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ABSTRACT

We study metric structures by examining their model-theoretic properties under the

view of continuous logic. Also, we compare three of those structures by ultraproduct

techniques. In particular, we give characteristics of Urysohn’s space among separable

metric spaces.
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1 I NTRODUCT ION

This thesis explains what continuous logic is, and presents some results and examples.

Continuous logic is a system of logic suitable for structures embodied with a notion

of distance, like Banach spaces and probability algebras. It is derived simply from

the two-valued classical logic, and it shares many things with the latter, including an

ultraproduct construction, a compactness theorem, and a form of Löwenheim-Skolem

theorem.

So to get a feeling of it, consider the following axiom, which is part of the theory of

probability algebras:

sup
x

sup
y
(µ(x) .− µ(x ∪ y)) = 0

Here .− is a connective defined thus:

α .− β =

0 if α ≤ β

α− β if α > β

Therefore the axiom means that, for every events x, y in the probability space, we have

µ(x) ≤ µ(x ∪ y). We see that µ is a [0, 1]-valued unary relation symbol, ∪ is a binary

operator, and sup works as a quantifier. We also see that 0 poses as the single truth

value, and our text will make clear that continuous logic is a logic of approximations

suitable for the usual ε–δ reasonings.

Continuous logic has its origins in the book Continuous Model Theory by Chang and

Keisler [6], which was published in 1966. The subject stayed quiet for some decades,

while there was development in the seventies the theory of Banach spaces with the use

of nonstandard analysis or ultraproducts, which are tools from classical logic ([9] and

[8]). Eventually Henson, Ben-Yacoov, Berenstein and Usvyatsov developed the adequate

logical frame in [2]. Our own interest in the subject arose when we found some works
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introduction

of Iovino [11] applying continuous logic to functional analysis.

Our thesis has the following chapters:

In chapter 2 we review the basic concepts of classical first-order logic: languages,

structures, formulas and theories, satisfaction and models. We present the ultraproduct

construction, and Łoś’s Theorem as a standard way to build new models and prove the

Compactness Theorem. In this way, we will be able to understand better the ultraprod-

uct in continuous logic. See [1], [10] and [15] for an extended theory.

In chapter 3 we define the basic concepts of continuous logic in the framework of

metric spaces, but using classical logic as general guide. We will see that some proofs

and constructions require additional detail on setting up a language, which amounts

to the modulus of uniform continuity and the lack of a negation connective. We also

carefully define the ultraproduct of metric structures, and compare it with the classical

one when used with discrete structures.

In chapter 4 we present the construction of ultraproducts of Banach spaces, which

are a theoretical tool detached from its logical counterpart. After that, we compare this

ultraproduct with the constructed one in continuous logic.

In chapter 5 we study the Urysohn space by explaining some of its model-theoretic

properties. The Urysohn space is a universal, ω-homogeneous metric space, which

means that it is rich both in terms of subspaces, and of automorphisms. The properties

that we will discuss will enrich the comparison of classical and continuous logics.
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2 BAS IC CONCEPTS

We now begin setting up a framework for first-order logic (also called predicate logic).

Thus, the purpose of this section is mainly to fix the notation and to set the context for

the remaining ones.

2.1 languages and structures

Roughly speaking, we use languages to describe mathematical structures. By a structure,

we mean a set equipped with a collection of distinguished functions, relations and

elements.

Definition. By a language, we mean a disjoint union of the following sets:

(i) a set R of relation symbols and positive integers nR for each R ∈ R (nR tell us that

R is an nR-ary relation);

(ii) a set F of function symbols and positive integers n f for each f ∈ F (n f tell us that

f is a function of n f variables);

(iii) a set C of constant symbols.

From now on, let L denote a language.

Definition. A structure A for L consists in:

(i) a non-empty set A called the underlying set of A;

(ii) a set RA ⊆ AnR for each R ∈ R,

(iii) a function fA : An f −→ A for each f ∈ F ;

(iv) an element cA ∈ A for each c ∈ C.
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basic concepts

We refer to RA, fA and cA as the interpretations of the symbols R, f and c.

Example. Lg = {·, e}, where · is a binary function symbol and e is a constant symbol.

An Lg-structure G = (G, ·G , eG) will be a set G equipped with a binary function ·G and

a constant eG . For example, G = (R, ·, 1) is an Lg-structure where we interpret ·G as

multiplication and eG as 1. Lg is the language suitable for groups, but our example

shows that not every Lg-structure is a group.

Remark. By a many-sorted language L, we mean a set S of sorts, a set R of sorted

relation symbols, a set F of sorted function symbols, and a set C of sorted constant

symbols. What this means is that each R ∈ R comes together with a sequence (S1, ..., Sn)

of sorts where n ≥ 1, each f ∈ F comes together with a sequence (S1, ..., Sn, S) of sorts

where n ≥ 1, and each c ∈ C comes together with a sort S.

By an L-structure A we mean a family (SA : S ∈ S) of nonempty sets, together with,

for each R ∈ R of sort (S1, ..., Sn) a set RA ⊆ SA1 × ... × SAn , for each f ∈ F of sort

(S1, ..., Sn, S) a function fA : SA1 × ...× SAn → SA, and for each c ∈ C of sort S an element

cA ∈ SA.

An one-sorted language is a many-sorted language with only one sort, that is S is a

singleton, say {S}. In that case the sort of a relation symbol is just a natural number

n ≥ 1 and likewise for the sort of a function symbol. We confine ourselves to one-sorted

languages in this text, but all results hold true for many-sorted languages.

Example. By an incidence spatial geometry we mean a three-sorted structure A =

(P, L, Π; RA1 , RA2 , RA3 ) where P, L and Π are non-empty sets whose elements are called

points, lines and planes, respectively. In addition, RA1 is a intersort binary relation

between points and lines (RA1 ⊂ P× L), RA2 is a intersort binary relation between points

and planes (RA2 ⊂ P×Π) and RA3 is a intersort binary relation between lines and planes

(RA3 ⊂ L×Π). Those three relations are incidence relations.

In the next section, we define variables. In the case of many sorted languages, vari-

ables for differente sorts are written using different letter sets.
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2.2 formulas and sentences

Definition. Let A and B be L-structures with underlying sets A and B, respectively.

An L-embedding η : A −→ B is an one-to-one map η : A −→ B that preserves and

reflects the interpretation of all the symbols of L. We mean,

i) η( fA(a1, ..., an f )) = f B(η(a1), ..., η(an f )) for all f ∈ F and a1, ..., an f ∈ A.

ii) (a1, ..., anR) ∈ RA if and only if (η(a1), ..., η(anR)) ∈ RB for all R ∈ R and a1, ..., anR ∈
A.

iii) η(cA) = cB for all c ∈ C.

A bijective L-embedding is called an L-isomorphism. If A ⊆ B and the inclusion map

is an L-embedding, we say that A is a substructure of B or that B is an extension of A
(A ⊆ B).

Examples.

(1) (Z; +; 0) ⊆ (R; +; 0)

(2) if η : Z −→ R is the function η(x) = ex, then η is an Lg-embedding of (Z; +; 0) into

(R;×; 1).

