

Figure 2: Growing of tumour cells.
Source: ©Cancer Research UK [2002] All right reserved. Information taken 08/01/22.

https:/ /www.cancerresearchuk.org.

2 Cancer Research UK is independent from our organisation and a source of trusted information for all.



2.1 CANCER GROWING AND SPREADING

Now with a blood supply of their own, cancer cells can grow even bigger and
throughout some blood vessels or the lymphatic system. They can spread and become
new tumours themselves. This may occur due to tumour cells behavior that, unlike
health body cells, tends to produce substances which stimulate their movement and the
breaking of the membrane that contains them, as illustrated in Figure 3 3, culminating

at the vascular stage.

Normal cells Tumour, rapidly
growing invading cells

Cancer breaks
through
the membrane

Basement Cancer cell detaches
membrane and can spread to
other parts of the body

Cancer Research LUK

Figure 3: Spreading of tumour cells.
Source: ©Cancer Research UK [2002] All right reserved. Information taken 08/01/22.

https:/ /www.cancerresearchuk.org.

Although this process may seem fruitful and easily executed, actually it is a compli-

cated roll of steps where many cancer cells die during its evolution.

It is known that tumours can spread into some tissues more easily than others, which

may be related to how circulatory system works, as succinctly represented in Figure 4+.

3 Cancer Research UK is independent from our organisation and a source of trusted information for all.
4 Cancer Research UK is independent from our organisation and a source of trusted information for all.
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l -Lungs_ I
~
nal
—itlr
l Liver el 'l

Gut I
f
Rest of body l

= Blood carrying carbon dioxide in veins
= Blood carrying oxygen in arteries

Cancer Research UK

Figure 4: Blood path in circulatory system succinctly represented.
Source: ©Cancer Research UK [2002] All right reserved. Information taken 08/02/22.

https:/ /www.cancerresearchuk.org.

For instance, cancers of the large bowel often spread to the liver, which may happen

since blood circulates from the bowel through the liver on its way back to the heart.

2.2 DATA

Each year, approximately 400.000 children aged 19 or younger develop cancer world-
wide. The most common cancers vary between countries, but leukemia leads the

occurrences in Figure 5°.

The designations employed and the presentation of the material in this publication do not imply the
expression of any opinion whatsoever on the part of the World Health Organization / International
Agency for Research on Cancer concerning the legal status of any country, territory, city or area or of its
authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on

maps represent approximate borderlines for which there may not yet be full agreement.



2.2 DATA

Leukaemia (142)

Non-Hodgkin lymphoma (23)
Kidney (5)
B.N.S. (5)

Testis (3)
Lip, oral cavity (3)
Kaposi sarcoma (2)

A <
A
. Ovary (1) I Not applicable W

Liver (1) No data

Figure 5: Top cancer per country, estimated age-standardized incidence rates in 2020, both sexes,
ages 0-19.
Source: ©lInternational Agency for Research on Cancer. All rights reserved. Map produced by
GLOBOCAN 2020. https://gco.iarc.fr/today/home. Information taken 20 apr. 22.

Breast (158)
Cervix uteri (23)
Non-melanoma skin cancer (2)

Thyroid (1) [ Not applicable 3
| Liver(1) No data

Figure 6: Top cancer per country, estimated age-standardized incidence rates in 2020, females,
all ages.
Source: Source: ©International Agency for Research on Cancer. All rights reserved. Map

produced by GLOBOCAN 2020. https://gco.iarc.fr/today /home. Information taken 18 nov. 21.
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Figures 6 and 7 © show the most common cancer in 2020 in each country and the

most deadly one, respectively, considering females without age range.

Breast (108)
. Cervix uteri (41)
- Lung (28)
. Liver(4)

. Stomach (3) [ Notapplicable

Oesophagus (1) No data

Figure 7: Top cancer per country, estimated age-standardized mortality rates in 2020, females,
all ages.
Source: Source: ©International Agency for Research on Cancer. All rights reserved. Map

produced by GLOBOCAN 2020. https:/ /gco.iarc.fr/today /home. Information taken 18 nov. 21.

Figures 8 and ¢ ® present the same date but about males, also in 2020.

Comparing both genres we can observe that breast, prostate, lung and cervix uteri

cancers represent the majority rates of incidence and mortality in 2020.

"The incidence of cancer rises dramatically with age, most likely due to a
build-up of risks for specific cancers that increase with age. The overall risk
accumulation is combined with the tendency for cellular repair mechanisms to

be less effective as a person grows older." [19, inicial page].

6 The designations employed and the presentation of the material in this publication do not imply the
expression of any opinion whatsoever on the part of the World Health Organization / International
Agency for Research on Cancer concerning the legal status of any country, territory, city or area or of its
authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on

maps represent approximate borderlines for which there may not yet be full agreement.



2.2 DATA

Prostate (120)
Lung (37)
Stomach (8)
Liver (8)

Colorectum (5)
Non-melanoma skin cancer (3)

. Lip, oral cavity (3) [ Notapplicable

Oesophagus (1) No data

Figure 8: Top cancer per country, estimated age-standardized incidence rates in 2020, males, all

ages.
Source: Source: ©International Agency for Research on Cancer. All rights reserved. Map

produced by GLOBOCAN 2020. https:/ /gco.iarc.fr/today /home. Information taken 18 nov. 21.

Lung (93)
Prostate (57)

| Liver(16)

- Stomach (13)
Colorectum (4)

. Oesophagus (1) [ Notapplicable
Lip, oral cavity (1) No data

Figure 9: Top cancer per country, estimated age-standardized mortality rates in 2020, males, all
ages.
Source: Source: ©International Agency for Research on Cancer. All rights reserved. Map

produced by GLOBOCAN 2020. https://gco.iarc.fr/today /home. Information taken 18 nov. 21.

9
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Figures 10 and 117 combined with the aforementioned information lead us to conclude
that countries with higher life expectancy tend to have a higher rate of elderly people
dying from cancer than other countries, simply because they have a greater number of
elderly people among their inhabitants.

ASR (World) per 100 000

B -0

B 9731119

I 847973
74.9-84.7 I Not applicable
<749 No data

Figure 10: Estimated age-standardized mortality rates in 2020, all cancers, both sexes, all ages.
Source: Source: ©International Agency for Research on Cancer. All rights reserved. Map

produced by GLOBOCAN 2020. https://gco.iarc.fr/today /home. Information taken 20 apr. 22.

Considering Figure 11, we can observe that young people, who have fewer risk factors
for developing cancer such as smoking for many years or having lower immunity due to
age and other diseases, are more likely to die from cancer in the poorest countries. This
is probably due to the low investment in health, since there is a high cost of treatment,
such as hospital facilities and medicines. Thus, cancer also exposes a worldwide social

problem.

The designations employed and the presentation of the material in this publication do not imply the
expression of any opinion whatsoever on the part of the World Health Organization / International
Agency for Research on Cancer concerning the legal status of any country, territory, city or area or of its
authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on

maps represent approximate borderlines for which there may not yet be full agreement.



2.2 DATA

ASR (World) per 100 000

28.1
6.4-8.1
5.0-6.4
- 3.5-5.0 - Not applicable

<3.5 No data

Figure 11: Estimated age-standardized mortality rates in 2020, all cancers, both sexes, ages
0—34.
Source: ©International Agency for Research on Cancer. All rights reserved. Map produced by
GLOBOCAN 2020. https://gco.iarc.fr/today /home. Information taken 20 apr. 22.

. 2040

202 ] 11.8
O L 52.2%
S ] +56.2% @
é 7’ .
£
g 57
3 3.83
%
c 34 +64.7%
-
(=]
3 23
£ ]
=1 1.5 4
2 .
o
g
E b +96.0%
Ivif 0.7 4 0.65
0.6 \_/ T T T
Totals Low HDI Medium HDI High HDI Very High HDI

2020 | 19283311
2040 28431813

Figure 12: Estimated number of new cases from 2020 to 2040, both sexes, ages 0 — 85.
Source: ©International Agency for Research on Cancer. All rights reserved. Map produced by
GLOBOCAN 2020. https://gco.iarc.fr/tomorrow. Information taken 23 oct. 22.
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12 CANCER

In order to support this previous affirmation, Figure 12° presents the prediction of
rising cancer cases in 2040 comparing the Human Development Index (HDI) worldwide,

which is

"a summary measure of average achievement in key dimensions of human
development: a long and healthy life, being knowledgeable and have a decent

standard of living." [23, inicial page].

In this work we will focus on modeling the spread of cancer, without considering
prevention, treatments and social and economic factors involved, although all of them

develop a substantial role in cancer mortality.

2.3 MATHEMATICAL MODEL

Tumour cells produce a number of matrix degradative enzymes (MDE) in order to in-
vade the surrounding tissue by diffusion, passing by the degradation of the extracellular
matrix (ECM), which is a compound of macromolecules including collagens, proteogly-
cans, and glycoproteins, helping the growth of different tissues to the maintenance of
an entire organ. ECM can be seen as a set of substances produced and also eliminated
by cells. Besides that, the degradation led by cancer forces ECM to reorganize itself,
leading to haptotaxis — the directed migratory response of tumour cells. This local
degradation process of the ECM is a critical aspect of the growth and spread of cancer,
creating a space where the tumour cells may move by diffusion [9].

In [3] a continuous mathematical model describing the invasion of ECM by tumours
cells, at the avascular stage and based on solid tumour growth, is presented, considering
one and two dimensions of it, and also its discrete version. They are proposed to
understand the dynamics of the interactions among the cells in order to predict its

behavior, and focus on the macro-scale structure, considering cell population level.

8 The designations employed and the presentation of the material in this publication do not imply the
expression of any opinion whatsoever on the part of the World Health Organization / International
Agency for Research on Cancer concerning the legal status of any country, territory, city or area or of its
authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on

maps represent approximate borderlines for which there may not yet be full agreement.



2.3 MATHEMATICAL MODEL

Over time, different models have been developed by a variety of approaches, and
some of these works ([1, 3, 2, 4, 5, 9, 13, 22]) are summarized into the following timeline

presented in Figure 13:

Hybrid modelling
technique of
solid tumour invasion
by Anderson

Perumpanani et al:
model of
capsule formation
. and multinodularity
mitiation . . .
in benign tumour growth

,S 1985 \ 1998 2000 2008
1054 / 1997 X 2005

Armitage and Doll:
one of the earliest
models of cancer

Balding and McElwain Anderson and .
proposed a spatial Chaplain X Dlécrete model Gerish and Chaplain:
model of tumour develop a discrete (individual cell based) local continuum model
angiogenesis (and a continuous) by Anderson et al. based on haptotaxis
model of tumour and a non-local one
angiogenesis based on adhesion

Figure 13: Simplified timeline with some of the key work in the cancer model literature.

Source: The author.

Our work considers the 1-dimensional continuous model introduced in [3] and, for
that, as in [3], we have three dependent variables of time ¢t and space x: cancer cells
density, density of the extracellular matrix (ECM) and concentration of a generic matrix-
degrading enzyme (MDE), which ones are represented by N(x,t), E(x,t) and M(x, t),

respectively.

As for models for population dispersal, in general, cancer cells movement is driven by
random motility with flux [,;,40m = —DVN, where the cell random motility coefficient
D > 0 can, generally, be function of time ¢, space x, and the solution (E, M, N) ([3, 13,
15]).

Although not widely confirmed in vivo situation, it is reasonable to assume that
cancer cells movement is also driven by a haptotactic response to ECM gradients [3].
Recent works have shown that cancer cells frequently exhibit cell migration behaviour
guided by gradients of some surfaces such as the ECM, in vivo and in vitro situations

[10, 14, 20, 21].

In this model, cancer cells proliferation is deliberately left aside so the haptotaxis can

be properly investigated. According to [3], the haptotaxis flux is taken by Japsotaxis =

13
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pNVE, where the constant p is the haptotatic coefficient and is assumed to be non-

negative. Then we arrive at the conservation equation for the tumour cell density:

oN
of + V(Jrandom + ]haptotaxis) =0.

Hence, considering a 1-dimensional model, we arrive at the cell density equation (1):
N; = (D

Ny)x — P(NEx)x . (1)
N’ N’
dif fusion  haptotaxis

As a non-motile matter, the ECM changes merely through its local degradation by
MDE upon contact at a positive rate J, assuming there is no matrix remodelling by
cells, which is completely possible according to the literature [3]. Altogether, these yield

the following evolution equation for the ECM:

E;= —0ME . (2)
——

degradation

At last, the MDE is assumed to diffuse (D) freely in the spatial domain, where
enzymes are released at a constant rate u by the cells and are removed from the system
at a constant rate A. The latter one happens as a natural decay and also by deactivation
of the enzymes and for simplicity we assume that there is a linear relationship between
the density of tumour cells and the level of active MDE in the surrounding tissues.
Considering MDE diffusion (D;) as a constant, the evolution equation for the MDE
concentration holds

Mi=DoMug+ N =AM, 3)

dif fusion  enzyme production ~ 4ecay

Equations (1), (2) and (3) give us the system (4):

(

Ny = (DNx)x_P(NEx)x/
——
dif fusion  haptotaxis

E. = —-0ME,
~— (4)
degradation

M; = DoMyy + N — AM .

tT2s ¥ &L

dif fusion  enzyme production ~ 4ecay



2.3 MATHEMATICAL MODEL

2.3.1 Cancer cells diffusion

In [3] the authors studied the solutions of system (4) numerically considering D constant
and also presented simulations assuming that the diffusion D is directly proportional
to MDE concentration.

An interesting review of models of brain cancer spreading in [16] indicates that
diffusion reasonably models the cell spreading dynamics observed in vitro experiences.
In vivo studies with rats state diffusion of brain cancer cells in white matter different
from that in the grey matter cells. So, [16] presents a model of glioma — neoplasm of
neural cells capable of division — invasion by taking the diffusion D to be a function of
the spatial variable taking into account the spatial heterogeneity of brain cells, i.e., with
non-constant diffusion.

The effort to enlarge the dependence of tumour cells with other model variables
is valid, considering that cancers spread into nearby tissues also by the cells directly
moving. According to [26], about a couple years ago scientists discovered a substance
made by cancer cells which stimulates them to move, which might be involved in the
local spread of cancers.

In [15, page 402] one extension of the classical diffusion model for insect dispersal is
presented: due to population pressure, diffusion increases depending on the population

density at a given time. That is, the flux J is given by

dD
J=-DN)VN, —=>0.

Also in [15, page 402] is presented a typical form for D(N) as Do(N/Np)?, with p > 0
and Dy and Ny positive constants. Considering one dimension for this case of insect

dispersal suffering the population pressure, we have

N\?
N=0o () M)
X

which is equivalent to porous media equation [15]. Notice that the solution to this is
fundamentally different when diffusion is a constant — where there exists diffusion even
though there is no tumour.

Particularly related to tumours, [22] assumed a non-constant diffusion with depen-
dence on the tumour given by D = D1 N with D; constant.

In view of these, and taking into account [15, 22, 26], we consider a general diffusion

dependence of the type D = D1N¥, with D; a constant and p € R,. Here, pressure-

15
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dependent diffusion may vary with tumor type, so the parameter p can represent this.
Then (1) becomes
Nf = (DleNx)x - p(NEx)x .
D e N—_——
dif fusion haptotaxis

Hence, the system (4) can be rewritten and is equivalent to

N; = Di(NPNyy+pNPIN2) — o(NyEx + NEy,),
E; = —6ME, (5)
Mt = DZMxx + ]/lN - AM.

In the present work we investigate the solutions of (5), a generalization of the model
described in [3], from the point of view of Lie symmetries [7], which is a powerful tool
to look for analytical solutions of equations.

Before presenting the solutions found and the theory that supports them, we briefly
explain in the following section the parameters we used considering biological aspects.

We would like to highlight that the system (5) is already written in a dimensionless

form [see 3]. More details about this can also be seen in the following section.

2.4 BIOLOGICAL PARAMETERS

The system given in (5) is considered to hold on some spatial domain () (a region of
tissue) with appropriate initial conditions for each variable. We assume that tumour
cells, ECM and MDE remain within the domain of tissue under consideration and
therefore no-flux boundary conditions are imposed on 0(), the boundary of () [1].

Letting

(6)

where L corresponds to the maximum invasion distance at the early stage of tumour
invasion, we non-dimensionalize the system (5).
Based on [3] the constants in (6) are given by
12
Le[01,1]cm, T= o

1

where D’ ~ 10~®cm?s~! is a chemical diffusion coefficient previous estimated and at

this work we chose L = 1cm.



2.4 BIOLOGICAL PARAMETERS

The Table (1) shows the parameters u of the dimensional system, the correspondents

non-dimensional parameters il and a brief description of each one of them, all constants.

Table 1: Parameters u of dimensional system, the correspondents non-dimensional parameters i

and a brief description of each one of them.

u unit il Description

D1 cm?s~! D; = % cancer cell motility coefficient

p |em?s InM~ | p= EDL, haptotactic coefficient

o nM 1571 5 = TMyd | cancer cell proliferation rate

D, cm?s1 D, = % MDE diffusion coefficient

U s~1 ji = TK/IZZO rate of MDE release by cancer cells

A s~1 A=71A | MDE degradation rate

The haptotactic parameter p ~ 2600 cm? s~! M~! was estimated in [3] and the
parameter Egy € [10~11,1078]M was taken from the experiments in [25]. Assuming that
a tumour cell has the volume 1.5 - 1078 cm® hence Ny = 6.7 - 107 cells ecm =3 [1].

Thus the non-dimensional system is given by

Z
I

Bl(NPNxx + pr—lN)%) - p(NxEx + NExx);
E; = —4ME, (7)
M; = DMy +aN — AN.

Dropping the tildes in (7) and using Table (1), the non-dimensionalization leads to
the system (5).

Regarding to the biological meaning, it is worth mentioning that the parameters y, A
and J in system (5) until remain unknown for the in vivo situation as same as My [1].
Therefore, those parameters are not obtained from experimental data but estimations
supported by the literature, such as in [1], [3] and [9]. A complete list of the values used
to analyze the solutions of system (5) is in Table 4, Chapter 5.

Also maintaining the purpose of analyzing biological situations of the system (5) in
which there is diffusion of both tumor cells and the matrix of degrading enzymes, we
consider D1D; # 0.

Although the parameters p, p, 6, 1 and A in (5) can be zero, each one of them plays an
important biological role in the process of cancer cells invasion. As we stated earlier,
while p # 0 indicates the existence of haptotatic movement of cancer cells, p # 0 is

related to tissue heterogeneity in the process of diffusion of cancer cells. On the other
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hand, if 6 = 0, the haptotaxis response has no influence on tumour cells density and
ECM remains the same over time. The latter has no biological significance when we are
interested in analyzing the avascular stage of cancer.

The last two parameters are more flexible regarding their nullity. = 0 eliminates the
influence of cancer cells into MDE and so into ECM as well, which means that there is

no enzyme production based on cancer cells density and only its natural decay if A # 0.



LIE SYMMETRIES

In order to organize the jumble of solving techniques of ordinary differential equations
(ODE), until his times, Sophus Lie introduced the idea of a continuous group of
transformations, which generated the area known as Lie Theory [6].

Throughout the coming sections, we present part of this theory so as to enable the
reader to keep up with the results found. For further details, see [6], [7] and [18].
Furthermore, it is worth saying that, in this chapter, the theorems and propositions are

not original.

3.1 LIE GROUPS OF TRANSFORMATIONS

A symmetry group of a system of differential equations can be defined as a group
of transformations that apply any solution of the equation to another solution. If a
differential equation or system is invariant under the action of a group of Lie point
transformations, we can find special solutions constructively called invariant solutions,
which are invariant under the action of some subgroup of the admitted total symmetry

group by the equation.

Definition 3.1. A group G is a set of elements with a law of composition ¢ satisfying the

following axioms:

(i) Closure property. For any elements a and b of G, ¢(a, b) is an element of G.
(ii) Associative property. For any elements a, b, ¢ of G we have ¢(a, ¢(b, c)) = ¢(¢(a, b), c).

(iii) Identity element. There exists a unique identity element e of G such that for any element a
of G we have ¢(a, e) = P(e, a) = a.

(iv) Inverse element. For any element a of G there exists a unique inverse element a= in G
such that ¢p(a,a=) = p(a=1,a) = e.
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Definition 3.2. Let x = (x1,X2,...,xy) lie in a region D C R". The set of transformations
X = X(x; €) defined for each x in D and parameter € in set S C R, with ¢(e, d) defining a law of
composition of parameters € and 6 in S, form a one-parameter group of transformations on D if
the following hold:

(i) For each € in S the transformations are one-to-one onto D; hence X lies in D.

(ii) S with the law of composition ¢ forms a group G.
(iii) For each x in D, X = x when € = € corresponds to the identity e, i.e., X(x;€g) = x.
(iv) If X = X(x;€), x = X(X; ), then X = X(x; ¢(€, 9)).

Definition 3.3. A one-parameter group of transformations defines a one-parameter Lie group
of transformations if, in addition to satisfying axioms (i) — (iv) of Definition 3.2, the following
hold:

(v) € is a continuous parameter, i.e., S is an interval in R. Without loss of generality, € = 0

corresponds to the identity element e.
(vi) X is infinitely differentiable with respect to x in D and an analytic function of € in S.
(vii) ¢(€,d) is an analytic function of € and 5, e € S, 6 € S.

Example 3.1. Let (x,t,E,M,N) € Q C R>ande € R. So, (x,t, E, M, N) = X((x,t, E, M, N); €) =

(x +ce, t+€,E, M, N) is a one-parameter Lie group of transformations.

3.2 INFINITESIMAL TRANSFORMATIONS

Consider a one-parameter € Lie group of transformations
x = X(x,€) 8)

with the identity € = 0 and law of composition ¢. Expanding (8) about € = 0, in some

) <8X (x;€)
+---=x+e€
€=0 de

neighborhood of € = 0, we get

_ 0X(x;¢€) 1 , (3*X(x;€)
x—x+e< de e=0)+2€ ( €2

)+0@%

e=0

Let



3.2 INFINITESIMAL TRANSFORMATIONS

i) = 1) ©

The transformation x + €¢(x) is called the infinitesimal transformation of the Lie group

e=0 '

of transformations (8). The components of ¢(x) are called the infinitesimals of (8).

Example 3.2. In this work we consider the Lie symmetries of (5), with two independent variables
(x, t) and three dependent ones (E, M, N).

A Lie point symmetry of system (5) is a set of transformations with parameter €

= x+ell(x,t,E,M,N)+O(?),

= t+ef(x,t,E,M,N)+O(?),

= E+en'(x,t,E,M,N)+O(?), (10)
M + 6772(x, t,E,M,N)+ (9(62),

= N+end(x, t,E, M, N)+ O(?).

z 7| m
Il

Example 3.3. Let (x,t,E,M,N) € Q C R® and € € R. Consider the one-parameter Lie group

of transformations

(x,t,E, M, N) X((x,t,E, M, N);¢)

((5+1) x, (e + 1), E, (1 — )M, (1 — 2¢)N) . =

Notice that the identity of (11) is 0 and its law of composition is ¢(a, b) = a +b. Using (9),
the infinitesimals related to this group are &' = 5,82 =+,8% =0,¢* = —Mand ¢° = —2N.

Example 3.4. Let (x,t,E,M,N) € () C R and T € R}. Consider the one-parameter Lie

group of transformations

(x,t,E,M,N)

X((x,t,E, M, N); 1)

((% + 1) x,(e*+1)t,E,(1—e )M, (1 — ZeT)N> - (12)

Notice that the identity of (12) is 1 and its law of composition is ¢(a,b) = ab. Using (9),
0X(x;T)

oT
¢l'=3,82=t,8=0,¢"=—Mand &° = -2N.

considering T = 1, we have §(x) = i So, the infinitesimals related to this group are

Observe that the infinitesimals of one-parameter Lie groups of transformations shown
in equations (11) and (12) are the same. This is no accident. The following theorem can

enlighten why:.

21
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Theorem 3.1. (First Fundamental Theorem of Lie) There exists a parameterization T(€) such
that the Lie group of transformations (8) is equivalent to the solution of an initial value problem
for a system of first-order ODE given by

dx —

E - g(x)/
with X = x when T = 0.

In particular,
€
T(€) = / I'(e)de,
0

where

T(e) = a‘i’g;’ )

@b)=(e1e)

I'(0) = 1 and 0 means the identity of the group.
Proof: See [6], pages 39 and 4o. |

Example 3.5. Consider the one-parameter Lie groups of transformations in examples 3.3 and

3.4. Applying the Theorem 3.1 into the latter one, we obtain:

_ 0¢(a,b) _, 1
B ob (a,b)=(e" 1) ezl €

I'(e)

and
r)=1.

Thus,
€
T(€) = / I'(e)Yde' =1ne,
0

which implies € = e*. This gives us what we need to parameterize a given group into one in

terms of T with ¢(a, b) = 71 + .

Without loss of generality, we assume that a one-parameter € Lie group of transfor-
mations is parameterized such that its law of composition is given by ¢(a,b) = a +b, so

that e ! = —e and I'(¢e) = 1. Therefore, we can rewrite (8) as
o, (13)

with ¥ = x when € = 0.



3.2 INFINITESIMAL TRANSFORMATIONS

3.2.1 Generators

Definition 3.4. The infinitesimal generator of the one-parameter Lie group of transformations

(8) is the operator

X = X(X)—ZC(X)— ZCZ(X)ax, (14)

1

So, for any differentiable function F (x) =F(xy,x2,..., xn) one has

oF (x)

F(x) = ZC()

d
It is worth highlighting that we are going to use the notation d,, instead of —.

ox;
Moreover, sometimes we prefer to use ¢ to represent the infinitesimals related to the

independent variables and 7 to represent the infinitesimals related to the dependent
ones.

Thus, the generator related to (5) is given by

X = 10y + &20; + 70 + 00 + 170y, (15)
as we can see in (10).

Theorem 3.2. The one-parameter (€) Lie group of transformations (8) is equivalent to

k

1 1 ad
fzeexx:x+eXx+§eZX2x+---: 1+eX+§e2X2+... x:Z%X"x,

where X=X(x) is the operator defined in (14) and X* = X¥(x) is given by X* = XX*~1 for
k=1,2,... and X°F(x) = F(x).
Proof: See [6], pages 43 and 44. |
Example 3.6. Consider the infinitesimal generator described by
X = gax 413 — My — 2Ny, (16)

which compared to (15) we have

23
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Using (13), we obtain the following results

ax X 20X e olnT=etcp,
de 2
dt - dt -
_:t:>7:de:>lnt=€+clz
de t
JIE
%—OjE—CZI
de
AN dN

—— = 2N= —=-2de =InN =c; — 2,
de N

where ¢, c1,¢p, c3 and c4 are constants with respect to €. With (X, t, E,M,N) = (x,t,E,M, N)
when € =0, then

(x,1,E,M,N) = (e2x, ¢t E,e M, e~ %N). (17)

Example 3.7. Consider the infinitesimal generator (16). By Theorem 3.2, we can also obtain the

one-parameter (€) Lie group of transformations related to this generator, as following

X X X
X%=x, Xx=3, Xx=2, Xx=3
X=X, X % X 1 X 3’
2 3 ok
- eX. X € x €’x 3 1) .
AR R TP R T (kzzok@>—e”"

X% =t Xt=t, X%’=t X3x=t

PSR PURPUVINE DL VNS DEVRRNNRIPY B o - B
=Tt =thett et mett = ;gﬁ = €°t,

X°E=E, XE=0, X?E=0, X°E=0,

E=¢*XE=E,



3.2 INFINITESIMAL TRANSFORMATIONS

— 1 1 ® ek
M=eXM=M—eM+ Ec—:ZM — §e3M -~ (Z €—(—1)") =e¢ M,

X'N=N, XN=-2N, X?N=4N, X°N = -8N,

— 1 1 2, €k
N=¢N=N-2eN+4 6N -8 eN+---=N (Z %(—2)") = e %N.
: : k=0 "

Thus (%,f, E, M, N) = (e2x, ¢t, E,e €M, e~ 2N).

Examples 3.6 and 3.7 have shown two different ways to find a one-parameter (€) Lie
group of transformations related to a given generator: the first one use basically the
infinitesimals and the latter, only the generator. In both cases we have the essential
information to determine the one-parameter (€) Lie group of transformations related to
each one. The importance of this fact impacts the path we trace to find the solutions of
the system modeling the cancer problem that we chose: in order to find it, at first, we
can only determine the generators. The following theory of this chapter completes the

further steps.

3.2.2 Invariant functions

Definition 3.5. An infinitely differentiable function F(x) is an invariant function of the Lie
group of transformations (8) if and only if, for any group transformation (8), F(x) = F(x). If
F(x) is an invariant function of (8), then F(x) is called an invariant of (8) and F(x) is said to be

invariant under (8).

Theorem 3.3. F(x) is invariant under a Lie group of transformations (8) if and only if XF(x) =
0.

Proof: See [6], page 46. [
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Example 3.8. Let F : R®> — R described by F(x,t,E,M,N) = 2E + tM. Consider the

infinitesimal generator (16) and the Lie group of transformations (17). Then,
F(x,t,E,M,N) =2E +tM = 2E + ¢°te"*M = 2E + tM = F(x,t,E, M, N).

Hence, the function F(x,t,E, M, N) = 2E + tM is invariant under a Lie group of transformations

(17).
On the other hand,

XE(x,t,E, M, N) %%F(x, t,E,M,N)+ ta%F(x, t,E,M,N) — M%F(x, t,E, M, N)
—2N%F(x, t,E,M, N)
= tM— Mt

= 0.

3.3 EXTENDED TRANSFORMATIONS

Definition 3.6. A one-parameter (€) Lie group of point transformations related to a system S is

a group of transformations of the form

x* = X(x,u;€), (18)
1
u* = U(x,ue),
acting on the space of m + n variables
X = (xll x2/ x3/ ey xn)/ (19)
u = (ul,uz, u3,...,um),

where x represents n independent variables and u represents m dependent ones.

A Lie group of point transformations (18) admitted by system S leaves S invariant,
i. e., the form of S is unchanged in terms of transformed variables for any solution
u = 6(x) of S.

Definition 3.7. Consider a Lie group of point transformations related to a system S

xT = X(x,u), (20)
ut = U(x,u),



3.3 EXTENDED TRANSFORMATIONS

where x = (x1,x2,X3,...,Xy) represents n independent variables and u = (', u?,u3, ..., u™)

represents m dependent ones.

. oul oMt aur
ut' = Fr )" = ot =X
e d d d d
D":%+”?W+”ZW+'"+”Z1iz---inm+”" (21)

with summation over a repeated index.

D; is called total derivative operators.

Also, let du denotes the set of coordinates

u okut

u. . .= ,
hig ik axilaxiz .- -axik
where u=1,2,...,mand ij=12,...,nj=1,2,.. ., k corresponding to all kth-order partial
derivatives of u with respect to x.

The kth-extended transformation of (20) is given by

o= X(x,u),
ut = Ux,u),
out = ol(x,u),
okut = akll(x, u,ou,..., aku),
where (ul')t of du® are determined by

()’ ut D, U*
(uh)? _ ub _ a1 D,U*
(1) Up D, U*

A~Vis the assumed existent inverse of the matrix

D1X1 D1X2 D1Xn
D2X1 D2X2 D2Xn

DnX]_ DnXZ A Dan

27
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t of okt
and (uZl i..i,) Of 0"u’ are determined by
T H H
( 1112 i 11) ul'liz'“ikq1 Dy fpig+ix_q
T H H
( fpip i 12) _ UiliZ"'ik—lz - Al D2ui1i2"1k 1
- . - . 4
H t M M
(uiliZ“'ikfln) ui1i2"'ik71” D”ui1i2" Ik—1

],t:1,2,...,m,k:2,3,...,nandi]-:1,2,...,n,j:1,2,...,k.

Definition 3.8. Consider the one-parameter (€) Lie group of point transformations related to a
system S in (18) and (19).
The kth-extended transformation of (18) is given by

xj +eC(x, u) + O(€?),

ut +ent(x, u) + O(?),

X; = Xi(x, u;€)
ut = UM (x, u; €)

= Ul (x,u,0u;e) = ul +€;7§1)”(x, u, ou) + O(e?),
oo g k- . () k 2
Uiy i = Ulll2 lk(x, u,ou,...,0ue) = Wiiy i T €My lk(x u,ou,...,ou)+ QO(),

with the extended infinitesimals 171(51)2’4 i, gtven by

n " = Dy — (DiEhul (22)
and
(u (k=1)u ut
;71112 i T lkr]lllZ dk-1 —(D 1k€]) iip...ig—1]’ (23)

wherei; =1,2,...,nforl=1,2,..., kwithk > 2.
Therefore, the kth-extended infinitesimal generator is given by
' 1
x® = Fix, u)a%i +nh(x, u)% + 175 )”(x u, au)ﬁ, +...

+ 171(1?2” 40w, du, %u, . aku) k> 1.
1112 lk

(24)

Example 3.9. Consider the general generator of (5) described in (15), where &', &2, y',n? and
1 are differentiable functions depending on variables x,t,E, M, N. Thus, its 2nd-extended
infinitesimal generator is given by

Eloy + 220, + 10g + n20p + 30N + 1 ’1aEx + 1290, + 13N,
th)la n 17(1)28 " 77t1)3aNt n 1’](2)18 i 77x )28 My 17(2)38

1 2 3 2)1 )2 )3
ﬂxt)a ‘H7xt)a +;7xt)a +77§t)a ""715)a +’7t)a

x )

+

+
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According to equation (21), the derivative operators Dy and Dy are given by

Dx = ax+ExaE+anM+NxaN+Exx8Ex +MxxaMx +NxxaNx
+ Ext0f, + My9p, + Nyton,,

Dt = at + EtaE + MtaM + NtaN + EtxaEx + MtxaMx + NtxaNx
+ EttaEt + MﬁaMt + NﬁaN,.

Hence, based on further definitions within definition 3.8, the first extended infinitesimals are

presented in detail by following expressions. Considering the second extended infinitesimals,

only ;7§C2x)1 is shown.

77§c1)1 = Dx771 - (ngl)Ex - (DxCZ)Et
= 7791c + Ex77]15 + Mx7711\/[ + Nx77]1\] - (C;lc + Ex(:]lg + ng}v[ + Nxé%\[)Ex
— (G2 +ExCE + M3 + NxCR)E;

7% = Duy? — (Dx&Y)My — (DxE)M;
= 72+ Exn2 + My + NayjZy — (6L + ExZE + Myl hg + Nolh) My
- (C:v(;zc + Ex(f% + Mxé(]z\/j + Ny %\])Mt

773(c1)3 = Dx773 - (Dxél)Nx - (DxCZ)Nt
= 73+ EuE + Manps+ Nunpdy — (€L + Ex8E + MY, + NolL )Ny
— (824 ExC% + M3, + NiC3)N;

7 = Dyt — (DiEY)Ey — (DiEA)E;
=y} +Emi+ M, + Nepdy — (&1 + EiC L+ My + NiC ) Ex
— (8 + Ei8% + My, + NiZ%)Ey

17;1)2 _ sz _ (DtCI)Mx — (Dt(ZZ)Mt
= 77+ Eufg + Mgy + Ny — (G} + EG g + MGy + Nig )M
— (B +E& + M3y + NiG2 )M

1M = Dy — (DN, — (DiE2)N;
= 1’/1:53 + Etﬂ% + Mﬂ’]%/{ + Nﬂ73N — (Ctl + Etg}; + Mt‘:}v{ + Nt‘le\[)Nx
— (&7 + Ef2 + M3, + NiZ3)N;
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2)1
e

In a similar way as shown for 17,(52,21, we can express 17,((2,5)2, 17;(6235)3, Wizt)lf chzt)zr ’75?3/ 77§t2)1’ ’7§t2)

and 17(2)3.