2.2 formulas and sentences

It is of interest to know properties of structures. For that, we use the language L to

create terms and formulas that will describe properties of L-structures.

We will also use the following logical symbols:

- the connectives ∧, ∨, ¬,→ and↔.

- the quantifiers ∀ and ∃.

- an infinite collection of variables indexed by the natural numbers N (v1, v2, ...).

- symbols to indicate grouping: parentheses.
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basic concepts

Terms and formulas will be strings of symbols using the symbols of L and the logical

symbols above.

Definition. An L-term is defined as follows:

(1) each variable is an L-term;

(2) a constant symbol is an L-term;

(3) if t1, ..., tn f are L-terms and f ∈ F , then f (t1, ..., tn f ) is an L-term;

(4) a string of symbols is an L-term if it can be shown to be an L-term by a finite

number of applications of (1); (2) and (3).

Definition. Let A be an L-structure and t be an L-term and ~v = (v1, ..., vm) be a vector

of variables. Then we associate to the ordered pair (t,~v) a function tA : Am → A as

follows:

(i) if t is the constant symbol c then tA(a) = cA for a ∈ Am.

(ii) If t is the variable vi then tA(a) = ai for a = (a1, ..., am) ∈ Am.

(iii) If t = f (t1, ..., tn f ) where f ∈ F and t1, ..., tn f are L-terms, then

tA(a) = fA
(

tA1 (a), ..., tAn f
(a)
)

for a ∈ Am.

Example. Let L = { f , g, c}, where f is a unary function symbol, g is a binary function

symbol, and c is a constant symbol. We will consider the L-terms t1 = g(v1, c), t2 =

f (g(c, f (v1))), and t3 = g( f (g(v1, v2)), g(v1, f (v2))). Let A be the L-structure (R; exp, +; 1);

that is, fA = exp, gA = +, and cA = 1.

Then

tA1 (a1) = a1 + 1, tA2 (a1) = e1+ea1 , and tA3 (a1, a2) = ea1+a2 + (a1 + ea2).

Note that if B is a second L-structure and A ⊆ B, then tA(a) = tB(a) for t as above

and a ∈ Am.

A term is said to be variable- f ree if no variables occur in it. Let t be a variable-free

L-term and A an L-structure. Then the above gives a nullary function tA : A0 → A,

identified as usual with its value at the unique element of A0, so tA ∈ A. In other
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2.2 formulas and sentences

words, if t is a constant symbol c, then tA = cA ∈ A, where cA is as in the previous

section, and if t = f (t1...tn) with n-ary f ∈ F and variable-free L-terms t1, ..., tn, then

tA = fA(tA1 , ..., tAn ).

Definition. An L-formula is defined as follows:

(1) If t1 and t2 are L-terms, then t1 = t2 is an L-formula.

(2) If R is an nR-ary relation symbol and t1, ... ,tnR are L-terms, then R(t1, ..., tnR) is a

formula. (1) and (2) are called atomic L-formulas.

(3) If ϕ is a L-formula, then ¬ϕ is a L-formula.

(4) If ϕ and ψ are L-formulas then so are (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ) and (ϕ↔ ψ).

(5) If vi is a variable and ϕ is a formula, then (∃vi)ϕ and (∀vi)ϕ are formulas.

(6) A string of symbols is a formula if it can be shown to be a formula by a finite

numbers of applications of (1), (2), (3), (4) and (5).

We say that an instance of a variable vi in a formula ϕ is f ree if it is not inside the

scope of a ∃vi or ∀vi quantifier; otherwise, we say it is bound. By scope of the quantifier

(Qvi) we mean the subformula ϕ in Qvi ϕ (item 5 above).

So, it is said that vi is a f ree variable in ϕ if it appears free in ϕ.

Example. All instances of x in the formula ∀x(x = y∨ ∃y(x 6= y)) are bound, while the

first instance of y is free and the other two are bound. Hence y is the only free variable

of this formula.

Definition. We call a formula a sentence if it has no free variables.

From now on, ϕ(v1, v2, ..., vn) will indicate a formula ϕ such that all variables that

occur free in ϕ are among v1, ..., vn.

At this point, it is necessary to enlarge our L-structure A by introducing names. For

this, let C ⊆ A. We extend L to a language L(C) by adding a constant symbol c for each
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basic concepts

c ∈ C. As a consequence, A is made an L(C)-structure by keeping the same underlying

set and interpretations of symbols of L, and by interpreting each name c as the element

c ∈ C.

Definition. We can now define what it means for an L(A)-sentence σ to be true in the

L-structure A (notation: A |= σ, also read as A satisfies σ or σ holds in A, or σ is valid in

A). First we consider atomic L(A)-sentences:

(i) A |= t1 = t2 if and only if tA1 = tA2 , for variable-free L(A)-terms t1, t2 that is, t1 and

t2 are built of constant and function symbols only.

(ii) A |= R(t1, ..., tnR) if and only if
(
tA1 , ..., tAnR

)
∈ RA, for R ∈ R, and variable-free

L(A)-terms t1, ..., tnR ;

We extend the definition inductively to arbitrary L(A)-sentence as follows:

(i) Suppose σ = ¬σ1. Then A |= σ if and only if A 2 σ1.

(ii) Suppose σ = σ1 ∨ σ2. Then A |= σ if and only if A |= σ1 or A |= σ2.

(iii) Suppose σ = σ1 ∧ σ2. Then A |= σ if and only if A |= σ1 and A |= σ2.

(iv) Suppose σ = ∃vϕ(v). Then A |= σ if and only if A |= ϕ(a) for some a ∈ A.

(v) Suppose σ = ∀vϕ(v). Then A |= σ if and only if A |= ϕ(a) for all a ∈ A.

Remark. The reader should notice that even if σ is an L-sentence of the form ∃vϕ(v)

or ∀vϕ(v), the inductive definition above forces us to consider L(A)-sentences σ(a). For

that reason, we introduced names.

We defined what it means for a sentence σ to hold in a given structure A. We now

extend this to arbitrary formulas.

First define an A-instance o f a f ormula ϕ = ϕ(v1, ..., vm) to be an L(A)-sentence of the

form ϕ(a1, ..., am) with a1, ..., am ∈ A.

Definition. A formula ϕ is said to be valid in A (notation: A |= ϕ) if all its A-instances

are true in A.

Note that if ϕ = ϕ(v1, ..., vm), then

A |= ϕ⇐⇒ A |= ∀v1...∀vm ϕ.

8



2.3 models

2.3 models

In this section L is a language, A is an L-structure (with underlying set A), and, unless

indicated otherwise, t is an L-term, ϕ, ψ, and θ are L-formulas, σ is an L-sentence, and

Σ is a set of L-sentences. We drop the prefix L in "L-term" and "L-formula" and so on,

unless this causes confusion.

Definition. We say that A is a model of Σ or Σ holds in A (denoted A |= Σ) if A |= σ

for each σ ∈ Σ.

Definition. A theory is a set of sentences, which we call "axioms".