+ + + +

D" — (DyE")Exy — (DxE?)Ex

Dy (ny + Extig + Mty + Nanpyy — Gy + Ex8E + M8y + Nal o) Ex

(63 + ExCE + M3y + NuCR)Er) — (83 + ExCp + M}y + Nol))Exx

(&2 + ExC2 + My 23, + NeZ3)Ext

Mix + Extyp + Mt by + Ny + Exxtf + 1k Ex + ExExgnf + 115 (Ex)?
MyExmni + MyExntyg + NeExnti + NeExtjb + Exxlfk + Myxtfhg + Moty
ExMieihy + ExManige + MMty + (M1 + NeManihg + NeMoph g
Max13g + Nxxtiay + Natphe, + ExNyenhy + ExNatphig + MxNaaifay + MxNati g
NxNxNﬂzl\] + (Nx)zﬂzl\n\[ + Nxx7711\1 - (?ylchx - (:alcExx — ;E(Ex)z - ExéalcExE
nggchEx - MxéylcExM - NxC}CNEx - ngalcExN - Exxé(;lc - ZExExxgjlg

(Ex)* €ty — 2(Ex)*ExelE — (Ex)*Ctp — 2MyExExmE — Mi(Ex)*CEy

2N ExExNGE — Ne(Ex)*Ghy — 2ExxExCE — MuxExCly — MxExxGhy — MyExhy,
MxE(Ex)Zg}v[ - ExMxExE(;I}\/I - Mx(Ex)Zéjl\/[E - MxMxMEx(le\/[ - (Mx)ZExMéjl\/j
(Mx)zExgzl\/IM - NxMxNExC}\/I - NxMxExNC}VI - NXMXEXC]l\/[N - ExxMxC]l\/[
MixExZ}; — NaxExCh — NxEaxlh — NeExlh Nuk — (Ex)?Ck — ExNxExplh
Ni(Ex)?Ehg — MxNemExChy — MxNxExmél — MyNEx&L — NeNawExl
(Nx)ZExN(le\] - (Nx)zExg}\]N - Exxngzl\[ - NxxEx(:zl\] - éyzcht - échEtx - ExgyzCEEt
ExC2Eir — Mx82 ) Et — My82Ei — Nxl2yEr — Nxl2EiN — ExiC2 — ExxEiC2
ExE&% — ExE(G}, — ExExpEiG2 — (Ex)*Eie€2 — (Ex)*Eié2p — MyExyEiG2
MyExEpnm&E — MyExEilFy — NxExnNEiGE — NxExEinGE: — NxExEilzy
ExxEté% - ExtExg}zg - MxxEtC%/j - MxEtxéjz\/[ - MxEté’%/jx - ExMxEEtg%\/[
ExMyEg83; — ExMyEil3 e — MeMymEiZ3; — (Mx)?Eiml3y — (Mx)*Erl3 s
NxMnEZ% — NeMxEinE3y — NeMyEl3 — MaxEré3y — ExeMa3,
NixEi€% — NxEw€% — NyEtZ%,, — ExNypEil% — ExNyEigC3; — ExNLErlRip
M NymEi€% — MxNxEip€3 — MxNxEil%a — NeNonEr€% — (N2)?EinES;
(Nx)zEtg%\[N - NxxEtég\] — Ex¢Ny %\] - g}cExx + Exg};Exx + Mxé(]l\/jExx + ng}\]Exx
E2Ext + Ex82Eyt + My &3 Ext + Ny Ext

2
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3.4 INFINITESIMAL CRITERION OF INVARIANCE

Theorem 3.4. (The infinitesimal criterion of invariance of a partial differential equation). Let
; d d
=& — 4yt
X=¢ (x,u)axi A (25)

be the infinitesimal generator of the Lie group of point transformations of (18).
Also let (24) be the kth-extended infinitesimal generator of (25), considering (22) and (23).
So, the one-parameter Lie group of point transformations (18) is admitted by the par-
tial differential equation F(x, u,au,a2u,...,aku), where x = (x1,X2,X3,...,Xy) and u =
(ul,u?,u3,...,u™), ie., is a point Lie symmetry of F(x, u,du,d’u, ..., du), if and only if

X(k)F(x, u,0u,9%u, ... ,aku) =0 when F(x,u,ou,du,... ,Bku) =0.
Proof: See [18], page 161. u

Example 3.10. Let

Fi = N;— Di(NPNyy+pNP7IN2) + o(NyEy + NEyy),
I, = E;+JSME,
F3 = M;— DoMyy — uN +AM.

The infinitesimal criterion of invariance for system (5) is X®F, = 0 (see [7], page 17) when
Fy =0,a =1,2,3, and where F, represents the equation a of the system (5) in the format F, = 0.

Example 3.11. Consider Fy, F, and F3 given by the previous example, where Fy = F, = F3 =0,
and the generator W = X1 + cXp, X1 = 9¢, X3 = 0y.

XPF = (c39+ 58" 0g, + 180, + 80N,
+ n;l)laEt + ngl)zaMt + U;l)?)aNt + ’7§C2X)18Exx + UJ(CZX)ZaMxx + ;73(5235)38Nxx
2)1 2)2 2)3 2)1 2)2 2)3
+ ;73(ct) aExt + ;73(ct) aMxt + ;73(ct) aNxt + 17§t) aEtt + 7751‘) aMtt + Ugt) aNtt)Fl
= 0.
ng)l—"z = (c30r + 10, + 1Pon, + 1o,
+ r]gl)laEt + r]gl)zaMt + ;7?)381\’1‘ + ;73(C235)18Exx + 173(5235)28Mxx + ;73(5295)38Nxx
2)1 2)2 2)3 2)1 2)2 2)3
+ 77§ct) aExt + 775(1‘) aMxt + 17§ct) aNxt + 17§t) aEtt + 7751‘) aMtt + 77§t) aNtt)Fz
= 7).

0.
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X%Z)Fg = (30t + 15 (1 GEX + 17(1)28 17(1)38
b g, 42y, + gDy, + @0z, + 1oy, + 1155338Nxx
2)1 (2)2 3 2
+ 77xt a ¢ T 77xt aMxt + Wxt) aNxt + 17tt) aEtt + ﬂgt) aMtt + 77tt aNtt)F3
= 20) 4 522Dy
= O.
ng)Fl = (c Oy + ;7(1)18 + 1y 1)28 M, 17(1)38
+ 171’ 18 + 17(1 za + 17{’1)38Nt + UxxlaEw + ;7(2)28Mxx + 77(2)38Nxx
2)1 2)3 2)1 2)2 2)3
+ 77xt aExt + '7xt aM i 773(ct) aNxt + ’7§t) aEtt + 77151‘) aMtt + Ugt) aNtt)Fl
= 78NNy + 18P (=2D pNPING) + 7% (1) + 12 (oN) + 3P (— DINP)
= 0.
ng)Fz = (C20x + 1y )18 L+ 1)28 Lt 17( BN
+ T]El)laEt + r]f aMt + r]f 3a + W(Z)laExx + 779(5()2(—)1\/1353: + 17(2)38Nxx
2)1 2)2 3 2
+ ﬂgct) aExt + 17§ct) aMxt + Wxt) aNxt + 17tt) aEtt + ’7§t) aMtt + 77tt aNtt)FZ
_ (11
= 1 (1)
= 0.
XéZ)Fg; = (c Oy +17(1)18 + 1y 1)28 +17§C1)38NX

17t 1a + 17(1)28 + 17t 3aNt + U(Z)laExx + W(Z)zaer + ﬂ(z)saNxx
21 22
’7xt a p ’7xt a p ’7xt a Pt 77§t) J, + ’7§t) Imy, + ’7tt aNtt)F3

D21 +17(2)2( Dz)

+ +

0.

Then, WA (F)) = WO(F,) = WO(F3) = 0. Hence, we can affirm that W is a generator of
system (5).

When we apply the invariance condition to a set of differential equations, we obtain
the determining equations for the coefficients of the generator (25). The determining
equations form a set of a homogeneous overdetermined linear system of partial differ-
ential equations (PDE). Then we are able to determine the infinitesimal generators in
an explicit form, which is particularly interesting since through them we can obtain
invariants and then find invariant solutions that are special solutions of the equations.

How to obtain invariants and invariant solutions is the subject of the coming section.
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3.5 INVARIANTS

Definition 3.9. Consider a system S and a one-parameter Lie group of point transformations

associated with it defined as in Definition 3.6. Let the system S written as
Fu(x,u,0u, u,..., aku) =0, (26)

where each w« represents a different equation of system S. Consider as well the generator
associated with this group as described in equation (25). So u = 0(x), which its components are

Wl u?, -, u™) = (01(x),02(), . .., Om(x)), is an invariant solution of the system S if and only
1. u' = 0;(x) is an invariant surface of generator (25) for eachi=1,2,...,m;
2. u = 6(x) solves (26).

Definition 3.10. Consider the situation in Definition 3.9. Then u' = 0;(x) is an invariant

surface of generator (25) for each i =1,2,...,m if u = 6(x) satisfies:
X(u' — 0;(x)) =0, when u = 0(x) foreachi=1,2,...,m. (27)

According to [6], invariant solutions can be determined by two procedures: Invariant
Form Method and Direct Substitution Method. At this present work, we chose the first
one to apply into system (5), hence we briefly present the method here. The latter one

can be seen in [6, page 333].

3.5.1 Invariant Form Method

We can solve the invariant surface conditions (27) by explicitly solving the corresponding

characteristic equations for u = 6(x) given by

dx, _ dxa __ dwy dul  du? __ du" (=8)
Au) 20w Ewu) fuw) 2w piou)

Solving the m + n — 1 first-order ODE system (28) we obtain m + n — 1 independent

functions named here as wq(x, u), wo(x, u), ..., w,_1(x,u), J1(x, u), Jo(x, u),..., Jm(x, u).
In addition to that, when the Jacobian

a(]l/ ]2/ . /]TVZ)

o(wl,u?,...,um)

40,
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the general solution u = 6(x) of the system of PDE (27) is given implicitly by the
invariant form

]i(x/ u) = q)i(wl (x/ 1/[), wZ(x/ M), SRR wn—l(xr u))/ (29)

where ®; is an arbitrary differentiable function of wy(x, u), wa(x, u), ..., w,_1(x, u) for

i=1,2,...,m.

Example 3.12. Consider the system given in Example 3.10 and the information in Example
3.11.

According to (28), the characteristic equation associated with generator Xq + ¢ Xy is given by

dx dt dN dE dM
c 1 0 0 0
In order to search for invariants, we have to solve the m +n —1=3+2 — 1 = 4 first-order

system given by

dx _ dt

c R
dt _ dN

1 - 0

it _ dE (30)
T — 07
at  _ dM

1 - 0

From integration applied to system (30), the invariants associated with generator X + cXp

can be set by

w=x—ct,[1=N,]J,=E,J3=M. (31)
Then, the Jacobian
h o 2 100
ON OJE oM
M:%%%:010:17{0
B(N, E, M) ON OJOE oM ’
o o ok 001
ON OJE oM
So, using (29) and assume J; = ®1(w), [ = Po(w), J3 = P3(w), where w is as in (31), we

have
N = ®1(w), E = ®r(w), M = D3(w). (32)

Thus, considering (31) and (32), the system given in (5) can be rewritten as

Dy (P D! + pd! ' D2) — p(P, D} + D1 DY),
5D;D,, (33)
qu)g + ]/lq)l — /\@3.

/
—c<I>1
/
cd,
/
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The system of PDE (26) has invariant solutions given implicitly by the invariant
form (29), which one found by solving a reduced system of differential equations with
n — 1 independent variables w1 (x, u), wa(x, u), ..., w,_1(x, u) and m dependent variables

Ji(x, u), Ja(x,u),. .., Jm(x, u). For details see [6, page 332].

Example 3.13. Considering the previous example, we can solve the system given in Examples
3.10 and 3.11 by solving the ODE system (33) with w as the independent variable, which was
done in Section 5.1.

In Figure 14 we summarize the process to find solutions of an ODE system using Lie

Symmetries.

Use Invariant Form

Method to obtain an
system: solve the

characteristic

ecuations to find the
invariants. Then,

return the solution
into the original

variables.

Preparing Determing equations Invariant solutions

Figure 14: Summarized process to find solutions of an ODE system using Lie Symmetries.

Source: the author.
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Chapter 3 gives us the tools we need to solve system (5). As we mentioned at the end
of previous chapter, we can apply the invariance criterion to the system (5) in order to
obtain an overdetermined system of partial differential equations whose coefficients are
the infinitesimal generators and their derivatives. The solution leads us to all generators
related to system (5).

Applying the invariance condition to a set of partial differential equations usually is a
hard and mechanical work. Thus, using a package of software Mathematica [27] called
SYM developed by [12], we obtained 107 determining equations. Assuming D1D; #0,
we reduce the number of these equations to 24 partial differential equations to be solved,
whose variables are now the coefficients of the generator (15).

In the solving process we were led to split it into 35 cases based on constraints
satisfied by the parameters D1, Dy, p, p, 4,6, A. These cases are shown in schemes in the
tirst section of the present chapter.

In the second section we present all the generators found, whereas in the last section
we solve the already mentioned 24 equations and show how to obtain the findings
reported in the second section of this chapter.

A highlight of this chapter is that all propositions and theorems are original and

based on the system we want to solve.

4.1 CASES TREES

In this section we show how the cases split according to the parameters. In order to do

it we present the cases in a tree format.
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4.2 INFINITESIMAL GENERATORS

4.2 INFINITESIMAL GENERATORS

Theorem 4.1. The infinitesimal generators associated with the system (5) are presented in Tables

(2) - (3)-

Proof: See section 4.3.

Table 2: Table of generators - p = 0 (corresponds to the cases of trees 1 and 2).

Parameters Coefficients and generators
1 pZO,)LZO,]/IZO, X1=at,X2=ax,X3=%ax+tat,X4=MaM,X5=NaM,
o= 0, D1 = D2 X6 = ME)N, X7 = NaN, Xz = z(x, E)E)E, Yh = h(x, t)aM,

hi = Dahyy, g = Dngx

¢l =9x+c3,8 =1t +co, 7 = h(x, E),

7% = ciuM + k1N + f3(x, 1), 1> = kM + c1oN + g3(x, 1),
2(f5(x, ) — D2 25 (f3(x, 1) = 0,

2(g3(x, 1)) — D5 (g3(x, 1) = 0

2 |p=0,A=0,u=0,
6#0,D1 =D

X1, X2, X¢, X7, Xg = %ax +tds + EIn E0g,
X9 = Moy + EINEQdg, Yy, Zg, YfE = f(x, t)EOE,
oh = _ft/ hi = D2hxx/gt = Dngx

¢l =9x+c3,8 =t +o,

nt = E((c11 +c1) InE + f5(x, 1)),

172 =c1M+ f3(x, 1?),173 = kM +cioN + g3(x, 1),

Sfa(x, 1) = — 2(fs(x, 1)), %(g3(x, ) — D225 (ga(x, 1)) = 0,
2(fs(x, 1) — D22 (f5(x, 1) = 0

3 p=0,)L=0,‘u§c/O,
6=0,D1 =D,

X1, X2, X5, X190 = Moy — utNoyy,

X11 = My + (Mo — Non — utNoy),

Xip = Non + utNopg, X13 = 505 + t0s + utNopg, Xz, Yy,
Zy,
ht — Dohyy = ug, &t = Daguxx

¢'=Fx+c3, 8% =crt+co, ' = h(x, E),

41



42 GROUP CLASSIFICATION

Parameters Coefficients and generators

172 = (ukt +c11)M + (—ptzkt2 +ut(c19 —c11 +¢1) +k1)N
+f3(x, 1), 7% = kM + (—pkt + c10)N + g3(x, t),

2(83(x, 1) — DaZ(83(x, 1) = 0,

2(f3(x, 1) — pga(x, H) = Do (f3(x, ) = 0

4 pZO,)LZO,]/l #0, Xl,Xz,XM:§8x+tat+ElnE8E—NaN,
57!0,D1 =D, X15:M8M+E1nEaE+N8N,Zg,Yh,YfE,
Oh = —ft, hy — Dohyx = g, &t = Dagxx

¢l =Gx+c3,8 =t +o,

nt = E((c11 +c1) InE + fs(x, 1)),

n? = cuM+ fa(x, ), 7% = (c11 — c1)N + g3(x, £),

Sf3(x, 1) = — S (fs(x, 1), $(g3(x, ) — Doy (ga(x, 1) = 0,
2 (fs(x, 1) — puga(x, ) — Doy (f3(x, 1) = 0

5 |p=0,A#0,u#0, X1, X,

5=0,D; =D, X6 = 30y + 10; + utNOp — AtMp + (5 — )Ny,
Xi7 = keM(Moy — ENoy) + eM(Moy — 5 Noy),
X1 = Moy — 5N, X109 = Noy + Ny,

X0 = e MNOw, Xz, Yy, Zg,

Ah+hy — Dohyy = 1S, gt = Dogxx

¢l =Fx+c3, 8 =crt+co, ' = h(x, E),
,72 — (VTkeM — At + C6> M +f3(x, )
+ (% <_Tyke)‘t +C5 —Cg+C1 +C1At) — U + f%) N/
7% = (ke)M + (‘T"ke“ + C5> N +g3(x, ),
3(g3(x, 1)) — D225 (g5(x, 1) = 0,
2
51 (300 1) + Afs(x, £) — ga(x, £) — Doz (fa(x, 1) = 0

6 P = 0/)L 7/0/}’[ 7‘1015 7‘10 Xl/ XZ/ X15/ Yh/ YfE/ Zg/
Ah+hy — Dohyy = ug, oh = _ftzgt = ngxx

&' =c3,8% = co, 7' = E(c6 InE + f5(x, 1)),
7% = ceM+ f3(x, 1), 1% = c6N + g3(x, 1),
Sfa(x, 1) = — S (fs(x, D), $(g3(x, 1) — D155 (g3(x, 1) =0,




Parameters

4.2 INFINITESIMAL GENERATORS

Coefficients and generators

S(fa(x, ) + Afs(x, ) — uga(x, ) — Do 25 (f3(x, 1)) = 0

p=0,A#0,1u=0,
5=0,D; =D,

Xl/ XZ/ X4/ X7, XZO, X21 = %ax + tat - /\tMaM,
X22 = eAtMaN/ XZ/ Yh/ Zgr
Ah+hy — Dyhyy = 0,8t = Dagxx

gl = % +c3;8% = et +co, i1t = h(x, E),

7% = (—Acit +c)M + fa(x, t) + kie™MN,
7% = keMM + g3(x, t) + csN,

2(g3(x, 1) = D2 25 (g3(x, 1),

Af3(x, )+ 2(f3(x, ) — D225 (f3(x, 1) = 0

0=0,A#0,u=0,
5#0,D; =D,

Xl/ XZ/ X7/ X9/ XZZ/ Yh/ YfE/ Zg/
Ah+hy — Dyhyy =0,6h = _ft/gt = Dy gxx

¢l =c3,8% =co, ' = E(ce InE + f5(x, 1)),

n* = ceM + f3(x, t), 73 = (ke )M + csN +g3(x, 1),

Sf3(x, 1) = — & (fs(x, 1), (g3(x, 1) — Das(ga(x, 1) =0,
S (fa(x, D) + Afs(x, 1) — Dy (fa(x, 1) = 0

p#0,0=0,u#0,A#0

Xy, X5, Xp3 = Moy + Noy, Xo4 = 0p, Yy,
Ah+hy — Dohyy =0

gl =C3, 62 =C, 771 = C4, 772 = C6M +f3(x/ t)/ 773 = C6N/
S(fs(x, D) + Afs(x, D) — Dy (fa(x, 1)) = 0

10

p#0,6=0,u#0,
A=0,D; =D,

X1, X2, X23, Xp4, X5 = 505 + 10y — Non, Yy,

¢l =Gx+c3, 8 =crt+oy, ' =cg, 17 = ceM+ f3(x, 1),
7]3 = (C6 - Cl)NI

2
2(f3(x, 1)) — D225 (fs(x, ) =0

11

p#0,6=0,u=0,
A=0,D; =D,

128
Xl/ XZ/ X3/ X4I X7/ X24/ X26 =eh aNI Yh/
1 - a 2 — t 1 — 2 — M t
6 2 X +cs3, C c1t +C2, 77 C4, ;7 Co + f3(x/ )/
1n° = cyN + kefE/D1,
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Parameters