Example. Vector spaces over a fixed field K are regarded as structures of the lan-

guage LK = {0, +,−} ∪ { fk : k ∈ K}, where 0 is a constant symbol, − and + are unary

and binary function symbols, respectively; and fk are unary function symbols which

represent multiplication by the scalars k ∈ K. Let’s denote this language by LK.

Consider the following sets of LK-sentences:

(1) ∀x∀y∀z((x + y) + z = x + (y + z))

(2) ∀x∀y(x + y = y + x)

(3) ∀x(x + 0 = x)

(4) ∀x(x + (−x) = 0)

(5) ∀x( f0(x) = 0∧ f1(x) = x)

(6) ∀x∀y( fk(x + y) = fk(x) + fk(y)), one sentence for each k ∈ K

(7) ∀x( fk1+k2(x) = fk1(x) + fk2(x)), one sentence for each k1, k2 ∈ K

(8) ∀x( fk1( fk2(x)) = fk1·k2(x)), one sentence for each k1, k2 ∈ K

These axiomatize the class of vector spaces over K. We denote the LK-theory of all

such spaces by TK.
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2.4 ultraproducts

In this section we describe the construction that will occupy our attention for the most

of the rest of this work, namely the ultraproduct.

Before talking about ultraproducts, we must define what an ultrafilter is.

Definition. Let I be a non-empty set and let P(I) denote the power set of I. A f ilter

on I is a collection F ⊂ P(I) such that:

(i) I ∈ F, ∅ 6∈ F;

(ii) if A, B ∈ F, then A ∩ B ∈ F;

(iii) if A ∈ F and A ⊆ B ⊆ I, then B ∈ F.

Intuitively a filter is a collection of "big" subsets of I.

We say that a filter U on I is an ultra f ilter if

(iv) X ∈ U or I \ X ∈ U for all X ⊆ I.

Definition. Let I be a nonempty set. A subset F of P(I) is said to have the f inite

intersection property (FIP) if F 6= ∅ and no intersection of finitely many members of F

is empty.

Remark. F has the FIP if and only if the set F′ of all finite intersections of sets from

F satisfies ∅ 6∈ F′.

Lemma 2.1. Every S ⊆ P(I) with the FIP can be extended to an ultrafilter.

Proof. See ([15], p. 45). This is an example of using Zorn’s Lemma.

Definition. An ultrafilter U is a f ree ultra f ilter if no finite sets belong to U.

Note the lemma above implies the existence of free ultrafilters on infinite I by extend-

ing {I \ {x} : x ∈ I} to an ultrafilter.

10



2.4 ultraproducts

Definition. Let L be a language and suppose that I is an infinite set. Suppose that Ai

is an L-structure for each i ∈ I. Let U be an ultrafilter on I. We define a new structure

A/U = (∏Ai) /U, which we call the ultraproduct of the Ai using U.

First, define a relation U on

∏
i∈I

Ai = {a : I →
⋃

Ai : a(i) ∈ Ai for all i}

by a ∼U b if only if {i ∈ I : a(i) = b(i)} ∈ U. We see that ∼U is an equivalence relation.

Let us show transitivity (reflexivity and symmetry are easier). Since a ∼U b and

b ∼U c, we have S = {i ∈ I : a(i) = b(i)} ∈ U and T = {i ∈ I : b(i) = c(i)} ∈ U.

Considering that S ∩ T ⊆ {i ∈ I : a(i) = c(i)} ⊆ I, and that S, T ∈ U, and that U is

closed under intersections and supersets we get {i ∈ I : a(i) = c(i)} ∈ U. Thus a ∼U c.

The universe of A/U will be

(
∏
i∈I

Ai

)
/U, the collection of all ∼U equivalence classes.

Remark. We write ā/U for (a1/U, ..., an/U).

Now, given a constant symbol c of L, set cA/U =
(
cAi : i ∈ I

)
/U.

Given an n-ary function symbol f of L and ā = (a1, ..., an) in (∏ Ai)
n, set fA/U(ā/U) =

( fAi(a1(i), ..., an(i)) : i ∈ I)/U, i.e., fA/U(ā/U) = ( fAi(ā))/U. Let us show this is well-

defined. Take a1, ..., an, b1, ..., bn ∈ ΠAi and ai ∼U bi for i = 1, ..., n. Define an+1(i) =

fAi(a1(i), ..., an(i)) and bn+1(i) = fAi(b1(i), ..., bn(i)) for i ∈ I. Then an+1 ∼U bn+1 follows

because we always have

{i ∈ I : a1(i) = b1(i), ..., an(i) = bn(i)} ⊆ {i ∈ I : an+1(i) = bn+1(i)},

and so the set on the right is in U by closure under intersections and supersets.

Given an n-ary relation symbol R of L and ā = (a1, ..., an) in (∏ Ai)
n, set ā/U ∈

RA/U ⇔ {i ∈ I : ā(i) ∈ RAi} ∈ U. Let us show that this is well-defined by checking this

does not depend on the choice of representative elements, i.e., {i ∈ I : (a1(i), ..., an(i)) ∈
RAi} iff {i ∈ I : (b1(i), ..., bn(i)) ∈ RAi}. For that, take a1, ..., an, b1, ..., bn as before.

Suppose {i ∈ I : (a1(i), ..., an(i)) ∈ RAi} ∈ U. Now, we have

n⋂
k=1

{i ∈ I : ak(i) = bk(i)} ∩ {i ∈ I : (a1(i), ..., an(i)) ∈ RAi} ⊆ {i ∈ I : (b1(i), ..., bn(i)) ∈ RAi}

11
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Since all of the sets on the left are in U, again by the filter axioms, we get the set

on the right in U as well. Thus, {i ∈ I : (a1(i), ..., an(i)) ∈ RAi} ∈ U ⇒ {i ∈ I :

(b1(i), ..., bn(i)) ∈ RAi} ∈ U. Analogously, we get {i ∈ I : (b1(i), ..., bn(i)) ∈ RAi} ∈ U ⇒
{i ∈ I : (a1(i), ..., an(i)) ∈ RAi} ∈ U.

Now, for ultraproducts, a term t involving the variables v1, · · · , vn is interpreted as a

function tA/U : (A/U)n → A/U. Then based on all facts exposed above we can state

Lemma 2.2. . For a1/U, · · · , an/U in A/U,

tA/U(a1/U, · · · , an/U) =
(
tAi(a1(i), · · · , an(i)) : i ∈ I

)
/U.

Proof. Let us show its is well defined.

Take a1, · · · , an, b1, · · · , bn ∈ ∏ Ai and aj ∼U bj for j = 1, · · · , n.

For t = c.

Define c′(i) = tAi(a1(i), · · · , an(i)) and c′′(i) = tAi(b1(i), · · · , bn(i)) for i ∈ I. Then c′ ∼U c′′

follows from

{i ∈ I : a1(i) = b1(i), ..., an(i) = bn(i)} ⊆ {i ∈ I : c′(i) = c′′(i)} ∈ U.

For t = vk for some k ∈ {1; · · · ; n}.
Define ak(i) = tAi(a1(i), · · · , an(i)) and bk(i) = tAi(b1(i), · · · , bn(i)) for i ∈ I. Since aj ∼U bj

for j = 1, · · · , n then ak ∼U bk.

For t = f (t1, · · · , tm) and assuming the statements hold for t1, · · · , tm. We write a(i)

for (a1(i), · · · , an(i)).

Define am+1(i) = fAi
(

tAi
1 (a(i)), · · · , tAi

m (a(i))
)

and bm+1(i) = fAi
(

tAi
1 (b(i)), · · · , tAi

m (b(i))
)

for i ∈ I. Then am+1 ∼U bm+1 follows from

{i ∈ I : tAi
1 (a(i)) = tAi

1 (b(i)), · · · , tAi
m (a(i)) = tAi

m (b(i))} ⊆ {i ∈ I : am+1(i) = bm+1(i)} ∈ U.

The following theorem is due to Jerzy Łoś. He proved that any first-order formula is

true in the ultraproduct A/U if and only if the set of indices i such that the formula is

true in Ai is a member of U. More precisely:

Theorem 2.3. (Łoś’s Theorem) Let ϕ(v1, ..., vn) be an L-formula and ā = (a1, ..., an) in (∏ Ai)
n.

Then A/U |= ϕ(a1/U, ..., an/U) if and only if {i ∈ I : Ai |= ϕ(a1(i), ..., an(i))} ∈ U.
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2.4 ultraproducts

Proof. The proof is by induction on the number of logical symbols in ϕ, and we use

¬,∧, ∃ as a complete set of connectives and quantifiers 1.

Consider first t1 and t2 be two terms whose free variables are among v1, ...vn.

Let ϕ ≡ t1 = t2. We have

A/U |= (t1 = t2)(a1/U, ..., an/U)

⇔ tA/U
1 (a1/U, ..., an/U) = tA/U

2 (a1/U, ..., an/U)

⇔ {i ∈ I : tAi
1 (a1(i), ..., an(i)) = tAi

2 (a1(i), ..., an(i))} ∈ U

⇔ {i ∈ I : Ai |= (t1 = t2)(a1(i), ..., an(i))} ∈ U.

Next consider an L-atomic formula ϕ ≡ R(t1, ..., tm) where R is an m-ary relation

symbol and the free variables of t1, ..., tm are among v1, ..., vn. We have

A/U |= ϕ(a1/U, ..., an/U)

⇔ RA/U(tA/U
1 (a1/U, ..., an/U), ..., tA/U

m (a1/U, ..., an/U))

⇔ {i ∈ I : RAi(tAi
1 (a1(i), ..., an(i))..., tAi

m (a1(i), ..., an(i)))} ∈ U

⇔ {i ∈ I : Ai |= ϕ(a1(i), ..., an(i))} ∈ U.

Now, suppose that the theorem holds for ϕ1 and ϕ2.

If ϕ ≡ ¬ϕ1, we have

A/U |= ϕ(a1/U, ..., an/U)⇔ A/U |= ¬ϕ1(a1/U, ..., an/U)

⇔ {i ∈ I : Ai |= ϕ1(a1(i), ..., an(i))} 6∈ U

Then,

A/U |= ϕ(a1/U, ..., an/U)⇔ I \ {i ∈ I : Ai |= ϕ1(a1(i), ..., an(i))} ∈ U

Thus,

A/U |= ϕ(a1/U, ..., an/U)⇔ {i ∈ I : Ai |= ϕ(a1(i), ..., an(i))} ∈ U.

If ϕ ≡ ϕ1 ∧ ϕ2, we have

A/U |= ϕ(a1/U, ..., an/U)⇔ A/U |= ϕ1(a1/U, ..., an/U) andA/U |= ϕ2(a1/U, ..., an/U)

If and only if,

{i ∈ I : Ai |= ϕ1(a1(i), ..., an(i))} ∈ U and {i ∈ I : Ai |= ϕ2(a1(i), ..., an(i))} ∈ U

Thus,

1 By equivalence, we have: ∀xϕ ⇔ ¬∃x(¬ϕ) , ϕ ∨ ψ ⇔ ¬(¬ϕ ∧ ¬ψ), ϕ → ψ ⇔ ¬(ϕ ∧ ¬ψ) and ϕ ↔ ψ ⇔
¬(ϕ ∧ ¬ψ)∧ ¬(ψ ∧ ¬ϕ)

13



basic concepts

{i ∈ I : Ai |= ϕ1(a1(i), ..., an(i)) and Ai |= ϕ2(a1(i), ..., an(i))} ∈ U (see below)

It can be written as

{i ∈ I : Ai |= (ϕ1 ∧ ϕ2)(a1(i), ..., an(i))} ∈ U.

Remark. If the two sets belong to U, then their intersection belongs to U. Conversely,

if X ∩Y ∈ U, note X, Y ⊇ X ∩Y, so X, Y ∈ U.

Finally, suppose ϕ ≡ ∃vϕ1(v, v1, ..., vn).

First, we note that A/U |= ϕ(a1/U, ..., an/U) ⇔ ∃b/U ∈ ΠAi/U such that {i ∈ I :

Ai |= ϕ1(b(i), a1(i), ..., an(i))} ∈ U.

We want to show this last condition is equivalent to {i ∈ I : Ai |= ∃vϕ1(v, a1(i), ..., an(i))} ∈
U.

Let us call the above sets S1 and S2, respectively. The existence of b such that S1 ∈ U

implies S2 ∈ U because of S1 ⊂ S2 and U is closed under enlargements.

Now, for each i ∈ S2 choose some element b(i) ∈ Ai that satisfiesAi |= ϕ1(b(i), a1(i), ..., an(i)).

For every j ∈ I \ S2, let b(j) be arbitrary in Aj.

By the choice of b, we have proved that if S2 ∈ U then S1 ∈ U.

Corollary 2.4. (The Compactness Theorem) A set Σ of L-sentences has a model if and only if

each finite subset of Σ has a model.

Proof. (⇒) If Σ has a model, then each subset has the same model.

(⇐) Let I be the set of all non-empty finite subsets of Σ, we mean I = {i : i ⊂ Σ, i 6= φ

and i is finite }. By hypothesis, there is a non-empty L-structure Ai for each i ∈ I

such that Ai |= i.

For each set i ∈ I let i∗ = {i′ ∈ I : i ⊆ i′}. Each collection i∗ is non-empty. Also, for

any finite subset, say {i1, ..., in} ⊂ I, we have i1 ∪ ... ∪ in ∈ i∗1 ∩ ... ∩ i∗n and hence

the collection {i∗ : i ∈ I} has the FIP (finite intersection property).

Therefore, this collection can be extended to an ultrafilter U on I.

We show that the ultraproduct ∏
i∈I
Ai/U is a model of Σ.

14



2.4 ultraproducts

Suppose σ ∈ Σ, then {σ} ∈ I, say {σ} = i0. Ai0 |= σ and clearly, i′ |= σ 2, if i0 ⊆ i′.