Coefficients and generators

%(fg(x, t)) - Dz%(f:%(x, t)) =0

12 | p#0,6=0,u=0, X1, X2, X4, X7, Xo4, X26, Yn,
/\#O,D1=D2 )L]’l+ht—D2hxx=0
Cl =C3, 62 = Cy, 771 = C4, 172 = C6M +f3(x/ t)/
n° = cyN + ketE/D1,
2
2(f3(x, 1) + Afs(x, t) — Dza%(ﬁ(x, t)) =0
13 p#olé#oly#ol)\#o Xl/XZ
Cl=c3,8% =0, =0,72=0,7>=0
14 | p 7!0,(5 7/0,“1/[ 7—10,/\ =0 Xl,Xz,X27 = §8x+t8t —2N8N —MaM
= 43,8 =ct+o,n' =0, 7% = —c1M,
173 = —2C1N
15| p 7-{0,5 ‘T/O,‘u = 0,)\ =0 Xl,Xz,X7,X28 = §8x+tat —MBM
T=9X pon @2 =cit+cy,n' =0, 12 = —c1M, 1% = csN
2 1 Ui Ui
16 [ p#0,0#0,u=0,A#0 | X1, X, Xy
¢l=c3,8 =0, =0,7=0,7>=cyN
17| p= Ol,u 7/0/5 #O/ Xl/ XZ/ X15/ X29 = %ax + tat +Eln EaE - NaN/ Yh/ YfE/
A=0,Dy # D, Zg,
hi — Dahyy = ug, oh = _ft;gt = Dlgxx
¢ =Yx+c3,8 =1t +ca,nt = E((ce + c1) InE + f5(x, 1)),
n? = ceM+ f3(x, 1), 1% = (ce — c1)N + g3(x, 1),
2
S(f3(x, 1) — Doz (fa(x, 1)) — ugs(x, 1) = 0,
2
Sfa(x, t) = — 2(f5(x, 1)), 2(g3(x, 1)) = D1:25(g3(x, 1))
18 P = 0/ U 7/ 0/5 = 0/ Xl/ XZ/ X23/ X30 = %ax + tat - NaN/ XZ/ Yh/ Zg/

A=0,D; #D,

hy — Dohyy = Uug, 8t = Dlgxx

¢l =Fx+c3, 8 =crt+co, ' = hix, E),
172 = C6M+f3(x/ t)/



Parameters

4.2 INFINITESIMAL GENERATORS

Coefficients and generators

173 = (C6 - Cl)N +83(x1 t)l
O (f3(x, 1) — Dz;—,;qg(x, 1) — puga(x, ) = 0,
2(g3(x, 1)) = D1 25(g3(x, 1))

19

p=0,u#0,6=0
A #£0,D; # D,

Xl/ XZ/ X23/ XZ/ Yh/ Zg/
Ah+hy — Dohyy = UL, 8t = Dlgxx

¢l =c3,8% =, = h(x,E), 1*> = ceM + f3(x, 1),

1% = ceN + g3(x, 1),

S (fs(x, ) + Afs(x, D) — Doy (fa(x, 1)) — pga(x, t) = 0,
2(g3(x, D) = D1 25 (g5(x, 1)

20

p=0,u=0,6#0,
VA, D1 # Dy

Xl/ XZ/ X7/ XS/ X9/ Yh/ Zg/
Ah+hy — Dyhyy =0,6h = _ft/gt = D1gxx

¢l =9x+c3,8 =t +co, 't = E((ce + c1) InE + f5(x, 1)),
172 =ceM + f3(x, t),173 =cyN + g3(x, 1),

S(fs(x, D) + Afs(x, ) — Do (fa(x, 1) =0,

Sf3(x, 1) = — S (fs(x, 1), 2(g3(x, 1) = D125 (g5(x, 1)

21

p=0,u=0,06=0,
VA, Dy # D,

Xl/ XZI X4I X7/ X211 XZ/ Yh/ Zg/
Ah+hy — Dohyy = O/gt = Dlgxx

¢l = Gx+c3,8% =crt+co, ' = hix, E),
1% = (ce — cIAM + f3(x, t), 1% = c7N + g3(x, 1),

2(g3(x, 1)) = D1 Z5(g3(x, 1),
S(fa(x, D) + Afs(x, D) — Dy (f3(x, 1)) = 0

22

p#0,u=0,6=0,
YA, Dy # Dy

Xl/ XZ/ X4/ X7/ X21/ X24/ X26/ Yh/ Ah + hi’ - Dzhxx =0

gl=9x+c5,8 =crt+o,nl =c,

n? = (ce — 1AM + fa(x, 1),

2(fs(x, ) + Afs(x, B) = Do L (fa(x, 1),
1% = csN + ketE/D1

23

p#0,u#0,0=0,A=0

Xl/ XZ/ X23/ X24/ X31 = %ax + tat + MaM/ Yh/
hy — Dohyy =0
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Parameters Coefficients and generators

Cl

G

=Sx+c3, 8 =ct+op,nt =cy,

172 = (C5 + Cl)M +f3(x/ t)/ 173 = C5N/
2

2(fa(x, 1)) = Dy 25 (f3(x, 1))

Table 3: Table of generators - p # 0 (corresponds to the cases of tree 3).

Parameters

Coefficients and generators

24

p#0,6#0,( #00u A #0)

Xl/ XZ

¢'=c3 8= =0* =07 =0

25 p?/olé#o/(]’lzoe/\zo) X11X2/X28
&l = Gx+c3, &2 =cit+cy,n' =0,7% = —c1 M,
7° =0

26 | p#0,6=0,u=0,VA X1, X2, Xg, Xo1, X204, Yy,

g =Sx+c58 =art+ent =cy
7% = (c5 — Acit)M + f3(x, 1);
2(fs(x, D) + Afs(x, D) = Do L5 (f3(x, H);® = 0

27

p#0,6=0,u#0,A#0

Xl/ X2/ X24/ Yh/
Ah+hy — Dohyy =0

=03, =yl =cy

772 = f3(x/ t)/

2(f3(x, ) + Afa(x, ) = DaZs(fa(x, 1),
7 =0

28

p#0,0=0,u#0,A=0

Xl/ XZ/ X24/ X31/ Yh/
ht - Dzhxx = O
¢'=Fx+c3, G =at+o,n =cy
2
;72 = ClM +f3(x/ t)/ %(fé(xl t)) = DZaa?(f?)(x/ t))/



Parameters

4.2 INFINITESIMAL GENERATORS

Coefficients and generators

7°=0

29

p=0,u#0,6#0,A=0

X1, X5, X3 = %ax +tds +2EIn EOg + Moy, Yy, YfEr
ht — Dohyy =0,0h = —f;

gl =9x+c3,8=c1t+0p,
171 = (2c1InE + f5(x, t))E,
7% =M+ f3(x, 1),

Sf3(x, 1) = — % (fs(x, 1),
2(fs(x, 1) = Da s (f3(x, 1),
=0

30

p=0,u#0,6#0,A#0

X1, X2, Yn, YE,

‘:l =C3, 62 = C2, 771 = f5(X, t)E/
772 = f3(x/ t)/ 5f3(x/ t) = _%(f5(xr t))/
2(f30x, ) + Afa(x, 1) = Do 5 (f3(x, 1), 7 = 0

31

p=0,p#0,6=0,A=0

X1, X2, X31, Y3, Xz,
hy — Dohyy =0

§'=Fx+c3 8 =crt+eyn' = h(x, E);

12 = M+ f3(x, 1), 2(f3(x, 1) = Doy (f3(x, 1));
7°=0

32

p=0,u#0,6=0,A#0

X1, X2, Yy, Xz,

g =3;8% = ey = h(x, E);

772 = f3(xl t)/

2(f3(x, ) + Afa(x, ) = Doy (fa(x, 1);
=0

33

p=0,u=0,6#0,A=0

X1, X, X8, Xo, Yy, YyE,
ht - Dzhxx = O/5h = —ft

=S +e58 =1t +0y;
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Parameters Coefficients and generators

171 =E((cs+c1)InE + f5(x, 1)),

7 = csM+ fa(x, 1), 6f3(x, 1) = — 5 (fs(x, 1);
530, 1) = Do (fa(x, 1) = 0

34 | p=0,u=0,0#0,A #0 Xl,Xz,Xg,Yh,YfE,

Ah+hy — Dohyy =0,0h = — f;

&l =c3;¢% = c; 1t = E(cs InE + f5(x, 1)),

7% = csM+ f3(x, 1),

Sfa(x, t) = — & (f5(x, 1);

2(f3(x, 1) = DaZs(fa(x, 1) = Afa(x, )i p° = 0
35 | p=0,u=0,0=0,VA X1, Xo, X4, X01, Xz, Yy,

Ah+hy — Dohyy =0

§' =G +c367 = cat+con' = hix, E);
7% = (—ciAt + c5)M + f3(x, 1),
2(fs(x, D) = Dy (fa(x, 1) — Afs(x, ;1% = 0

4.3 THE DETERMINING EQUATIONS

Using the software Mathematica [27] and its package SY M [12] to obtain the determining
equations, assuming D1 D, # 0, we can reduce the determining equations for the system

(5) as following:

EN=CE=Cu=01=0, (34)
E=CE=Cy=2v=0, (35)
€t2 - 26}1{ =0, (36)

N =1y =0, (37)
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’7;%15 = ’7%}5 = ’7}25M = ’712\41\/1 = ’79ch = W%AN =0,

’759;1\/1 = 77]5;/IM =0,

(Dy — DiNP)i3, =0,
217)2(M - Calcx = 0/
(D, — DiNP)n%, =0,
pNy3 + Dang =0,
Py +2DanEN =0,
pD1NPy3; — DoNngy =0,
o(n2 + Nnkg) — DINPrd, =0,
3+ oNnl —SEMy3 — DINPr2_ + (uN — AM)13, =0
My + OINH ey NE 1 Mxx U Ui ’
3 1 . P..3 pxl _
p(TIx +2N77xE) 2D1N NxE N gxx = 0/
o113 — 2D1NPy3, = 0,
p(n® = N, + Nng) — DiNPyg =0,

piae+ Ny =0,

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)
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ni +6(Mn' + En* — EMng + EME}) =0, (53)
pNnt — 2DNP(pip2 + Nip3y) + DINPHEL =0, (54)
pNyt — 2D1NP(pni — Nijzy) =0, (55)

i+ An? — pn® — AMuj + uNny — SEMyg + AMEF — uNE&; — Doz, =0, (56)

NP(p — Dpip® + NP (pi + Nijdyn) = 0. (57)
Proposition 4.1. If &' and &2 satisfy (34), (35) and (36), then

Cl = 7 +C3, (58)

&2 =it +0o,
where c1, cp and c3 are arbitrary constants.
Proof: Equations (34) and (35) imply, respectively, that ¢! = &!(x) and & = ¢%(t). In
addition, taking (36) into account, we obtain the result. |

Proposition 4.2. If n! satisfies (37), n? satisfies (38) and (42), and &' satisfies (58), then
nt = h(x,t,E) and n?> = fL(HM + fo(t, N)E + f3(x, t) + fa(t, N), where h, f1, fo, f3 and fy are
smooth functions.

Proof: From equations (37), we have 5! = h(x, t, E), where h is an arbitrary smooth

function. Since ¢! = <% + c3, then Zl. =0 and from (42) we obtain 77;2(1\4 = 0. From

equation (38) and the fact that 17;‘; v = 0, we conclude that
7° = )M+ fo(t, N)E + f3(x, t) + fa(t, N), (59)
where f1, f2, f3 and f4 are arbitrary smooth functions. u
Proposition 4.3. If #° satisfies (39), then
n° = g(t, E,N)M + g1(x, t, E, N). (60)

Proof: The second equation in (39) implies that > is linear in M whereas the first

equation says that coefficient of M does not depend on x and this proves the result. B
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4.3.1 The case p nonzero

Through this subsection we will assume p # 0.

Proposition 4.4. If 11> satisfies equations (40) and (60), then n° = 0. In particular, ¢ = g1 = 0.

Proof: It follows immediately from (40). |
Proposition 4.5. If 72 satisfies equations (43) and (44), then n?> = fi(t)M + f3(x, t).

Proof: From (43) we obtain 17]2\] = 0. By (59), this condition is equivalent to f,,, = 0 and
fay, = 0. For simplicity f4(t) can be merged with f3(x,t). On the other hand, (44) implies
1% = 0, which gives f, = 0. These conditions give the result. u

Until this point, the system of determining equations can be written as:

¢l = %X+C3/ E=ct+oy, (61)

n' =h(x,t,E), (62)

n* = )M + f3(x, 1), (63)

=0, (64)

nt+0(Mn' + En? — EMyt +c,EM) =0, (65)
PN, =0, (66)

oNnE =0, 67)

77 + Ay — AMfy(t) + uN f1(t) + c;AM — ciuN — Don?, = 0. (68)
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The case p #0:
In addition to the condition p # 0, we add the condition p # 0.

Proposition 4.6. If 1! satisfies equations (62), (66) and (67), then i = 0 and n = 0. In
particular, h = h(t).

Proof: It is immediate from equations (62), (66) and (67). |
Deriving equation (65) with respect to E and by Proposition 4.6, we have:

5(n? +c1M) = 0. (69)

Equation (69) suggests that we can divide this case into two: § =0 and § #0.

Proposition 4.7. If § = 0, Proposition 4.6 is satisfied and n' satisfies equation (65), then

171 = ¢4, where cy is a constant.

Proof: By Proposition 4.6 we have ! = h(t). From (65) we have /() = 0 and we obtain
the desired result. [ |

Proposition 4.8. If 6 = 0 and n? satisfies equations (63) and (68), then fi = cs — Acit,
u(f1(t) —c1) = 0and

9 \ _p,. 2
=5 (30, ) + Afa(x, 1) = Doz (fa(x, 1)).

Proof: Replacing equation (63) into (68), we have the identity
MF/(B) + 1) + N(ufy — per) + 2(f5(x, ) + Afa(x, £) — Do 2 (f3(x, £)) = 0.

Then,

fi() +Ac; =0 = f1(t) = c5 — Acat,

u(fi(#) —c1) =0, (70)
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J Afs, 1) = Dy (fa(
(300 D) + Af3(x, 1) = Doz (fa(x, ).

Proposition 4.9. If 6 =0, u # 0, A # 0 and Proposition 4.8 is satisfied, then f1 = 0.

Proof: If u # 0, equation (70) gives Ac; = 0 and ¢5 = ¢;. Since A # 0, c; = 0 and we
have the result. |
Proposition 4.10. If 6 =0, u # 0, A = 0 and Proposition 4.8 is satisfied, then f = c1.

Proof: If u # 0, equation (70) gives Ac; =0 and c5 = c;. |

Therefore, as long as p #0, p #0, 6 = 0 and p = 0, the solution of the determining

equations is:

1
Cl = EX+C3, CZ =cit+co,

1
N =y,

n? = (cs — Act)M + fa(x, 1),

where
9 (s, 0) + Afa(x, B = Da 2 (F(x, 1)
Considering p #0, p #0, 6 =0, p #0 and A # 0, the solution is:

Cl = Cs3, gz =C,

1
1/] = Cy4,

772 = f3(xl t)/
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where )
d 0
g(f:i(xl t)) + /\f3(xl t) = DZW(]%(X/ t))
Whilst for p #0, 0 #0,5 =0, u #0 and A = 0, we have the solution:

1
(fl = 7x+C3, {,‘2 =1t +cy,

1
TI = Cy4,

7’ =M+ f3(x, 1),

n° =0,

Proposition 4.11. If § # 0, &' and &? satisfy equations (61), 5! and y?* satisfy equations (65),
(68) and (69), and Proposition 4.6 is satisfied, then n?> = —ciM and n* = 0. In particular, if
A#0o0ru#0,then y? =0, & = c3 and & = cy.

Proof: Condition (69) implies 52 = —c;M when § # 0. Substituting this into (68) we
have AcyM = 0 and hence —2uciN + AciM = 0, which implies uc; = 0 and Acy = 0. If
A#0or u#0,then c; = 0 which implies 72 = 0, ¢! = c3 and &2 = c,.

Equation (65) jointly with Proposition 4.6, 72 = —c; M and the condition ¢ # 0, yield
nt=0. u

Then, for p #0, p #0, 6 #0, A #0 and Vu:

Cl = (3, 62 = C2,

nt=0, #*=0, 5*=0.
If p#0,0#0,6 #0, VA and p # 0, we have:

Cl = C3, Cz = Cy,
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nt=0, n*=0, =0

And the solution of the determining equations for p #0, p #0,0 #0,A =0and u =0

is given by
&= %X+C3, E2=cit+cy,
171 =0, 172 =—0M, 173 =0.
The case p = 0:

In addition to the condition p # 0, we add the condition p = 0.

Proposition 4.12. If n? satisfies equations (63) and (68), then f1 = cs — Acit, u(fi(t) —c1) = 0
and 3(f3(x, 1) + Af3(x, 1) = D5 (f3(x, ).

Proof: From equation (63) we know 52, = f{(t). So, deriving equation (68) with

respect to M and N, respectively, we have:

fll(t) + )LCl = 0,

u(fr(t) —c1) = 0. (71)

Then, we have that f{(t) = —Acq, which implies fi(t) = ¢s — Acqt, and p(f1(t) — c1) = 0.
Using both information into (68), we conclude %( fa(x, )+ Afs(x, t) = Dz%( f3(x,t)). A

Proposition 4.13. If 6 #0, &' and &2 satisfy equations (61), ' satisfies equation (62), n' and
n? satisfy equation (65), and Proposition 4.12 is satisfied, then n' = ((c5 + c1) In E + f5(x, ))E,
where Sf3(x,t) = —%(f5(x, 1)), and 7% = csM + f3(x, t). In particular, if A # 0, then &' = c3,
& =cypand ' = (csIn E + f5(x, t))E.

Proof: Since n' = h(x,t,E), 1> = fi(hM + f3(x,t) = (c5 — Acit)M + f3(x,t) and § # 0,

considering the independent variables, from equation (65) we have:

n' +E(cs +c1 — E — Acyt) =0, (72)

nt +0Efa(x, t) = 0. (73)
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From equation (73), we obtain 77} = —8E f3(x, t). Comparing that with the derivative
of equation (72) with respect to t, obtain Ac; = 0. Therefore, resolving equation (72) by

integrating factor, we can affirm

n' = ((cs + c1) InE + f5(x, t))E. (74)

From equations (73) and (74), we have éf3(x, t) = —%( f5(x,1)).
In particular, if A # 0, then ¢; = 0, which implies ¢! = c3, & = ¢; and ! = (csInE +
f5(x, t))E. L

Proposition 4.14. If 6 = 0, then ' = h(x, E).

Proof: It comes directly from equation (65). u

Proposition 4.15. If i # 0, Proposition 4.12 is satisfied and &' and &2 satisfy equations (61),
then fi = cq, ie., c5 = c; and Acy = 0. In particular, if A # 0, then &' = c3, &% = co and
n* = fax, b).