Hence i∗0 = {i ∈ I : σ ∈ i} ⊆ {i ∈ I : Ai |= σ}.
By the choice of U, we have i∗0 ∈ U and hence {i ∈ I : Ai |= σ} ∈ U.

Therefore, by Łoś’s theorem ∏
i∈I
Ai/U |= σ. Since σ was arbitrary in Σ, we have

∏
i∈I
Ai/U |= Σ.

Example. Let A = (R; +, ·,−;<; 0) be the structure for the real numbers and U be a

free ultrafilter on N. Let A/U = (R∗; +, ·,−;<; 0) be the ultrapower of A. Remember

that R∗ = ∏ R/U = {(x̄)U : x̄ ∈ ∏ R}. Since R is a ordered field, so is R∗. Note that we

can embed R in R∗ by taking x 7→ E(x) = (x̄)U, where x̄ = (x, x, ...).

Take α =
(

1, 1
2 , 1

3 , ...
)

. We show that αU is a positive infinitesimal. Note that {n ∈N

: αn > 0} = {n ∈N : 1
n > 0} = N ∈ U, so by Łoś we have αU > E(0).

For ε > 0 in R, {n ∈ N : αn < ε} = {n ∈ N : 1
n < ε} is cofinite, hence it belongs to U

and by Łoś we have αU < E(ε)

Therefore 0R∗ < αU < εR∗ for every real ε > 0.

2 We say σ is a logical consequence of Σ (Σ |= σ) if A |= σ for all models A of Σ
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3 CONT INUOUS LOG IC

In this chapter, we develop continuous logic, a variant of the logic described before.

The mostly of definitions and examples are taken from [2] because we consider this text

contains all the necessary to understand the model-theoretic properties of the metric

structures. The basic idea is doing it parallel to the usual classical logic, once one

enlarges the set of possible truth values from {0, 1} to [0, 1]. Since x = y⇔ d(x, y) = 0,

then we assign 0 to "true" and 1 to " f alse", while positive values between them represent

distinct degrees of falsity, errors or approximations.

From now on, we take metric spaces as our underlying sets to define metric prestructures.

By taking their completion whenever necessary, we focus always on metric structures

whose underlying domains are complete metric spaces.

3.1 metric structures

Definition. Let M be a metric space. By a relation on M, we understand a uniformly

continuous function from Mn into [0, 1]. By a function on Mn, we understand a uni-

formly continuous function from Mn into M (in both cases, n ∈N plays the role of arity).

Definition. A metric structureM based on (M, d), which is a complete, 1-bounded

metric space, consists of a family (Ri : i ∈ I) of relations on M, a family (Fj : j ∈ J) of

functions on M and a family (ak : k ∈ K) of distinguished elements of M. We will often

denote it as

M = (M, d, Ri, Fj, ak : i ∈ I, j ∈ J, k ∈ K)
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continuous logic

Our theory also applies to many sorted metric structures and we proceed in the same

way as classical logic. However, in this chapter they will just appear as examples.

Examples. The most of them taken from [2] which we quote verbatim. We have:

(1) A complete, 1-bounded metric space (M, d) with no additional structure.

(2) A structure M in the usual sense from classical logic. One puts the discrete

metric on the underlying set (d(a, b) = 1 when a, b are distinct ) and a relation is

considered as a predicate taking values in the set {0, 1}.

(3) Let (X, ‖·‖) be a normed space. We can regard it as a metric prestructure in the

following way. The sorts are Bn := {x ∈ X : ‖x‖≤ n}, indexed by n ∈N. It comes

equipped with distinguished elements 0n ∈ Bn (0n = 0 ∈ X, ∀n ∈ N), functions

+n : Bn × Bn → B2n (the restrictions of vector space addition to bounded balls

with center at the origin), −n : Bn → Bn (the restrictions of the additive inverse

unary operation to balls with center at the origin), and the inclusion mappings

Imn : Bm → Bn, where m < n (they are functions that tie together the different

sorts). The metrics can be thought of as distinguished predicates, and must be

rescaled to 1.

(4) The unit ball B of a Banach space X over R or C: we can work with +̂ : B× B→ B

defined as +̂(x, y) = (x + y)/2. Also, we may take the maps fα : B → B where

fα(x) = αx for |α|≤ 1; the norm may be included as a predicate, and we may

include the additive identity 0X as a distinguished element. Note that since

‖x+̂y‖= 1
2‖x + y‖≤ 1

2 (‖x‖+‖y‖) ≤
1
2 (1 + 1) = 1, we ensure that x+̂y ∈ B. Similarly,

fα(x) ∈ B, for all x ∈ B and each scalar α such that |α|≤ 1. (One could also consider

fα,β(x, y) = αx + βy as maps where each pair of scalars satisfied |α|+|β|≤ 1).

(5) If (Ω,B, µ) is a probability space, we may construct a metric structureM from it,

based on the metric space (M, d) in which M is the measure algebra of (Ω,B, µ)

(elements of B modulo set of measure 0) and d is defined to be the measure of

the symmetric difference. As a predicate on M we take the measure µ, and as

distinguished elements the 0 and 1 of M. We include the boolean operation as

functions in the structure.

Now, having a metric structureM, we associate to it a language L as follows:

18



3.1 metric structures

- To each relation R ofM we associate a predicate symbol P and an integer nP ∈N

(the arity of R); we denote R by PM.

- To each function F ofM we associate a f unction symbol f and an integer n f ∈N

(the arity of F); we denote F by fM.

- To each distinguished element a ofM we associate a constant symbol c; we denote

a by cM.

Moreover, the language must give more information, i.e., for each predicate (function,

respectively), it must provide a modulus of uniform continuity ∆P (∆ f , respectively). Also,

we will denote the metric d given byM as dM.

Remark. A modulus of uniform continuity is a specified way of providing a δ for a

given ε in the definition of uniformly continuous functions, say f : (M, d1)→ (N, d2):

∀ε > 0 ∃δ > 0 ∀x∀y (d1(x, y) < δ⇒ d2( f (x), f (y)) ≤ ε).

Formally, it is a function ∆ : (0, 1]→ (0, 1] such that

∀ε > 0 ∀x∀y (d1(x, y) < ∆(ε)⇒ d2( f (x), f (y)) ≤ ε).

The reason for that choice of strict and non-strict inequalities is just operational, and

will become clear in the proof that an ultraproduct of functions is again a function (page

25).

After these requirements are all met and when the predicate symbol (also function

and constant symbols) correspond exactly to the relation (function and distinguished

elements, respectively) of whichM consists, and their moduli of uniform continuity

match those ofM, we say thatM is an L-structure.

Examples. Here we quote two examples taken from [2].

(1) Let Lp (X, U, µ) be the space of (equivalence classes of) U-measurable func-

tions f : X → R such that ‖ f ‖= (
∫
| f |pdµ)

1/p
< ∞. We build a metric struc-

ture M =
(

(Bn : n ≥ 1), 0, {Imn}m<n, {λr}r∈R, +,−,∧,∨, 1
n‖·‖}

)
whose Bn = { f ∈

Lp (X, U, µ) : ‖ f ‖≤ n} and Imn : Bm → Bn is the inclusion map from m < n. The
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metric on each Bn is given by dn( f , g) = ‖ f − g‖/2n. The diameter of Bn is 1 and the

values of the predicate 1
n‖·‖ on Bn are in [0, 1]. The operations +,−,∧,∨ map Bn × Bn

into B2n. For r ∈ R with k− 1 < |r|≤ k, where k ≥ 1 is an integer, the operation λr

maps Bn into Bkn. The moduli of uniform continuity for the norm and for the inclusion

maps Imn are all given by ∆(ε) = ε. The moduli of uniform continuity for +,−,∧,∨ are

all given by ∆′(ε) = ε/2. For r ∈ R with k− 1 < |r|≤ k, where k is an integer ≥ 1, the

modulus of uniform continuity of λr is given by ∆λr(ε) = ε/k.

(2) Given a probability space (Ω,B, µ), we build a metric structure (called a probability

structure)M = (B̂, 0, 1, ·c,∩,∪, µ) whose B̂ is the collection of the equivalences classes

of B modulo ∼µ and the metric is given by d([A]µ, [B]µ) = µ(A4 B). Here 0 is the event

of measure zero, 1 the event of measure one, and ·c,∩,∪ are the Boolean operations

induced on B̂. The moduli of uniform continuity for ·c is the identity ∆(ε) = ε and the

moduli of uniform continuity for ∪ and ∩ are given by ∆′(ε) = ε/2.

3.2 continuous logic for metric structures

Given a language L, we are able to define L-terms and atomic L-formulas as usual.

L-terms:

- Variables and constant symbols are L-terms.

- If f is an n-ary function symbol and t1, ..., tn are L-terms, then f (t1, ..., tn) is an

L-term.

Atomic L-formulas:

- P(t1, ..., tn), in which P is an n-ary predicate symbol and t1,...,tn are L-terms.

- d(t1, t2), in which t1 and t2 are L-terms.

Remark. We note that the symbol d for the metric is treated as a binary relation

symbol in the same way that we did with equality symbol "=" in classical logic because
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3.2 continuous logic for metric structures

d(x, y) = 0⇔ x = y and that is why 0 is "true".

L-Formulas are constructed from atomic L-formulas by induction as in classical logic.

However, since the truth values lie in [0, 1], we need to adapt our connectives and

quantifiers. So, continuous functions u : [0, 1]n → [0, 1] play the role of connectives and

supx and infx act like quantifiers in place of ∀x and ∃x, respectively, in the following

way: if ϕ is a formula with free variables x,~y, say, then supx ϕ and infx ϕ are formulas

with free variables ~y. Now given a structureM, any formula ϕ induces a function ϕM

into [0, 1].

Definition. We define an L-formula as follows:

- Atomic L-formulas are L-formulas.

- If u : [0, 1]n → [0, 1] is continuous and ϕ1, ..., ϕn are L-formulas, then u(ϕ1, ..., ϕn)

is a L-formula.

- If ϕ is an L-formula and x is a variable, then supx ϕ and infx ϕ are L-formulas.

Remark. Since every continuous f : [0, 1] → [0, 1] which is 0 on (0, 1] also satisfies

f (0) = 0, we realize there is no proper negation connective in continuous logic and then

there is no direct way to express implications between conditions. This is inconvenient in

applications, since many natural properties in mathematics are stated using implications.

However, we can use the following fact to overcome this issue (see page 52 for definition

of ω-saturation):

Proposition 3.1. Suppose thatM is an ω-saturated L-structure, and ϕ(v̄) and ψ(v̄) are two

L-formulas, where v̄ is an n-tuple of variables. Then the following are equivalent:

1. For all ā ∈ Mn, if ϕM(ā) = 0, then ψM(ā) = 0;

2. There is an increasing, continuous function α : [0, 1]→ [0, 1] satisfying α(0) = 0 so that,

for all ā ∈ Mn, we have ψM(ā) ≤ α
(

ϕM(ā)
)
.

Proof. See [2], p. 40.

Now, since (2)⇒ (1) is valid always, saturation is necessary to ensure that (1)⇒ (2).

Also, this fact tells us that the second condition is indeed expressible by the condition
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supv̄ (ψ(v̄) .− α(ϕ(v̄))) = 0.

Note that if we build formulas by using the definition above it might give rise to

uncountably many formulas even in a countable language. To avoid this, Stone - Weier-

strass Theorem (See [3], p. 5) provides a countable dense set of connectives, so that we

can approximate any formula to within any ε by some formula in this dense collection.

Common connectives we may use, by arity:

• Constants in [0, 1].

• ¬x = 1− x and 1
2 x = x/2.

Note that ¬ is not a negation, because 0 7→ 1 and ε 7→ 1− ε 6= 0 (it does not turn

false into true).

• x ∧ y = min{x, y}, x ∨ y = max{x, y}, x .− y = (x− y)∨ 0, x+̇y = (x + y)∧ 1, |x− y|.
Here, ∧ is "or" and ∨ is "and".

Generated from the set {¬, .−}:

• x ∧ y = x .− (x .− y)

• x ∨ y = ¬(¬x ∧ ¬y)

• x+̇y = ¬(¬x .− y)

• |x− y|= (x .− y)∨ (y .− x) = (x .− y)+̇(y .− x)

For example, let us show that x ∧ y = x .− (x .− y). Take a ∈ [0, 1]:

• Consider x(a) ≤ y(a)

- (x ∧ y)(a) = x(a)

- (x .− (x .− y))(a) = x(a)− 0 = x(a)

• Consider x(a) > y(a)

- (x ∧ y)(a) = y(a)

- (x .− (x .− y))(a) = x(a)− (x(a)− y(a)) = y(a)
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3.2 continuous logic for metric structures

We will usually use this set which has the advantage of being not only finite but also

because it generates a set of connectives which is dense in the set of all functions

{ f : [0, 1]n → [0, 1]} given the compact-open topology (see [3], p.5 ).

Free and bound occurrences of variables in L-formulas are defined in a manner similar

to how this is done in classical logic, with the role of quantifiers played by sup and inf.

Definition. An L-sentence is an L-formula with no free variables.

As in classical logic, by writing a term t as t(~v) we mean that all variables occurring

in t appear in ~v. Similarly, for a formula ϕ the notation ϕ(~v) means that the tuple ~v

contains all free variables of ϕ.

Also, letM be a L-structure with underlying 1-bounded metric space (M, d). Let A

be a subset of M. Again, as in classical logic, we can extended L to a language L(A) in

the same way we did in chapter 2.

Now, for each L(M)-sentence σ, we define the value o f σ in M. This value is a real

number in the interval [0, 1]. The following definition is by induction on formulas.

Definition. ([2],Definition 3.3,p.16-17).