Proof: If u # 0, equation (71) gives f; = c1. Since f1(t) = c5 — Acyt, then ¢5 = ¢ and
Acy =0, which implies 172 =c1M + f3(x, t). In particular, if A #0, then ¢; =0, i.e,, l=c3
and &2 = ¢y come directly from equations (61), and 1% = f3(x, t). |

Hence, when p #0,p=0,6 #0, 4 #0 and A # 0, we can rewrite the system as:

61 =C3, (:2 =C,
n' = fs(x, HE,
772 = f3(x/ t)/
where 5
5f3(x/ t) = _g(f5(x/ t))/

d e h =D
= (3(x, D) + Afs(x, £) = Doz (fa(x, ).
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Considering p #0,0=0,6 #0, 4 #0 and A = 0, we can rewrite the system as:

1
(;"1 = EX+C3, CZ =cqt+ca,

n' = @2cyInE + fs(x, t))E,

n? = 1M+ fa(x, t),

with 5
5f3(x, t) = _g(f5(x/ t))/

9 .
a(f:s(x,t))— 2ﬁ(f3(x,f))-

Since p #0,0=0,6 =0, #0 and A #0, the system is rewritten as:
Cl =C3, 62 = Cy,

171 = h(x,E),

772 = f3(x/ t)/

where 5
%(fs(x, H) + Afa(x, 1) = Dz%(fsm ).

Setting p #0,0=0,0 =0, #0 and A = 0, we obtain the system :

€1
él = §X+C3, §2 =1t + 0o,

171 = h(x, E),

57



58

GROUP CLASSIFICATION

n? = 1M+ fa(x, t),

n° =0,

with
2 (1) = Dy (o, )
5 fa(x, 1) = 28x2f3 1)
On the other hand, for p #0,0=0,0 #0, 4 =0 and A = 0, the system becomes:

(;"1 = %X+C3, @‘2 =ct+ca,
n' = E((cs +c1) InE + f5(x, 1)),
n? = csM+ f3(x, t),
where

S5, 1) = — o (fo(x, 1),

5 .2
&(f?)(xlt))— 2@(](3(3‘7/1-))'

Considering p #0,0=0,6 #0, 4 =0 and A # 0, we can rewrite the system as:

(:—;11 = (3, 62 = Cy,
n! = E(csInE + f5(x, 1)),
n? = csM+ f3(x, t),

where

S35, ) = — o (f5(x 1),
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O (6, ) = Do (o, ) — Mfa(, 1)
ngxr = Zax2f3x/ fa(x, 1).

For p #0,p=0,6 =0 and y = 0, we obtain the system :

1
gl = 3x+(:3, §2 =cyt+cy,

n' = h(x,E),

7% = (cs — cLADM + fa(x, 1),

where

d \ _p, 2
=5 (306, ) + Afa(x, 1) = Doz (fa(x, 1)),

4.3.2 Thecase p=0

Through this subsection we assume p = 0.

Proposition 4.16. If n? satisfies equations (44) - (46) and Proposition 4.2 is satisfied, then
7% = (M + fo(H)E + f3(x, t) + fa(t)N.

Proof: Replacing p = 0 in equation (46), we have 7%, = 0. So, deriving equation (44)
with respect to N, we obtain py%; + pN7Z;y + Danzy = 0. Then, we have:

o1 + Dangy = 0. (75)

Making equation (45) - equation (75), we have 7%y, = 0. Taking into account equation
(59) within Proposition 4.2 and the results above, we obtain n? = fit)M + fo(t)E +
fg(x, t) +f4(t)N. [ |

Proposition 4.17. If ! satisfies equations (37), (51) and (55), n° satisfies Proposition 4.3 and
equations (50) - (52), (55) and (57), then n°® = g(t)M + Nga(x, t) + g3(x, t, E).
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Proof: Assuming that Proposition 4.3 holds and replacing p = 0 into equations (52)
and (57), we have 73,y = 0 and 773, = 0, respectively, which implies 7> = g(t, E)M +
Ngo(x,t, E)+ g3(x, t, E).

Deriving equation (51) with respect to N, we obtain p73; — pi3; — N3y + pE +
Npnty — D12y = 0, and we can replace 773, = 0 into this equation. Besides, we know
that 1711\[ = 0 from equations (37). So, we have:

ot — Dy = 0. (76)

Doing equation (55) - N x equation (76), we have W%N =0.
On the other hand, the derivative of equation (51) with respect to M is pi73; — oN773;,, +
pNnty, — D13y, = 0. We can replace 773, = 0 into this last equation obtained and we

also know 7711\/1 = 0 from equations (37). So, we have:

o173 — Diya = 0. (77)

Doing equation (50) - equation (77), we have that 3, = 0.
Therefore, 11° = g(t)M + Nga(x, t) + g3(x, t, E). u

Then, the system can be rewritten as:

¢t = %H& ¢ =ct+cy, (78)

7' =hx,t,E), (79)

7 = AOM+ f(DE + f3(x, 1) + fa(t)N, (80)
7 = §()M+ go(x, )N +g3(x, £, E), (81)
(D2 — D1)g(t) =0, (82)

(D2 — D1y =0, (83)

oNnR + Dafo(t) =0, (84)
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PR =0, (85)

p(ni + Nngg) — Dingg =0, (86)

7} + PNy, — SEMy} — Dy + (N — AM)g(t) = 0, (87)
p(73 + 2Nn3p) — 2D173E = 0, (88)

o1 =0, (89)

(1> — Ny + Nipg) — D = 0, (90)

nt +0(Mn' + En? — EMyt +cEM) =0, (91)

oy — 2D1may =0, (92)

ont =0, (93)

N7+ A% — un® — AMF(t) + uN f1(t) — SEMfa(t) + ;AM — ciuN — Do, = 0. (94)

The case Dy # D5:
In addition to the condition p = 0, we add the condition D; # D».

Proposition 4.18. If 1% satisfies equations (80), (83) and (84), n> satisfies equations (81) and
(82), then % = fi(t)M + f3(x, t) and 1° = Ngo(x, t) + g3(x, t, E).

Proof: Setting D; # Dj, from equation (82) we have g(t) = 0, which implies
=N 2(x,t) + g3(x, ¢, E). From equations (80) and (83) we have f4(t) = 0. Replac-
ing it into equation (84), we have that fo(t) = 0. So, ? = fi(t)M + f3(x, t). |
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Proposition 4.19. If p # 0, ' satisfies equations (79), (88), (90), (92) and (93), ° satisfies
Proposition 4.18 and equations (88), (90) and (92), then n' = h(t) and n*> = Ngo(t) + g3(t, E).

Proof: Substituting p # 0 in equation (93), we have 17}5 = 0, which implies 1! = h(x, t).

The derivative of equation (9o) with respect to x is given by

P13 = Niiky,) — D, = 0. (95)

Making the difference between (88) and (95), we have D173+ N73,. = 0. Analysing

these variables involved in the last equation and Proposition 4.18, we can affirm that

’79:315 =0and 1713\]x = 0. Replacing these into equations (88) and (92), we obtain 73 = 0 and
1L = 0, respectively.

Since (79) holds and Proposition 4.18 is satisfied, we can conclude ' = h(t) and

7° = Nga(t) + &3(t, E). u

Proposition 4.20. If p # 0, 6 # 0, n! satisfies equation (91), n? satisfies (91) and (94), 1°
satisfies (87) and (94), and Propositions 4.18 and 4.19 hold, then n?> = —ciM, n* =0, 1% = ¢4, N
and c1A = 0. In particular, if A #0, then n?> =0, 7' = 0, 1% = 4N, &' = ¢3, and & = co; and if
u #0, then 173 = —2c1N.

Proof: Using the derivative of equation (91) with respect to E and M and the Proposi-

tions 4.18 and 4.19, we have:

(5(172 +c1M) =0, (96)

5(1" + Efi(t) + ¢1E) = 0. (97)
Considering 6§ # 0 in equations (96) and (97), we have ;72 = —c1M and 171 = —E(f1(t) +
c1), which implies fi(t) = —c1, f3(x,t) = 0, since Propositions 4.18 and 4.19 hold. Thus,
nt=0.
Also, deriving equation (87) with respect to M and taking § # 0, we obtain 17% =0.
Replacing this into equation (87), we have that 777 = 0. So, 7> = ¢4N.

Besides that, the equation (94) can be rewritten as

un® +2c1uN — c;]AM =0, (98)

and its derivative with respect to M gives c1A = 0.
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In particular, if A #0, then ¢; = 0. So, 72 =0, 71 =0, #° = 4N, &' = c3, and &2 = c,.
On the other hand, deriving equation (98) with respect to N, we have:

p(cq +2c1) =0 (99)

In particular, if 4 # 0, from equation (99) we can affirm % = —2¢N. |

Therefore, the rewritten system for p =0,D1 # D2, 0 #0,6 #0,u #0and A #0 is:

(:1 = (3, ‘:2 = (2,

7' =0,
=0,
n° = 0.

If p=0,D1 #Dy,0#0,6 #0,u #0 and A =0, we can rewrite the system as:

1
Cl = §x+C3, (;‘2 =cqt+ca,

n =0,
n? = —cM,
7> = —2cN.

For p=0,D1 #D,,p #0,6 #0,u =0 and A # 0, we obtain the system :

61 =C3, Cz =C2,
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1712 = 4N,
Furthermore, for p =0,D; # Dy,p0 #0,6 #0, 4 =0 and A = 0, the system becomes:

c
=Txve, E=atto,

2
7' =0,
n*=—aM,
17> = cyN.

Proposition 4.21. If p # 0 and 6 = 0, n! satisfies equation (91), 7% satisfies equation (94), >
satisfies equation (87), and Propositions 4.18 and 4.19 hold, then ' = c4, 7% = (c — c1A)M +
f3(x, 1), where & (f5(x, ) + Afs(x, t) = Dzaa—;(f;;(x, 1), #° = csN + kePE/D1, where cs, cg, k are
constants. In particular, if u # 0, then 7% = (c5 + c1)M + f3(x, t) and 1% = csN.

Proof: Assuming that Proposition 4.19 holds and § = 0 in equations (87) and (91), we
obtain 777 = 0 and 7} = 0. Then 5! = ¢4 and 1% = c5N + g4(E).
On the other hand, the equation (90) can be rewritten as

pg4(E) — D1g4(E) = 0.

So, g4(E) = kePE/D1. Then 7% =csN + kePE/D1_
Deriving equation (94) with respect to M and N and considering Proposition 4.18,

we have, respectively:

i) +cA=0 (100)

and

u(fi(t) —cs —c1) =0, (101)

which implies f1(t) = cg — c1At and then u(cg — c5 — ¢; — c1At) = 0. From Proposition
4.18 and equation (100), we have 72 = (cs — c1At)M + f3(x, t).

Therefore, equation (101) indicates that we can analyze this case for 4 # 0 and y = 0.
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In particular, if 4 # 0, from equation (101) we can affirm that cg = ¢5 + ¢ and Acy = 0.
Rewriting equation (94) we obtain k = 0 and %( f3(x, 1) + Afs(x, t) = Dz%( f3(x, t)). So,
7% = (cs+c1)M + f3(x,t) and 7® = c5N.

If y =0, from equation (94) we also have %( falx, 1))+ Afs(x, t) = Dz%( fa(x,1)). |

Thus, if p=0,D1 # D2,p #0,6 =0, 4 #0 and A = 0, we can rewrite the system as:

€1
(jl = EX+C3, CZ =c1t+ca,

nl=cy,
7% = (cs + c)M + f5(x, 1),

7 = csN,

Wllere
— x,t) =D —2 x,t
at(f?)( ’ )) 28 2(f3( ’ ))

Setting the parameters as p = 0,D1 # Dy,p #0,6 = 0,4 # 0 and A # 0, the system

becomes:

(:1 =C3, 62 =C2,
771 = C4,
n? = csM+ f3(x, t),

7 = csN,

where 2
%(f3(x/ t)) + Afs(x, t) = DZ%(f?ﬁ(x' £))-

On the other hand, p = 0,D; # Dy,p #0,6 = 0 and u = 0 lead us to the following

system :
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1
(jl = EX+C3, CZ =cqt+co,

771 = C4,
n? = (ce — 1AM + fa(x, £),

7% = csN + kePE/D1,
where

2
%(ﬁ(x, 1) + Afs(x, t) = Dz%(fa(x, £)-

Proposition 4.22. If p = 0, 5! and > satisfy equations (87), (90) and (92), #* and 1>
satisfy equation (94), and Proposition 4.18 holds, then 7% = (c¢ — ciAt)M + f3(x, t) and 1> =
c7N +g3(x, 1), where S(fa(x, ) + Afs(x, 1) — Do (fa(x, 1) — pga(x, £) = 0, %(ga(x, 1)) =
Dl%(g;;(x, t)) and cy is a constant. In particular, if u # 0, then n> = ceM + f3(x,t) and
7° = (cs = cON +ga(x, 1), where §(f3(x,1)) + Afs(x,t) — Daga(fa(x, D) — pga(x,t) = 0,
2 .
%(g3(x, t) = Dlﬁ(gg(x, t)) and Acy = 0; if u =0, t‘henzﬁ2 = (c6 — cilAM)M + f3(x, t) and
7 = 7N + g3(x, 1), where $(f3(x, 1)) + Afa(x, t) — Dza%(fs(x/ 1) = 0 and 2(gs(x, 1)) =
2
D125 (g3(x, ).

Proof: Considering Proposition 4.18 and p = 0 in equations (90) and (92), we have
72 =0 and 773y, = 0, which implies 7> = Ngo(t) + g3(x, £). 2

From equation (87), we have Ng5(t) + %(g3(x, t)) — Dlﬁ(gg(x, t)) = 0. Thus, g4(t) =
0 and 2(g3(x, 1) — D1:25(g3(x, 1) = 0, which implies gx(f) = ¢7 and 2(g3(x, 1)) =
Dl%(g;;(x, t)), where c7 is a constant.

Deriving equation (94) with respect to M we have:

) +cA =0,

which implies fi(t) = ¢4 — c1At then 52 = (cg — c;At)M + f3(x, t) and we have the result.
Rewriting equation (94) we obtain

2
2 (o )+ Ao ) — Doy (o, ) — g, B+ (e — ¢7 — eah — 1) = 0. (102

From equation (102), we can conclude that y =0 or cg —c; —cjAt —c1 =0. So, u =0
or u #0 = c1A =0,c7 = ¢ — c1. Then, we have the expected result. [



4.3 THE DETERMINING EQUATIONS

Proposition 4.23. Consider p = 0. If 5 # 0, n' satisfies equations (79) and (91), and Proposition
4.22 is satisfied, then 17t1 = —Eéf3(x,t). If § = 0, 5! satisfies equations (79) and (91), then
n' = h(x, E).

Proof: Consider 6 # 0. The following equations are the derivatives of (91) with respect

to M and E, respectively:

(5(171 +Efi(t) — ]517,1S +c1E)=0, (103)

nie +0Lf3(x, £) + M(fi(t) — Entp +¢1)] = 0. (104)

Since § # 0 and f1(t) = cs — c1At, equation (103) implies 5! + E(cg — c1At — 17]15 +c1)=0.

Deriving this last equation with respect to t and E, we have, respectively:

17t1 + E(—c1A — 17,15t) =0, (105)

Entp = c6 — c1At +cy. (106)

Substituting equation (106) into equation (104), we have

r]tlE + (5f3(x, t) =0. (107)

Also, the derivative of equations (105) and (107) with respect to E give c1A + EntlEE =0
and 77}z = 0. So, c1A = 0, and replacing it into equation (103) and resolving this new

equation it by integrating factor, we can affirm
n' = ((ce+c1)InE + fo(x, H)E. (108)

Taking into account equations (105), (107) and (108), then éf3(x, t) = —%( f5(x,1)).
If 6 =0, ' = h(x, E) comes directly from equations (79) and (91). |

Hence, p=0,D1 #Dy,p=0,u #0,6 #0 and A = 0 give the system :

€1
Cl = EX+C3, @‘2 =cyt+co,

' = E((ce +c1) InE + fs(x, 1)),
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n? = ceM + f3(x, t),

1% = (ce — c1)N + g3(x, 1),

where

553, = — 2 (fo(x, ),

J 0 — Dy t =0
57306, D) = Doz (fa(x, ) — uga(x,1) = 0,

2
2 (503, ) = Dy (8306, 1).

For p=0,D1 #D2,p=0,u #0,6 #0 and A #0, we can rewrite the system as:

él = C3, Cz = C,
n! = E(ceInE + f5(x, 1)),
n? = ceM + f3(x, t),

n° = ceN + g3(x, 1),

where 5
5f3(x/ t) = _g(f5(x/ t))/
O () + Afs(,£) — Dy (Fa(x, ) — g, = 0
Efax,) fa(x, 2Wf3x,) 1gs(x,t) =0,

d 02
&(gfi(xl t)) = Dl@(gfi(xl t))

Since p=0,D1 #Dy,p =0, #0,6 =0 and A = 0, the system rewritten is:

€1
¢ = X+, & = cit+cy,

171 = h(x, E),
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n? = ceM + f3(x, t),

n° = (ce — c1)N + g3(x, 1),

where )

& (0, )~ Dot (30, ) — pgs(x, =0,

0 02
5¢83(x, 1)) = D15 5(83(x, 1))-

Let p=0,D1 #D2,p=0,u #0,6 =0and A #0, then the system becomes :
61 =C3, 62 =C2,
1_
n° =h(x,E),
n* = ceM + f3(x, 1),

7’ = ceN + g3(x, 1),

where 5

0 0
a(f3(xr t)) + Af?)(x/ t) - DZ@(]{:’)(X/ t)) - ]lg:%(x, t) = 0/

9 (g3, ) = D1 2 (g3, )
ot g3(X, = laxz g3(X, .
Considering p =0,D1 # Dy,p =0, =0, and 6 # 0, we can rewrite the system as:

r’jl = %X+C3, CZ =c1t+ca,
n' = E((c6 + c1) InE + f5(x, 1)),

n? = ceM + f3(x, t),

7 = c7N + g3(x, 1),
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where

553, = — 2 (fo(x, ),

0 0°
g(fs)(x/ b))+ Afs(x, t) — Dzﬁ(fs(x, t) =0,

2
2 (8506, 0) = D1 2 (355, 1).

Setting p =0,D;1 # Dy,p =0, 4 = 0 and § = 0, we obtain the following system :

1
@‘1 = EX+C3, CZ =it +cp,

171 = h(x, E),
n? = (ce — MM + fa(x, 1),

1 = c7N + g3(x, 1),

where ) 22
g(fs(x, t)) + Afs(x, t) — Dzw(fs(x, t)) =0,

2
%(g3(x, t)) = Dl%(gs(x, ).

The case D1 = D5:

In addition to the condition p = 0, we add the condition D; = Ds.

Proposition 4.24. If p # 0, n? satisfies (80), (84), (85), (93) and (94), n° satisfies equations
(81), (89) and (94), and it is also as the result of the Proposition 4.19, then n' = h(t), n*> =

(ce — 1A )M + f3(x, t) and 73 = Ngo(t) + g3(t, E).