• (d(t1, t2))M = dM(tM1 , tM2 ) for any t1 and t2 without free variables;

• for any n-ary relation symbol P of L and any t1, ..., tn without free variables,

(P(t1, ..., tn))M = PM(tM1 , ..., tMn );

• for any L(M)-sentences σ1, ..., σn and any continuous u : [0, 1]n → [0, 1],

(u(σ1, ..., σn))M = u(σM1 , ..., σMn );

• for any L(M)-formula ϕ(v),

(supv ϕ(v))M is the supremum in [0, 1] of the set {ϕ(a)M : a ∈ M};

• for any L(M)-formula ϕ(v),
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(infv ϕ(v))M is the infimum in [0, 1] of the set {ϕ(a)M : a ∈ M};

Remark. It is expected that given an L(M)-formula ϕ(v1, ..., vn), we have that ϕM

denotes the function from Mn to [0, 1] defined by

ϕM(a1, ..., an) = (ϕ(a1, ..., an))M.

Remember that in classical logic we defined the value of L-sentence σ and this took

its value in {0, 1}. Analogously, we define the value of a L-condition E taking its value

in [0, 1]. First we give the definition of a L-condition E.

An L-condition E is a formal expression of the form ϕ = 0, where ϕ is an L-formula. We

say that E is closed if ϕ is a sentence. Since any real number r ∈ [0, 1] is a connective,

expressions of the form ϕ = r, ϕ ≤ r and ϕ ≥ r are conditions for any L-formula

and r ∈ [0, 1]. This is because we can consider the formulas |ϕ− r|, ϕ .− r and r .− ϕ,

respectively.

If E is the L(M)-condition ϕ(v1, ..., vn) = 0 and a1, ..., an are in M, we say E is true of

a1, ..., an inM and writeM |= E[a1, ..., an] if ϕM(a1, ..., an) = 0.

Let us see a interesting fact. Quoting Sylvia Carlisle’s words in [5]:

The supv quantifier does act like the universal quantifier ∀v, since (supv ϕ(v))M =

0 is true if and only if ϕ(a)M = 0 for all a ∈ M. However, the infv quantifier

does not behave exactly like the existential quantifier ∃v. The condition

infv ϕ(v) = 0 only guarantees the existence of a sequence of elements mak-

ing ϕ(v) arbitrarily small (i.e. ∀n∃an ∈ M such that ϕM(an) < 1/n). In

case we work in a compact structure then indeed there exists a convergent

subsequence and thus, there exists a ∈ M such that ϕ(a) = 0 (recall ϕ is con-

tinuous). The existence of a is guaranteed in some other classes of structures,

e.g., ω-saturated structures, and discrete structures arising from classical

logic.

Formulas in continuous logic define uniformly continuous functions whose moduli

of uniform continuity depend only on the language L. The next theorem states this fact

([2],p. 17):

Theorem 3.2. Let t(v1, ...vn) be an L-term and ϕ(v1, ...vn) an L-formula. Then there exist

functions ∆t and ∆ϕ from (0, 1] to (0, 1] such that for any L-structureM, ∆t is a modulus of
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3.3 basic continuous model theory

uniform continuity for the function tM : Mn → M and ∆ϕ is a modulus of uniform continuity

for the relation ϕM : Mn → [0, 1].

Proof. The proof is by induction on the complexity of terms and then induction on the

complexity of formulas. In the case of terms, this is an inductive argument using the

fact that a composition of uniformly continuous mappings is uniformly continuous (see

[3], Prop. 2.4 ). In the case of formulas one needs two more facts. First, all connectives

are uniformly continuous as continuous mappings on a compact space. Second, if

ϕ(x̄) = infy ψ(y, x̄) or ϕ(x̄) = supy ψ(y, x̄) then any uniform continuity modulus that

ψ(y, x̄) respects with respect to x̄ is also respected by ϕ.

3.3 basic continuous model theory

Let L be a language for metric structures.

Definition. ([2],p.19-20) An L-theory is a set of closed L-conditions. If T is an L-theory

andM is an L-structure, we say thatM is a model of T and writeM |= T ifM |= E for

every closed condition E ∈ T.

IfM is an L-structure, then Th(M) denotes the theory o f M, i.e., the set of all closed

L-conditions which are true inM. When T is a theory of this kind, T will be said to be

complete.

Also, let C be a class of L-structures, we say that C is axiomatizable if it contains all the

models of Th(C).

Example.

Let L be the language associated to probability structures. The following L-conditions

are true in all probability structures. (see [2], p.94 for more details).

(1) Boolean algebra axioms:

supx (d(x ∩ x, x)) = 0;

supx supy (d(x ∩ y, y ∩ x)) = 0;

supx supy (d((x ∩ y)∪ y, y)) = 0;

supx supy supz (d((x ∩ y)∩ z, x ∩ (y ∩ z))) = 0;
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supx (d(x ∪ x, x)) = 0;

supx supy (d(x ∪ y, y ∪ x)) = 0;

supx supy (d((x ∪ y)∩ y, y)) = 0;

supx supy supz (d((x ∪ y)∪ z, x ∪ (y ∪ z))) = 0;

supx supy supz (d(x ∩ (y ∪ z), (x ∩ y)∪ (x ∩ z))) = 0;

supx supy supz (d(x ∪ (y ∩ z), (x ∪ y)∩ (x ∪ z))) = 0;

supx (d(x ∪ xc, 1)) = 0; (here 1 is the event of measure one)

supx (d(x ∩ xc, 0)) = 0; (here the first 0 is the event of measure zero.)

(2) Measure axioms:

µ(0) = 0 and µ(1) = 1;

supx supy (µ(x ∩ y) .− µ(x)) = 0;

supx supy (µ(x) .− µ(x ∪ y)) = 0;

supx supy|(µ(x)− µ(x ∩ y))− (µ(x ∪ y)− µ(y))|= 0.

The last axiom means that µ(x ∪ y) + µ(x ∩ y) = µ(x) + µ(y) for all x, y, and it is well

written thanks to the previous two axioms.

(3) Connection between d and µ:

supx supy|d(x, y)− µ(x4y)|= 0 where x4y denotes the Boolean term giving the

symmetric difference: (x ∩ yc)∪ (xc ∩ y).

We denote the set of L-conditions above by PrA.

3.4 ultraproducts

In this section we use ultraproducts to construct a new metric structure by getting the

quotient of the direct product of a family of them. Note here that the new space looks

like the old ones, i.e., they share the same properties. Furthermore, note this section

is strongly based in [2], section 5, and hence we quote its definitions and examples

verbatim, because we found no better wording.

Ultralimits
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3.4 ultraproducts

Let X be a topological space, and let (xi : i ∈ I) be an indexed family of elements of

X. If U is an ultrafilter on I and x ∈ X, we write

lim
i,U

xi = x

and say that x is the U-limit of (xi)i∈I if for every open neighbourhood O of x, the

set {i ∈ I : xi ∈ O} ∈ U. A topological space X is Hausdorff compact if and only if

for every indexed family {xi : i ∈ I} in X and every ultrafilter U on I, the U-limit of

(xi : i ∈ I) exists and is unique. See [4].