Proof: Let p # 0. From equations (80) and (85) we have f4(t) = 0. Replacing it into
equation (84), we have f»(t) = 0. So, > = f1(t)M + f3(x, ). From equations (81) and (89)

we have g(t) = 0, which implies 7% = Ngo(x, t) + g3(x, t, E).

Those last two results are the same in the Proposition 4.18 without forcing conditions

about D; and D;. It is also worth to stress that Proposition 4.19 does not use as well the

condition about D and D5, only p =0, p # 0 and the result of Proposition 4.18.
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So, we have the same conclusion of Proposition 4.19, i.e., n' = h(t) and 1° = Ngo(t) +
g3(t, E).

Deriving equation (94) with respect to M, we have f{(t) + c;A = 0, which implies
f1(t) = c6 — c1At.

Thus, we have the desired outcome. [

Considering the conditions and results of Proposition 4.24, we can derive equation

(94) with respect to N, so

p(ce — &2(t) — c1At —c1) = 0. (109)

This result suggests that we can divide this case into  # 0 and u = 0.

Using the result in equation (109) into equation (94), we found

d 02
5 3 D) + Afs(x, 1) — Do (fa(x, 1)) — pgalt, E) = 0. (110)

Proposition 4.25. If p # 0, u # 0, Proposition 4.24 is satisfied, ' satisfies equations (87),
(90) and (91), n?* satisfies equation (91) and n> satisfies equations (87) and (90), then n* =
ceM + f3(x,t) and 17° = N(cg — c1). In particular, if A # 0, then ¢; = 0; if A = 0 then
S(fa(x, 1) — Doy (f3(x, 1)) = 0; if 6 #0, then ' =0, y? = —ctM and 17 = —2¢,N; if § = 0,
then n' = cy.

Proof: If u # 0 into (110), then g3, =0, i.e.,

g3 = g3(f) (111)

and
2

2 (o 1)+ Afo(x, ) — Doy (i, 1) = 0. (112

Also if Proposition 4.24 holds and u # 0, from equation (109) we obtain ¢ — ¢ —
g2(t) — c1At = 0, and replacing ’7112 = 0 and equation (111) into (90) we have 7 = N1713\,,
ie. g3(t) =0.

Using Proposition 4.24 and equation (87) we have 77 = 0, which implies c;A = 0
by equation (109), and that means g» = c¢ — c1. In particular, if A # 0, then ¢; = 0;
and if A = 0, equation (112) gives %(fg,(x, t)) — DQ%(fg(x, t)) = 0. So far, we have
7% = ceM + f3(x,t) and 7% = N(cg — c1).

On the other hand, we can derive equation (91) with respect to M and E, respectively:
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6(h(t) + c¢E + c1E) =0, (113)

(5(172 +c1M) =0. (114)

In particular, if we consider § # 0 into equations (113) and (114), we can conclude
that i(t) = 0, ¢ = —c1 and 72 = csM.
If 6 = 0, from equation (91) we have 7} = 0, then 7! = ¢4.

Therefore, we have the result. [ |
Thus, if p=0,D1 =D, p #0,u #0,A #0 and J = 0, we can rewrite the system as:

él = Cs3, gz =C,

771 = C4, 7/2 = C6M +f3(x/ t)/
n° = ceN,

where 5 22
L (3 0) + Afa(x, ) = Do (fa(x, ) = 0.

Since p =0,D1 = Dy,p #0,4 #0,A =0 and § = 0, the system remains as:

€1
Cl = 5x+C3, (;‘2 =cqt+ca,

nt=cy, 7% =ceM+ f3(x,t),

173 = (C6 - Cl)N/

where
9 () — Dy (s, ) = 0
ot f3 ’ Zaxz f3 ’ = U.
For p=0,D1=D,0#0,u #0,A #0 and 6 #0, the rewritten system is:

él = Cs3, gz =Cy,
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On the other hand, p=0,D1 = Dy,p #0, 4 #0,A =0 and J # 0 give the system

€1
Cl = EX+C3, @‘2 =cyt+co,

nt=0, n*=—-ciM, 3*=-2cN.

Proposition 4.26. If p #0, u = 0, § # 0, Proposition 4.24 is satisfied, n* = 0 and n? satisfy
equation (91), then n' =0, n? = —c;M and 1® = c;N. In particular, if A # 0, then c1 = 0.

Proof: Consider 6 # 0 and deriving the equation (91) with respect to M and E, we

have, respectively:

171 = E(ciAt — c1 —cg), (115)
172 = —c1 M.
Since 171 = h(t), equation (115) implies 171 =0, cg = —c1 and c1A = 0; in particular, if
A #0, then c; = 0. Therefore, the expected result has been achieved. u

Proposition 4.27. If p # 0, 1 = 0, 6 = 0, Proposition 4.24 is satisfied and n* satisfies equations
(87), (90) and (91), u? satisfies equation (91) and 1> satisfies equations (87) and (90), then
n' = cy and 3 = c7N + kePE/P1,

Proof: Consider that Proposition 4.24 holds and J = 0 into equations (87) and (91). So,
we have 777 = 0 and 7} = 0, respectively, which implies 7% = c7N + ¢3(E) and 5! = 4.

Besides that, equation (90) gives pg3(E) — D1g5(E) = 0, then g3(E) = kePE/D1,

Thus, the proof has been done. u

Hence, p=0,D1 =D5,p #0,4=0,0 #0 and A =0 lead to the system

1
Cl = EX+C3, 62 =cit+cyp,

’71 = O/ 172 = _ClMI 773 = C7N-

If p=0,D1=Dy,p#0,u=0,6 #0 and A # 0 the system becomes :
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Cl = C3, 62 = C2,

nt=0, #*=0, ®=cN.

Considering p =0,D1 = D5, p #0,4 =0, = 0 and A = 0, we can rewrite the system

as:
1_¢ 2
¢ = EX+C3, - =c1t+cy,
1_ 2 _
N =cq4, N°=ceM+ f3(x,1),
n = 7N + kePE/D1,
where

0 D 02 0
5;f3(x 1) = Doz (f3(x, 1) = 0.

And making p =0,D; =D,,0 #0,4 =0,6 =0 and A # 0, we obtain the system

61 =C3, Cz = C,
1 _ 2 _
N =cy, N =ceM+ f3(x,1),

7% = cyN + kePE/D1,
where

2
2 (e 0) + Afs(, 1) — Dy (fs(, 1) = 0.

Proposition 4.28. If p = 0, 7% satisfies (80), (84) and (94), n° satisfies (81), (87), (90), (92) and
(94), then 1% = fL(HM + f3(x, t) + fo(t)N and 1% = (keM)M + Ngo(t) + g3(x, t). In particular,
if A =0, then > = kM + Ngo(t) + g3(x, ).

Proof: Substituting p = 0 in equations (84), (90) and (92) we have f>(t) =0, 17% =0 and
72y = 0, which implies 7% = fi(t)M + f3(x, ) + fa(t)N and 1> = g(t)M + Ngo(t) + g3(x, t)
by equations (80) and (81).
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Replacing p = 0 and 73 = 0 into equation (87) and calculating its derivative with
respect to M, we have ¢'(t) = Ag(t). Hence, g(t) = ke. Particularly, if A = 0, then g(t) =
The result suggests that we can split this case into A #0 and A = 0. L

Before analyzing other equations of the system (78)-(94) for A # 0 and A = 0, and
assuming the Proposition 4.28 holds, we will present some of these equations rewritten
or its derivatives, which can assist the analysis for both cases of A.

So, we can derive equation (87) with respect to N:

g5(H) = —ug(®). (116)

Conversely, deriving equation (94) with respect to M and N, respectively:

fi(t) = ug(t) — c12, (117)

fa(®) + Afa(t) — ugo(t) + pfa(t) — pey = 0. (118)

Proposition 4.29. If p = 0, A # 0, 5! satisfies equations (79), (87) and (91), n* satis-
fies equation (91), and the Proposition 4.28 is satisfied, then n' = h(x,t, E), 172 = fa(x,t) +
(% (C5 +01 — Cg— ”Tke)‘t + th) jicy + M) N+ (” My oce — cl)\t) Mand 13 = (ke)M +
N (C5 — ”Tke)‘t> +g3(x, t), where m(gg,(x, t)) — Dlﬁ(gg(x, 1)) = 0and ﬁ(fg, x, 1)+ Afs(x, t) —
ugs(x, t) — Dzaa—;(fg(x, t)) = 0. Particularly, if u = 0, then n? = (ce — c1At)M + %N + f3(x, 1)
and 173 = (keM)M + csN + g3(x, t), where %(g3(x, 1)) — Dy %(gg(x, t)) = 0 and %(fg(x, ) +
Af(x, 1) — Doy (f3(x, 1) = 0; if & = 0, then " = h(x, E).

Proof: In view of Proposition 4.28 and setting A # 0 in equations (116) and (117), we

obtain, respectively:

k
ga(t) = s = Eoet, (119)

ft) = }4 eM — e At + ce. (120)

Accordingly, the condition

fi®) + A fa®) +u (yke/\t +cg + P;\k M _ oM — 5 — c1> =0 (121)
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comes directly from equation (118), replacing (119) and (120) into it. Thus,

k k
f4(t) = % (C5 — 'MTEM —Cq+C1+ ClAt) + e—)}t — UCq. (122)

Besides that, rewriting the equations (87) and (94), we have the conditions
2 (3, 1) — D1y (502, ) = 0
ot g3(X, 1ax2 g3(X, =

and 5 22
S0 1) + ASa 1) — iga(x, ) — Do (fa(i ) =0,
respectively.
Particularly, if 4 = 0, then equation (122) gives f4(t) = %, which implies 72 = (c —
ciAHM + %N + f3(x, t) and 1% = (keM)M + Ncs +g3(x, 1), %(g3(x, ) — Dy %(gg(x, t) =0

and 2(f3(x, 1)) + Af3(x, ) — D225 (f(x, 1)) = 0.
In particular, if § = 0, then equations (79) and (91) give 7' = h(x, E). |

Proposition 4.30. If p = 0, A # 0, § # 0, &' and & satisfy equations (78), n' satisfies
equations (79) and (91), 172 satisfies equation (91), and the Proposition (4.29) is satisfied, then
El=c3, & =3 ' = ((ce + c1)InE + f5(x,)E, n? = csM + f3(x, t) and 3 = (ke*)M +
Ncs + g3(x, t), where éf3(x,t) = —%(f5(x, t)) and u(—cs +cg) = 0. Particularly, if u # 0,
then 7 = Ncg + g3(x, t); if u = 0, then the additional conditions on n',n? and 1> become
236, 1) — D125 (g3(x, 1) = 0 and J(f3(x, 1) + Afa(x, 1) — DaLy(fx, 1) = 0.

Proof: In view of Proposition 4.29, equation (91) becomes
1 _ 1, oMk gl _
Ny +0Ef3(x,t)= —0M (" +E e EciAt + Ece — Eng + 1 E OENf4(t). (123)

Considering equation (79), 6 # 0 into equation (123) and knowing that the variables

of f3 are x and ¢, we obtain
fa(t) =0, (124)

ni = —OEfa(x, 1), (125)

n'=E (cl)\t +E — %keu —C6 — c1> . (126)
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Comparing equation (125) to the derivatives of equations (125) with respect to E and
(126) with respect to t, we can affirm uke™ = c1A, since A # 0, that implies uk = 0 and
c1 = 0. Analyzing equations (78), this last condition implies &l =c3and &2 = cy.

Accordingly, resolving equation (126) by integrating factor, we can affirm

7' = ((c +c1) InE + fi(x, 1))E. (127)

From equations (125), (126) and (1277) we obtain J f3(x, t) = —%(f5(x, t)).

On the other hand, the condition (cs — ¢5) = 0 comes directly from replacing pk = 0,
c1 = 0 and (124) into equation (121).

So, if 4 # 0, then k = 0 and c5 = c. Consequently, 7% = Ncg + g3(x, t).

Particularly, if 4 = 0, then the additional conditions on 7',7? and #® become
(g3, 1) — D125 (g3, 1) = 0 and Z(f3(x, 1)) + Afa(x, 1) — Dy La(f(x, 1)) = 0. _

Proposition 4.31. If p = 0, A = 0, ! satisfies equations (79), (87) and (91), n? satisfies equation
(91), and the Proposition (4.28) is satisfied, then n' = h(x, t, E), 1> = (ukt + c11)M + f3(x, t) +
fs()N and n*> = kM + N(c19 — pkt) + g3(x, t), where %(g;;(x, t) — D1%(g3(x, f) =0,
%(fg(x, t)) — ugs(x, t) — Dzaa—;(fg(x, t)) = 0 and cyg, c11 are arbitrary constants. In partic-
ular, if 5 = 0, then #' = h(x, E); if u = 0, then n?> = c;1M + Nk + f3(x, t) and > = kM +
Neio +g3(x, 1), where 2 (f3(x, 1)) — D225 (f3(x, 1) = 0, 2(g3(x, 1)) — D125 (g5(x, ) = 0 and
kq is a constant.

Proof: In view of Proposition 4.28 and setting A = 0 in equations (116) and (117), we

obtain, respectively:

g2(t) = c10 — pkt, (128)
f1(t) = pkt +c13, (129)
where ¢y, c11 are constants.
Accordingly, the condition
fi(t) + y(2ykt —Clo+C11 — C1) =0 (130)

comes directly from equation (118), replacing (128) and (129) into it. Then,

fat) = p(cro — c11 +c1)t — w2kt +ky,
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where k; is a constant.

Besides that, rewriting equations (87) and (94), we have the conditions

d 02
5;&3(x, 1) = D1575(83(x, £)) = 0 (131)
and
0 0?
53, 1) — pgalx, 1) — Doz 5 (fa(x, 1) = 0, (132)
respectively.

In particular, if § = 0, then equations (79) and (91) give 171 = h(x, E).
If u =0, then 7 = c;;M + k1N + f3(x,t) and #° = kM + cioN + g3(x, ), where
2(f3(x,5) — D25 (fa(x, 1) = 0 and 2(g3(x, 1) — D1 Z5(g3(x, 1) = 0. u

Proposition 4.32. If p = 0, A = 0, 6 # 0, n' satisfies equations (79) and (91), and the
Proposition (4.31) is satisfied, then n' = ((c11 + c1)InE + f5(x, t))E, #? = c;1M + f3(x, t) and
n° = kM +c1oN + g3(x, 1), where p(c1y — c10 — c1) = 0, 6f3(x, ) = —5(f5(x, 1)), 2(g3(x, ) —
2 2 . .
Dlaa?(gg,(x, t)) = 0 and %(f;»,(x, t)) — uga(x, t) — Dzaa?(]%(x, t)) = 0. Particularly, if uy # 0,
then 7° = c1gN + g3(x, t); if u = 0, then the only additional conditions on n',n? and 1> are

2(g3(x, 1) — D125 (83(x, 1) = 0 and (f3(x, 1)) — Das(fa(x, ) = 0.

Proof: In view of Proposition 4.31, equation (91) becomes
ni+0Efs(x,t) = —SM(y* + Epkt + Ecyy — Enp + c1E) — SEN fy(b). (133)

Considering equation (79), 6 # 0 into equation (133) and knowing that the variables

of f3 are x and ¢, we obtain

fa(t) =0, (134)
ni = —0Ef3(x,t), (135)
n' = E(qg — pkt — e — ¢1). (136)

Accordingly, the conditions pu(c;; — c190 — ¢1) = 0 and pk = 0 come directly from
equation (130) whereas (134) holds. So, if # # 0, then k = 0 and, consequently, #° =
c1oN + g3(x, 1).
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On the other hand, resolving equation (136) by integrating factor, we can affirm
1" = (e +e))InE+ fs(x, 1)E. (137)

Equations (135), (136) and (137) give df3(x, t) = —%(f5(x, f)).
Since equations (131) and (132) still hold, so %(gg(x, ) — Dlaa—;(gg(x, f)) = 0 and
2
51 (f3(x, 1) = nga(x, 1) — Dagx(fa(x, 1)) = 0.
Particularly, if 4 = 0, then the additional conditions on 7',7? and #® become

2(g3(x, 1)) — D1-Z5(g3(x, 1)) = 0 and (f3(x, 1) — D2 Z5(f3(x, 1) = 0. n

Thus, if p=0,D1 =D5,p=0,A #0,6 #0 and pu # 0, we can rewrite the system as:

él = Cs3, gz =Cy,

nt = E(ce InE + fs(x, 1)),
n% = ceM + f3(x, 1),

1 = ceN + g3(x, 1),

where

553 = — (o, ),

J t D o t)=0
(&3, 1) — D1z 5 (ga(x, 1) =0,

2
2 () + A, ) — g, ) — Do (f(x, ) = 0.

Setting p =0,D1 = D,p=0,A #0,6 #0 and u = 0, we obtain the system

61 =C3, 62 =C2,
n' = E(ceInE + f5(x, 1)),

n? = ceM + f3(x, t),
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12 = (ke™)M + csN + g3(x, 1),

where

553, = — 2 (fo(x, ),

9 (505, 8) — D= (g3, 1) = 0
o &3 2952 83 ) =5

d 02
5 3 ) + Afs(x, 1) — Do (fa(x, 1) = 0.
Forp=0,D1=D5,p=0,A#0,0 =0 and p # 0 the system becomes

€1
Cl = EX+C3, @2 =cqt+cy,

171 = h(x, E),

A A

172 = (%kem — AL+ C6) M+ <E (C5 — y—ke}‘t +c1+ At — c6> + % — ycl) N+ fa(x, t),

173 = (ke)‘t)M + <c5 — %kem) N +g3(x, 1),

where ’

d J
g(g:—s(x, t) — DZ@(&%(% t)) =0,

2
2 (o 1)+ Ao, ) — (e, ) — Doy (fo(x, 1) = 0.

Taking p =0,D1 = D7,p=0,A #0,6 =0 and y = 0, the rewritten system is:

1
§1 = EX+C3, é‘z =cit+cp,

171 = h(x,E),
n? = (ce — A)M + kie M N + f3(x, 1),

12 = (ke™)M + csN + g3(x, 1),
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where
2

d d
g(gsa(x, t) — DZﬁ(g:a(x, t)) =0,

d 0?
5 30 D) + Afs(x, 1) — Doz (fa(x, 1) = 0.
If p=0,D1=Dy,p=0,A=0,6 #0 and u #0, then the system remains as following:

Cl = %X+C3, CZ =cit+cp,
n' = E((c11 +c1)InE + f5(x, 1)),
n? = ciM + f3(x, 1),

17° = (c11 — c1)N + g3(x, 1),

where

533, = — 2 (fo(x, ),

J t D 7 =0
(&3, 1) — Doz (ga(x,1) =0,

O P, 1) — Hgs(x, ) — Do (o, ) = 0
5130, 1) — pgs(x, 252 (fa(x, 1)) = 0.

Considering p =0,D1 = Dy,p=0,A =0, # 0 and p = 0, we can rewrite the system

as:

Cl = %X+C3, (",‘2 =cqt+ca,
n' = E((ciy + c1) InE + f5(x, 1)),

n? = ciM + fa(x, 1),

173 =kM +coN + g3(x, 1),
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where

553, = — 2 (fo(x, ),

0 D 02 0
5;83(0, 1) — D235 (83(x, 1)) = 0,

9 (e, ) — Dy (e, ) = 0
at f3 7 Zaxz f3 x/ - .
On the other hand, p =0,D1 = Dy,p =0,A = 0,6 = 0 and p # 0 imply the system

rewritten as following;:

1
(;‘1 = Ex+C3, §2 =c1t+ 0o,

n' = h(x,E),
n? = (ukt + c11)M + (ky — p2kt? + (1o — c11 + )N + f3(x, 1),

173 = kM + (c10 — ukt)N + g3(x, t),

where 5

0 )
5;83(0, 1) — D235 (83(x, 1)) = 0,

0 D o* =0
5 (3(x, D) = puga(x, 1) = Doz 5 (fa(x, 1)) = 0.

Setting the parameters as p=0,D1 = Dy,0 =0,A =0,6 =0 and u =0, we can rewrite

the system as:

(fl :%x+C3, cf,z:clt+cz,
T=h
]7 - (X,E),

172 = C11M+k1N +f3(x, t),

173 =kM +c;oN + g3(x, 1),
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where

J D o t)) =0
(a6, ) = Do (f(, 1) = 0,

J D & t)=0
5(83(3(' t)) - 2@(83(95/ )) = V.






INVARIANT SOLUTIONS: A
CONSTRUCTION

In this chapter we use the Lie point symmetries and the Invariant Form Method
presented in chapter 3 to construct explicit invariant solutions to the system.

Based on Invariant Form Method we obtain an ordinary differential equations (ODE)
system but unfortunately not all the obtained ODE systems are easy to be solved, so
we will show in the following chapter the results considering some of the generators
associated with the system (5).

Hence, several graphics were made using parameters from [1], [3], [9] and [25]. Some
of them, such as y, A and J, as mentioned in chapter 2, are estimations supported by

the literature and not obtained from experimental data until now.

5.1 GENERAL CASE
The system (5) is given by

Nt = Di(NPNyy + pr_lNJ%) — p(NxEx + NEyy),
E; = —40ME,
M; = DoMyy+uN — AM.

We notice from section 4.2 that the translations X; = d; and X = d, are generators
related to system (5) for all parameters. Thus, the linear combination of X; and X, as
X1 +cXp, where c is an arbitrary constant, is a common generator in all cases as well.

Considering the invariants construction process and the Example 3.12, we have to

solve the system (33), rewritten here:

—c®] = Dy(®VD) + pd! T D2) — p(P| D} + Dy DY),
Cq)lz = 5@3@2,
—Cq)é = Dz(bg + ;llq)l — /\q)g.

In order to do so, we can divide this new system into some subcases as follows:
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1. p#0,A #0and u =0:

Taking 4 = 0 and A # 0 in third equation of (33), we obtain

1 \/2+4DyA 1 [ A/E+aDyr
b D, W\ "D, ~D,
+ Cpe .

D;

D3 =cqe (138)
Then, using this result into second equation of (33), we have
w (\ / c2+4D2/\7c) w<c+\ / cz+4D2A>
8Dy | 2cpe 2Dy _ 2C1€7 2Dy
¢ \/c2+4D2A—c c+\/c2+4D2A
D, = cae . (139)

At last, we can solve the first equation of (33) considering p # 0 and then

o(cr/EraD;1) ofey/@ang) \ \ 7

2D, - D,

5| _2c1Dpe _ 2cpDpe
1 ‘ c+q/244DyA ¢~/ 244D,

D, = (i) ’ —cw +k + c3pe

: \/+4DA —\/Z+4DA .
Now taking aq = % and ap = %, knowing that w = x — ct and

(32) holds, we find the solution to system (5) when p #0, A #0 and u = 0:

( 1 s <c1e*"‘1("*d) CQe*”‘z("*Ct)> 1/p
N(x,t) = (D%) P | —cx+cPt+k+czpe “ 2 ,
5 Czeftxz(xfct) Cle*/xl(xfct) ) (140)
E(x,t) = cze ° "2 “ ,
| M(x,t) = cre X —=ct) 4 oy pmaalx—ct),

2. p=0,A#0and u =0:

Let =0 and A # 0. Then ®3 and P, are given by (138) and (139), respectively.



5.1 GENERAL CASE

Now, considering p = 0 into the first equation of (33), we obtain

(I)1=€

Knowing that w = x — ct
u=0,A#0and p = 0:

_c(x—ct)
k o

f— cw 4 3P
Dy " Dy

w (\ / c2+4D2/\75>

2D,

c2+4DyA—c
\/ 24D,

w <c+\ / c2+4D2)\)

2D,

c+ \/c2+4D2)\

2che B 2cqe

3Pe

and (32) holds, we find the solution to system (5) when

(x—ct) (\ / c2+4D2/\7c>

2D,

\/c2+4D2/\75

(et ery/EraD2)

2D,

c+ \/c2 +4Dy A

5D2 2026 che
= —

c3p
+Dy ¢

(-t /EraDpr-c)

2D,

(x—ct) <c+\ / cz+4D2/\>

2D,

2cqe

N(x,t) = e

(5& 2cpe
E(x,t) = c3e

%(x—ct) <
M(x,t) = cqe

\/2+4Dy—c c+y/2+4Dy)

7

_ /@ _c> 1(x_ct)<x/cz+4DzA _c>
2
+ Cpe .

D, D D, D,

More directly, we present the solutions for the other cases below:

3. p=0,A=0and p =0:

_c(x—ct)
p2. D2
) ‘175° g +ccp(x—ct)
c3pe 2 _c(x—ct) +k
N(x,t)=e D1 Dy

5 CZCZ(Xfcl’)-FCl D%e

_c(x—ct)
o )

E(x,t) = c3e c3
_c(x—ct)

D
M(x,t) =cp — —ClDZeC 2
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4. p=0,A#0and p =0:

_c(x—ct)
Dy

N(x,t) =cy — —ClDleC

x—ct)(a—c) _ (x—ct)(c+a)
6| (crayege 2P2 w(c—w)ege 2Dy c(x—ct)
S(cop(x—ct)) échlye

Dy
A 2 32D — v
E(x,t)=cse ° c B3(c2(D~Dy)+DIA)
_c(x—ct)
—c;D3pe D1 G=clicsn) (x_cha _Goeer)
Mx,8) = o, —pyepry TC(C2Me T2 +ode P2otcd e 2

where o = \/c2 +4D)A

5. p=0,A=0,p=0and D; # D;:
_c(x—ct)

D
N(x, t)=cp — 9B 1

C
_c(x—ct)

D
c1D}pe 1
o(D;=Dy)

_ c(x—=ct)

5 7C2L‘3D2€ Dy 702k(x ct)— c czy(x ct)2 +ccy Dy p(x—ct)

E(x,t) = cqe ot

c(x—ct)(i—i) c D Do clx—ct)
¢ 2 DU aptepy +D2e DU (clkteap(x—ct)—c2Dap)

c(x—ct)

M(x,t)=e D2 | c3—

c? D2

6. p=0,A=0,p=0and D; = Dy:
_c(x—ct)

D
N(x, t) =(Cy — C1D2€+

_c(x—ct c(x—ct) c(x—ct)
se D2 <63 ((xct)e Dy (2k+c2;4(xct))+263D2> +2c2c2D2;4(x7ct)e Dy +2ccq D%y(xfct)+251 D;’y)

E(x,t) = cqe 2c5

_ c(x—ct) c(x—ct)

c c3( Dy >+C1D2;4(x—ct)e D2 tck+ceop(x—ct)—coaDopt
M(x, t) = — >
c

7. p=0,D1 =Dy, A #0and 6 =0:

_ c(x—ct)
Dy

c1Dye
N(x,t) = cp — =27——

E(xl t) =0

(x—ct) (C'M / 52+4D2/\> (x—ct) /62+4D2)\ cGe—ch)

che 2Dy cge ) +c3 | +c1(—Dy)pe Dy +coop

M(x,t) = 7




8.

10.

11.

5.1 GENERAL CASE 89

p=0,A#0and 6 =0:

_ c(x—ct)

ciDie 1
N(x,t) = g — =
E(x,t) =cq
(x—ct) (C-FM) (xfct)\/m
M(x,t) = C(CZ(Dl — D)+ D%/\) Cope 2by +cyle Dy +c3A

(x—ct) <C+\ / c2+4D2/\> ot (r=et)(ery/ 244Dy )

3 2D D e 2Dy
c1D?Aue 2 1
1 AH cA(cA(D1—Dy)+D2A)

.p#0,A#0and 6 =0:

1
N(x, f) = (p(k—galc—ct))) /v
E(xl t) =0
M(x, t) = 51

1/p (c(x—ct)—k)(a—c) e B
2cDyp Bl Ml ot 1 (k—c(x—ct)(c—a)
<<W3a)) V(IHC)@( P2 )F<1+§fT>

1/}7 (k—c(x—ct))(c+a) e
2pcD 5 1 (k—c(x—ct))(c+a)
+ (o) rlemce T (1 g, S )

(—c(x—ct))(c+u) 762(X*Ci’)+<lx)(72k+c(JC7Ct))
+2Aa (cie *P2 +coe 2Dz ,

where a = \/c2 +4D5A.
p#0,A=0and 6 =0:

—ex—ct)\ V/
N(x, t) = (P(k S ct))) P

E(x/ t) =0
-k —c(x— 1/p k -1/p k
c(x—ct) Dyppe D, ( plk CD(X ct)) C(x—gt)— r 2+l,c(x_Dct)_
— |4
M(x’ t) =e D2 _ ( 1 ) C2((p+1)2 ) < 2 ) + Cl
p=0,A=0and 6 =0:
c(x—ct)
- ¢1D
N(x,t) =cpe D1 +-2=
E(x/ t) =0
_clx=ct) c(x—ct)

DZ Dl D N - DZ
M, t) = 208 D1 D) _ espae

c2(D1—D5) 2 c tC4
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5.1.1 Exact solution for p, A nonzeros and =0

Consider the solution to system (5) when p # 0, A # 0, # = 0 and the biological
parameters estimated in section 2.4. Particularly, analyzing equation (138) we conclude
c» # 0 does not hold in the biological sense, then ¢, = 0. This is due to the fact that we
are searching for a solution moving to the right over time. Furthermore, there is no
tumour on the wavefront, defined as the point where N(x, t) = 0, which does not hold
if cp # 0. On the other hand, equation (140) gives xlglolo E(x,t) = c3 and xlgrolo M(x,t) =0,
then we setc3 =1 and ¢; = 1.

- . Sy +4/c2+4DyA
Rewriting solution (140) considering the parameters set and a; = chz we have

—aq(x—c /
L —cx+Ct+k+ eg(gla(lt)) 1 p, if x < xo(t)
(%) b

0, if x > xo(t)

5 (e—ucl(x—ct)>
E(x,t) = e “\ "1

M(x,t) = e ab—ch),

==

N(x,t)

7

The solution N(x, t) was built based on the same idea as the porous media equation
[15] which represents a traveling wave — a wave that advances in time with a constant
velocity and maintaining its shape — with front xo(f). In our model the solution N(x, t)
is a traveling wave with constant wave speed % = ¢. When haptotaxis is zero, a limit
case because it is not a solution, we can calculate the front xy(f). In this case the wave
front is xo(t) = ct + ¢~ 'k. The haptotaxis effect increases at the wave front.

In addition to that, we chose k = 0 since k gives a translation of the solution and
¢ = 0.045 so that the tumour is within the expected range. All parameters related to the

graphics for this solution were combined into Table 4.

Table 4: Values of parameters set to the graphics of the solution to system (5) when y =0,A #0

and p #0.
Parameters‘Dl ‘Dz ‘p ‘(5 ‘A ‘c ‘cl ‘cz ‘C3 ‘k
Values | 0.001|0.001|0.005/10 |05 |0.045/1 [0 |1 |0

Figures 15, 16 and 17 show respectively MDE concentration, density of ECM and
cancer cells density for p =1 att = 5,t = 10,t = 15 and t = 20. We also can see a

travelling wave solution with speed ¢ = 0.045.
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5.1 GENERAL CASE

— t=5
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Figure 15: MDE concentration for p=1att =5,t =10,t = 15 and t = 20 with other parameters

Source: the author.

— t=5
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— t=15
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into Table 4.
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Figure 16: Density of ECM for p=1att=>5,t =10,t = 15 and t = 20 with other parameters into
Table 4.

Source: the author.

Figure 15 also shows that MDE disseminates by diffusion D; and its density does not

increase as time evolves due to y = 0. Moreover, the ECM profile presented in Figure
16 shows its degradation by the MDE att =5,t =10,t =15 and ¢ = 20.
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In Figure 17 we can observe an interesting phenomenon in the front of the wave:
there is a cluster of cells invading tissue further than the main body of the tumour,

moving to the right.

40

30 — t=5
t=10

20 - — t=15
— t=20

0.0 0.2 04 0.6 0.8 1.0

Figure 17: Cancer cells density for p =1att=5,t =10,t = 15 and t = 20 with other parameters
into Table 4.

Source: the author.

0.0 B 0.2 B 0.4 B 0.6 - 0.8 | | 1.0 .
Figure 18: Cancer cells density for p =2 att=5,t =10,t = 15 and t = 20 with other parameters
into Table 4.

Source: the author.



5.1 GENERAL CASE

In order to investigate the phenomenon seen in Figure 17 we maintain parameters set
into Table 4 and take p =2 att =5,t =10,t = 15 and ¢ = 20, presented in Figure 18, and

also p = 1,2,3 at different values of t presented into Figures 19, 20, 21 and 22.

8
— p=1
6 p:2
—— p=3

01 0.2 0.3 0.4

bt
o

Figure 19: Cancer cells density for p =1, 2,3, at t = 5 with other parameters into Table 4.

Source: the author.

— p=1
p=2
— p=3

0.0 0.1 0.2 0.3 04 0.5 0.6

Figure 20: Cancer cells density for p =1, 2,3, at t = 10 with other parameters into Table 4.

Source: the author.
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0.0 0.2 0.4 0.6 0.8

Figure 21: Cancer cells density for p =1, 2,3, at t = 15 with other parameters into Table 4.

Source: the author.

Figure 22: Cancer cells density for p = 1,2, 3, at t = 20 with other parameters into Table 4.

Source: the author.

From these graphics we can carefully infer that this effect in cancer cells density can
be associated to the dependence diffusion by tumour cells and haptotaxis, which can

also be seen in Figure 23 when p =2, x € [0,2] and ¢t € [0, 20].



5.1 GENERAL CASE

0.0

Figure 23: Cancer cells density for p = 2,x € [0,2] and t € [0,20] with other parameters into
Table 4.

Source: the author.

In Figure 23 the traveling wave moves to right over time with a constant shape.

Moreover, at the wavefront we observe the haptotaxis effect.

L L L | L L L | L L L | L L L | L L | L L X
0.0 0.2 0.4 0.6 0.8 1.0

Figure 24: Cancer cells density for p = 1,2,3 at t = 20 with other parameters into Table 4 except
p taken here as p = 0.0025.

Source: the author.
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Analysing N(x, t) for the same preceding parameters changing only p = 0.0025, i.e.,
half of the value of p tested at t = 20, we have Figure 24. Furthermore, we can observe

that haptotaxis effect is imperceptible at this scale.

6
51
4L
i — N(x,t)
3:_ E(x,t)
: M(x,t)
2r
1 L
L L L | J‘Iu |\| | L L L | L L L | L n L | L X
0.0 0.2 0.4 0.6 0.8 1.0

Figure 25: MDE concentration, cancer cells density and density of ECM for p =1 at t = 5 with
other parameters into Table 4.

Source: the author.

10:
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L . . [ /.\\. [ — . X
0.0 0.2 04 0.6 0.8 1.0

Figure 26: MDE concentration, cancer cells density and density of ECM for p =1 at t = 10 with
other parameters into Table 4.

Source: the author.
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10}
sl
i I N(X,t)
6r E(x.t)
4:, M(x.t)
ol
PRI R— . PR R B ¥ .\I P . . X
0.0 0.2 0.4 0.6 0.8 1.0

Figure 27: MDE concentration, cancer cells density and density of ECM for p =1 at t = 15 with
other parameters into Table 4.

Source: the author.
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&
0.0 0.2 0.4 1.0

Figure 28: MDE concentration, cancer cells density and density of ECM for p = 1 at t = 20 with
other parameters into Table 4.

Source: the author.

Now analysing MDE concentration, cancer cells density and density of ECM for p =1
at t = 5,10, 15,20 and parameters in Table 4 in a combined way, we have Figures 25, 26,
27 and 28, respectively. Those graphics show the travelling wave solutions with wave
speed ¢ = 0.045 with wavefront approximately at x = 0.334944, x = 0.559944, 0.784944
and 1.00994, respectively. Comparing these results with one dimensional numerical
simulations in [3] we observe a similar behaviour reinforcing the set velocity at the

present work.
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5.1.2 Exact solution for p =y =0 and A nonzero

Figures 29, 30, 31 and 32 show a comparison of MDE concentration, cancer cells density

and density of ECM for p =0 at t = 5,10, 15,20 and parameters in Table 4, respectively.

6

0.0 0.2 0.4 0.6 0.8 1.0 1.2

X

Figure 29: MDE concentration, cancer cells density and density of ECM for p =0 at t = 5 with
other parameters into Table 4.

Source: the author.
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Figure 30: MDE concentration, cancer cells density and density of ECM for p = 0 at t = 10 with
other parameters into Table 4.

Source: the author.



5.1 GENERAL CASE
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Figure 31: MDE concentration, cancer cells density and density of ECM for p = 0 at t = 15 with
other parameters into Table 4.

Source: the author.
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Figure 32: MDE concentration, cancer cells density and density of ECM for p = 0 at t = 20 with
other parameters into Table 4.

Source: the author.

From all these graphics we can observe that the behaviour of the solution when p = 0
is similar when p # 0 although we obtained different analytical solutions. Thus the
biological analysis here is the same as the one of the previous subsection, including the

haptotaxis effect at the wavefront.
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5.2 GENERATOR X»g

In this section, we will analyse generator Xog = 50y +td; — M.

5.2.1 Case p,p and ¢ nonzeros, and y =A =0

Generator Xpg is valid when the system parameters are given by p #0,0 #0,5 #0,u =0
and A = 0.

Original system (5) for this case can be written as

N; = Di(pNP7INyNy + NP Nyy) — o(NyEy + NEyy),
E; = —0ME, (141)
Mt = DZMxx.

Characteristic system associated with generator Xpg is given by
dr_dt _dN _dE_ M
5t 0 0o -M
and its associated invariants can be set by

2
X
w:T/,h:N/]Z:E/]?):sz- (142)

Assuming J; = ©1(w), J» = Pa(w), J3 = P3(w), where w is as in (142), we have

D3(w)

N = ®q(w), E = Dy(w), M = 2

. (143)

In order to rewrite the system (141) considering the new variables, we need to find
N, Ny, Nxx, E¢, Ex, Exx, Mt, Myxx considering (143). Thus,

Ny = _xztczp’l (144)
Ny = 2(11’13( (145)
x>,

Ei=— 12 (147)



5.2 GENERATOR X>g 101

_ 2xd),

Ex ; (148)

B - 20,20 (149)
M; = —%/3 (150)

= 28520 -
M. 405 695 63 (152)

t2 tx2 x4

Substituting w = x_t2 and (143)-(152) into system (141), we obtain:

—w®, = Di(dpwd’ @2 + 4Dl DY + 20V D)) — p(4wd, D) + 4wd DY + 2D, DY),
ZUZCDIZ = 5(1)3(1)2,
—w®, = Dy(dw?®y — 6wd} +6D3).

(153)
Third and second equations in (153) provide, respectively,

__w
D3 = czw?’/ze 4D,

and
_ 1w
by = Cae 2C25,/D2r<2,4D2)

7

where I’ (%, i) is the incomplete gamma function given by

D,
1 w © g
I(=,—|= t—2e7tdt.
(2'4D2) /w ¢

1D,
Substituting
o) = czcﬁe_z‘sc‘z‘/ﬁzr(%’ﬁ)_ﬁ
N4
and
) 626356—25C2\/D72F(%'ﬁ) ~a; (21)26& —4Dycp6/w + weﬁ>
D, = —

4D>w3/?

into first equation of (153), we have
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—w®, = Dy(dpwd) D%+ 4wd! D +20) D))

NG

_p4wq)/1 cpc3de

_26cn /DT lri>,i _w _w
cpczde 2V (2 4by ) 2Dy (2D264D2 —4D2c25\/@+we4D2) (154)

4Dyw3/2

+4wpdy

(1l _w w
*2502 D2r<z,4D2 ) — 4D2

B ZP CI)1 cpczde =

Rewriting (154), we obtain

—wd, = Di(dpwd! D)%+ 4wd! Dl + 2I D)

_ 4/ wd —26cy/D,oT (1,2 (155)
+( sy, Vudy _ Gl) (6263506 VP (4 4DZ)>-
0205 D,e D2 o105

We have not been able to find any analytical solution to (155), i.e., N(x, t). However

_ 1 a2
we can analyze E(x, t) and M(x, t) given by E(x, t) = cze 2C25@r<2’4D2t> and M(x,t) =c;

X

meiﬁzt.
E
1.00
0.95

—_— t=5

0.90:— t=10

t=15

0.85:— — t=20
0.80:—

02 04 06 08 10 12 14 °*

Figure 33: Density of ECM att =5,t=10,t =15 and t = 20 with c3 =1, D, = 0.001 and ¢ = 10.

Source: the author.
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1 1 X

0.0 0.2 0.4 0.6 0.8 1.0

Figure 34: MDE concentration at t =5,¢ = 10,t = 15 and ¢t = 20 with ¢ =1, D, = 0.001.

Source: the author.

So we maintain the expected scale and biological meaning, we set c3 =1 and c; > 0,

¢ =1 at first.

The ECM profile presented in Figure 33 shows its degradation by the MDE at

t=5,t=10,t =15 and t = 20, with a slowly rate decreasing. Moreover, Figure 34 shows

that MDE disseminates by diffusion D, and its density decrease as time evolves. Here,

we no longer have travelling waves whose shape changes over time.

M
0.0006
0.0005 -
0.0004 | — =5
; t=10
0.0003
: — =15
0.0002 — t=20

0.0001 H

I I I | I 1 L " L | x
0.0 0.2 0.4 0.6 0.8 1.0

Figure 35: MDE concentration at t =5,t = 10,t = 15 and ¢ = 20 with c; = 0.1, D, = 0.001.

Source: the author.
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Although the MDE concentration range appears to be low in this case, the result is
similar to the [3, figure 4b, page 137] when some parameters were changed to test their
effect on the solution. Figures 35 and 36 show that a modification in ¢, causes a change

in the density scale MDE, with the same behavior.

M

0.06-

0.05

0.04 — =5
[ t=10

0.03} 1215

0.02} — t=20

0.01F

I L L 1 L L n L | x
0.0 0.2 0.4 0.6 0.8 1.0

Figure 36: MDE concentration at t =5,t = 10,t = 15 and ¢ = 20 with ¢, = 10, D, = 0.001.

Source: the author.

Moreover, Figures 37 and 38 present similar behaviour of density of ECM when

compared to c; = 1 profile.

E
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0.995 |-
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— 1=20
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[ 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 37: Density of ECM att =5,t =10,t =15 and ¢ = 20 with ¢, = 0.1, D, = 0.001.

Source: the author.
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Figure 38: Density of ECM att =5,t=10,t =15 and t = 20 with ¢, = 10, D, = 0.001.

Source: the author.

5.2.2 Case p and J nonzeros, p=pu=A=0

Generator Xjg is also valid when the system parameters are given by p =0,p # 0,5 #
O,p=0and A =0.

The original system (5) for this case can be written as

Ny = Dlex_P(NxEx"‘NExx);

E; = —J0ME,
Mt = DZMXX'
Similarly to the previous case, we obtain
N
N = ®y(w), E = ®a(w), M = i(zw)

2
where w = xT

Besides that, we have
1
I h = CBE—ZCZ(SV D21"<7,4—g )

2

4

w

;3 = cow®/2e 12,
and
—w®] = Di(4wd] +20))
+ (4‘55;2¢1 SRV 4@/1) (czcgépe_2562@r(%’&)> ,

0203 Doe™D2 ¢ 1Dy
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ie.,
0 = ®/4Djw)

— 1w
+@) [ w+2D; — 4ﬁ€2C35Pe 2562@r(2’4D2>)

W
e -2

_ —26cy+/D,T (1, ;4
+Pq % + ﬂw) (C2C3(5pe V2 (2 492)) .

¢2D; D,e®Da
The solutions found here for E(x,t) and M(x, t) are the same as the previous case
where p # 0. Then the biological analysis for both variables remains the same as well.

Also in this case, we have been unable to express N(x, t).

5.3 GENERATOR Xpj7

Section 4.2 gave us all the generators related to system (5). In this section, we will
analyse generator X7 = 50y +td;y — 2Ndy — Mdy, which is valid when the system
parameters are given by p =0,D1 = Dy, 0 #0,6 #0,u #0and A = 0.

Original system (5) for this case can be written as

Ny = DiNyy _P(NxEx"‘NExx)z
E, = —OME, (156)
M; DyMyx + uN.

Characteristic system associated with generator Xy is given by
dx dt dN dE _dM
Tt 2N 0 -M
and invariants associated with this generator can be set by

2
X
w="J1= Nx*, J, = E, J3 = Mx?. (157)

Assuming J; = ®1(w), J» = Pr(w), J3 = P3(w), where w is as in (157), we have

D1 (w)

@
N = =172 E = aw), M = 3(w)

x2

: (158)
In order to rewrite system (156) considering the new variables, we need to find
Nt, Nx, Nxx, Et, Ex, Exx, Mt, Mxx in VieW Of (158). Thus:
_ %
x2t2

N = (159)



20, 4d,
Ne=tm =%

407 149!

2 x2 txt x6

29, 29
Mx = t 3 — _33
X X

407 6P 6Ps

Moo= =" =12 T 1

5.3 GENERATOR X»7

(160)

(161)

(162)

(163)

(164)

(165)

(166)

(167)

Substituting w = x—tz and (158)-(167) into system (156), we obtain the new system:

—w®] =
ZUZCD/z = 5@3(1)2,
—w®, = Di(4w?®y — 6wd} +6P3) + ud;.

In order to solve system (168), we assume

P = f(w)eﬁfcbz =0,P3 = g(W)eﬁ,

@ b and M = 8T

which implies N = a7 2

D1 (4w?®] — 14w +20P1) — p(4w?®|P) — 6wd D) + 4w? P, DY),

(168)

(169)
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Thus, we have the following possibilities for functions f(w) and g(w):

5
fw) = w2ci(—6D1 +w)
2 3/2 1Dy 3/2 erfi Y@ )_ fi @ ) _ by
cow (SD1 e*X1 +y/tw/* er 1< ) 6/ 7D1/w er 1( > 2y/Dywe 1)
+ 2,/D; 2,/D

1
572

24D;

170
gw) = cipwd/?+cu’/? (79
copw’/? (—ZﬁDl erfi(z\‘ﬁ%>+\/ﬁw erfi(sz%)—ZJDilﬁem)
+ 5/2 ’
24D?

where c1, ¢y and c3 are integration constants, and erfi ( il > is the imaginary error

2yDy
function defined by

. ivw
erfi( N > - —erf< Vo > B _E/zm 2o Pt

2+/Dq 2D} mlo

So, one solution for system (168) is given by

2
~aD;r 2\ 5/2 2 4 2
NG = (q (x_) <_6D1 . X_> et g

4 t b)) 24p)p
4 2\ 3/2 N : e s
+—24€ng/zt2 (\/E (XT) erfi (2\/%1t> — 6/7tD1\/ % erfi (2\/%) —2/Di%e ) ),
E(x,t) =0,

2
e Dyt xZ 5/2 xZ 3/2
M(x, t) = 2 <C1Pl (_t ) +c3 (_t )

2132 )
+% (—ZﬁDl erfi <2\/‘/1’Szlt> + ﬂx—: erfi (2\/‘/%> — 2\/D_1\/ge41321f>

24D;

When we assumed ®, = 0, we have forced cancer cells density and density of
degrading enzymes without haptotaxis. So, we make use of Perturbation Theory [24], as
well as in [9]. Roughly speaking, this theory allows us to obtain approximate solutions
to problems involving a very small parameter.

We are assuming p < 1 since we set p = 0.005 to graph some solutions along this
chapter. Taking p — pp and also ®;, P, and ®3 as the targeted solutions approximated
by a truncated Taylor series in first-order terms, we have ®; = ®;y + po®P;; + O(p%),
i = 1,2,3, where @y are the ones in (169) with (170). We are assuming that the

dependence of the solution with respect to pg is sufficiently smooth.
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So, rewriting (168) we have

—w?(D1g + poP11)’

w?(Dyg + poP21)
—w?(D30 + poP31)’

ie.,

25/ 2 /
—w Py — w PPy,

25/ 2 /
w <I>20 +w p0¢21
25/ 2 /
—w Py — w PPy

D1 (4w*(P1 + po®P11)" — 14w(P1g + poP11)’ +20(P10 + poP11))
—po(4w? (P19 + poP11) (P20 + PoDP21)’

—61w (P + poP11)(D20 + 0 P21)’

+4w? (D10 + o P11) (P20 + PoP21)"),

0(P3p + poP31)(P2o + PoP21),

D1 (4w* (P30 + poP31)" — 6w(P30 + poP31)’ + 6(P3 + poP31))
+u(P10 + poP11),

= D1(4w?®@}, + 4w?pp®@]; — 14wd), — 14wpe®; +20P1g + 20p9P17)
—po(4w? @y Pl + 4w 0o @ Py + 4w po PPy + dw?pD); )y
—6wd9 P, — 6wpgD11Phy — 6wpeD10Ph; — 6wpiD11PY,
+4w? @1 DYy + dw?po D11 Dl + 4w?po D19 DY + 4w pFP11DY)),

= 8(D3D20 + poP31DP20 + o P3Pt + P5P21D31),

= Di(4w?®Y, + dw?pp®@y; — 6wdl, — 6wpody, + 630 + 600P31)

+y<1>10 + ,u,OOq)ll .

Then, disregarding O(p%) terms we obtain both systems (171) and (172):

|
S
N
il
[

D (4w?®@Y, — 14wd], + 20Dy),
Wy, = D3Py, (171)
D (4w? @Y, — 6wdl, + 6P30) + udyo,

|
g
N
me\
I

—w?®); = Di(4w?®| — 14wd], +20Dq;)

O(po) :

W@ = §(D3 Do + P3P21),

— (4w Dy — 6wD1o Dy + 4w D1 DY), (172)

—w?®y = Di(4w?®y, — 6wd, +6Ps1) + udyy.
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Thus,

=
D11 =P = w2cietPi(—6D1 +w)

—w [ cu? <8Df/2em +/mw?/2erfi <72\‘71‘)L1) —6/7tDy \/@erﬁ<2%) —2\/D71Wem)

e 24D}/

(mmmoms{ ) 5)
CI)21 = C4e 6D .
O3 = P3g = ™1 (cpw®? + caw/?)

v czyw3/2< szlerfl( \ﬁ>+fwerf1<

+eth

)t

24D7/?
Since p — po and ®; =~ P;y + poP;1, i = 1,2, 3, then we have
o = (1 +p)w%c1eﬁ(—6D1 + w)

w [ ow? (SDf/zeﬁ +ﬁw3/2erfi(2\ﬁ) —6y/7D; ferfl(
+(1+p)e*tr

5/2
24D

5 (zx/Dl (2D jicy +c3)erfi < ; @1 ) 6D3 —Lge T S <24Df/2c1+ﬁqerﬁ ( ; \/f%l) > )

Dy = cype ,
d; = (1+ p)eﬁ(clywwz + caw3/?)
—w [ copw®?( —2y/mD;erfi +y/mwerfi z\ﬁfe%
et 2 )t )

Therefore, the approximated solution is given by:

2
~ a7 2\ 5/2 2 4 2
NGx, ) = (1+p) —— (o1 (x7> (—6D1 + ’%) + 02—;‘/28Df/2em
X 24Dy t2
_oxt x2 32 Va2 \ _ 4Dt
+24Df/2t2 (\/E( : ) erfi (zﬂt) 6/ 7TD1y/ % erfl( ) 2y/D e 1 ,

_ 22
6 (2\/1)1 72Dy ey +cz)erfi (%) L /22y (24Df/ 2014 /Teserti ( 2\/52 t) ) >
1 1

6D°/2

E(x,t) = cqpe 1 ,

)
e_4D1t x2 5/2 x2 3/2
M ) = L+ p) = (C”‘(T) v (7)

C2y< )3/2

2
. NS 2 ) N 5 _X°
+—24D5/2 (—2\/7'[D1erf1 (2\/%) ++/mperfi <2\/1x)71t> —2y/Dq; /xTe4D1t)

The biological analysis for this case will remain as future work.




CONCLUDING REMARKS AND
FUTURE PERSPECTIVES

In this thesis we apply Lie symmetries to the model (5) that describes the interac-
tion among cancer cell density, extracellular matrix density and concentration of a
generic matrix-degrading enzyme. This model is a generalization of the continuous
1-dimensional one proposed in [3], where it was solved numerically and presented sim-
ulations assuming constant diffusion and also diffusion D directly proportional to MDE
concentration. In [16] it was considered a spatially dependence diffusion of tumour
cells related to brain cancer whilst [22] used a dependence of tumour cells. In view of
these, here we studied the model analytically, considering diffusion as a constant, but
also non-constant with a wider dependence of cancer cells density. Indeed, [3] points
out that models like this look very similar to histological observations, especially when

a heterogeneous ECM is introduced into them.

Using Lie’s theory we carried out a complete group classification of the Lie point
symmetries of the system presented into Tables (2) - (3) and then found analytical
solutions to the system (5). Therefore, the method is consistent for finding solutions
to a system of partial differential equations that model tumor invasion as highlighted
in [8] and [9], where was published also analytical solutions but to a similar model

considering constant diffusion and (x, y, z) as spatial variables.

Through the linear combination of the infinitesimal generators X; and X, we obtained
11 particular solutions for the system (5) and analyzed their biological consistency
completely in 2 of these cases: y = 0,A #0,p # 0 (non-constant diffusion) and also
#=0,A#0,p =0 (constant diffusion).

For the first case we were able to set some constants such as ¢c; = 0, ¢; = 1 and
c = 0.045, to maintain the biological sense of the solution. We conclude that N(x, t) is
a traveling wave solution with constant wave speed ¢ = 0.045 and that the haptotaxis
effect increases the wave front. Recent works have shown that cancer cells movement is
also driven by a haptotactic response to ECM gradients, in vivo and in vitro situations

[10, 14, 20, 21].
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While the ECM profile indicates its degradation by the MDE, cancer cells invade
tissue toward the right and break into 2 clusters when the haptotatic parameter p is
set in 0.005. The division in clusters slowly disappears as p decreases, showing clearly
its influence on this phenomenon. If a group of cells behaves similarly breaking away
from the main body of a tumour, the metastatic cascade has the potential to be initiated:

these cells can reach the vascular stage with a blood supply of their own.

From a medical point of view, the findings are of significant importance. In case of
a resection surgery of the primary tumour, the smaller cluster of cells may escape the
surgeon’s scrutiny and lead to a possible recurrence. Moreover, the speed of invasion of

cancer cells can also be a relevant factor for cancer treatment and care.

Furthermore, MDE disseminates by diffusion D; and its density does not increase
as time evolves due to parameter y = 0. The case 4 = 0,A # 0, p = 0 corroborates the

findings of the first one.

In order to graph those exact solutions, the parameters used at the present work
were essentially based on works [2], [3] and [9] and are summarized into Table 4. As
far as we know, those are the only analytical solutions for system (5) where diffusion
is non-constant. The main advantage of finding exact solutions lies in the fact that
numerical methods often require one to be aware of more details of the problem in
order to make a solution work correctly. We can also easily incorporate probabilistic

factors into analytical solutions compared to numerical ones.

Solutions related to other infinitesimal generators are still under analysis. In section
5.2 we present partial solutions for the cases p # 0,0 # 0,6 # 0,4 = A = 0, and
p#0,6 #0,p =p = A =0 using generator Xpg3. Both cases show a slow decrease
in the degradation rate of ECM by MDE over time and show that MDE spreads by
diffusion D;, which density also decreases over time. In addition to the parameters set
as p =0.005,0 =10, 4 = A =0, D; = 0.001, we analyzed different values for the constant
c1 to see its effect on the solution found, since for c; = 1 the enzyme density was low
compared to previous results. From this we conclude that constant c; changes the range
of E(x,t) and M(x, t) without modifying the solution behaviour. The solution regarding

tumour cells remains for future work.

In section 5.3 we present a complete mathematical solution for the case p =0, D; =
Dy,p #0,0 #0,u # 0 and A = 0 without biological considerations, which demands
a careful analysis that we also suggest for future research. In this case, due to the

difficulties in finding exact solutions, we have forced E(x,t) as zero and then used
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perturbation theory to find approximate solutions describing the phenomenon in a

complete form. As a result, we obtain approximated solutions to system (5).
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