Ultraproducts of bounded metric spaces

Let ((Mi, di) : i ∈ I) be a family of bounded metric spaces with diameter ≤ K for

some fixed constant K. Let U be and ultrafilter on I. Then we can define a function

d : ∏
i∈I

Mi ×∏
i∈I

Mi → [0, K] by

d(x, y) = lim
i,U

di(xi, yi).

(Since for all i ∈ I, di(xi, yi) ∈ [0, K] which is a compact Hausdorff space, so the U-limit

exists.) Then d is a pseudometric on the cartesian product of the Mi. We now proceed to

take the quotient metric space induced by this pseudometric: for x, y ∈ ∏i∈I Mi, define

x ∼U y to mean that d(x, y) = 0. Then ∼U is an equivalence relation. We define the

ultraproduct of ((Mi, di) : i ∈ I) by writing(
∏
i∈I

Mi

)
U

:=

(
∏
i∈I

Mi

)
/∼U.

Then d induces a metric on (∏i∈I Mi)U, which we will denote by d. The bounded

metric space (∏i∈I Mi)U (equipped with the metric d) is called the U-ultraproduct of the

family ((Mi, di) : i ∈ I). The equivalence class of (xi : i ∈ I) is denoted by (xi : i ∈ I)U.

If every Mi is complete, then (∏i∈I Mi)U is complete (see [2], Prop. 5.3).

Also, if (Mi, di) = (M, d) for all i ∈ I, then the resulting U-ultraproduct is called the

U-ultrapower of M and is denoted by (M)U. In this situation, the map T : M → (M)U

defined by T(x) = (xi : i ∈ I)U, where xi = x for all i ∈ I, is an isometric embedding and

is called the diagonal embedding o f M into (M)U.
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A particular case of importance is the U-ultrapower of a compact metric space (M, d).

In that case the diagonal embedding of M into (M)U is surjective as we show below:

Claim. Let M be a compact metric. Then MU
∼= M.

In fact, since T : M→ MU is a embedding, we must prove that it is surjective only. Let

(xi)i∈I be a representant of ((xi)i∈I)U and let x be its limit. So, lim
i,U

xi = x ⇔ ∀ε > 0{i ∈

I : d(xi, x) < ε} ∈ U ⇔ ∀ε > 0{i ∈ I : |d(xi, x)− 0|< ε} ∈ U ⇔ lim
i,U

d(xi, x) = 0. Then,

d((xi)i∈I , (x)i∈I) = limi,U d(xi, x) = 0. Thus, T(x) = ((xi)i∈I)U.

Ultraproducts of functions

Let ((Mi, di) : i ∈ I) and ((M′i , d′i) : i ∈ I) be two families of bounded metric spaces, all

with diameter ≤ K for a fixed constant K. Let ( fi : i ∈ I) be a family of n-ary functions

with fi : Mn
i → M′i uniformly continuous for all i ∈ I. Suppose further that there is a

single modulus of uniform continuity ∆ for all the functions fi. Let U be an ultrafilter

on I. Then we can define an ultraproduct f unction(
∏
i∈I

fi

)
U

:

((
∏
i∈I

Mi

)
U

)n

→
(

∏
i∈I

M′i

)
U

in the following manner: If (xk
i : i ∈ I) ∈ ∏i∈I Mi for k = 1, ..., n, define(

∏
i∈I

fi

)
U

(
(x1

i : i ∈ I)U , ..., (xn
i : i ∈ I)U

)
=
(

fi(x1
i , ..., xn

i ) : i ∈ I
)

U
.

We claim that this is well-defined and is a uniformly continuous function that also

has ∆ as its modulus of uniform continuity.

In fact, for simplicity take n = 1 and fix ε > 0. Suppose the distance between ((xi)i∈I)U

and ((yi)i∈I)U in the ultraproduct (∏i∈I Mi)U is < ∆(ε). There must exist A ∈ U such

that for all i ∈ A, di(xi, yi) < ∆(ε). Since ∆ is a modulus of uniform continuity for all

the functions fi, it follows that d′i( fi(xi), fi(yi)) ≤ ε for all i ∈ A. Hence the distance in

the ultraproduct
(
∏i∈I M′i

)
U between (( fi(xi))i∈I)U and (( fi(yi))i∈I)U must be ≤ ε.

Since ε is arbitrary, this shows good definition as well.

Ultraproducts of L-structures

Let (Mi : i ∈ I) be a family of L-structures and let U be an ultrafilter on I. Suppose
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3.4 ultraproducts

the underlying metric space of Mi is (Mi, di). Since there is a uniform bound on the

diameter of those spaces, we may form their U-ultraproduct. For each function symbol

f of L, the functions fMi all have the same modulus continuity ∆ f . Therefore the U-

ultraproduct of this family of functions is well defined. The same is true if we consider

a predicate function P of L. Moreover, the functions PMi all have their values in [0, 1]

and thus the U-ultraproduct of (PMi : i ∈ I) can be regarded as a [0, 1]-valued function

on M =

(
∏
i∈I

Mi

)
U

(see the claim above).

For each predicate symbol P of L, the interpretation of P in M is given by the

ultraproduct of functions

PM =

(
∏
i∈I

PMi

)
U

which maps Mn to [0, 1] (using the canonical isomorphism [0, 1]U
∼= [0, 1]). For each

function symbol f of L, the interpretation of f in M is given by the ultraproduct of

functions

fM =

(
∏
i∈I

fMi

)
U

whichs maps Mn to M. For each constant symbol c of L, the interpretation of c inM is

given by

cM =
(

(cMi)i∈I

)
U

.

The discussion above shows that this definesM to be an L-structure. We callM the

U-ultraproduct o f the f amily (Mi : i ∈ I) and denote by

M =

(
∏
i∈I
Mi

)
U

.

If all of the L-structuresMi are equal to the same structureM0, thenM is called the

U-ultrapower o f M0 and is denoted by (M0)U.

The next theorem is the analogue in this setting of Theorem 2.2 (it is proved in the page

12 of this text). This is sometimes known as the Fundamental Theorem o f Ultraproducts.

Of course, the lemma 2.2 is valid here as well, but using U-limits instead.
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Theorem 3.3. ([2], Theorem 5.4)(Łoś’s Theorem for continuous logic)

Let (Mi : i ∈ I) be a family of L-structures. Let U be any ultrafilter on I and let M be the

U-ultraproduct of (Mi : i ∈ I). Let ϕ(v1, ..., vn) be an L-formula. If ak =
(
(ak

i )i∈I
)

U are

elements ofM for k = 1, ..., n, then

ϕM(a1, ..., an) = lim
i,U

ϕMi(a1
i , ..., an

i ).

Proof. By induction on the complexity of ϕ and the commutativity of U-limit with

continuous functions.

If ϕ(v1, ..., vn) is atomic, we can assume that ϕ(v̄) = P(t1(v̄), ..., tm(v̄)). For any given

a1, ..., an ∈ M we have

ϕM(a1, ..., an) = P(t1, ...tm)M(a1, ..., an)

= lim
i,U

P(t1, ..., tm)Mi(a1, ..., an)

= lim
i,U

PMi(tMi
1 (a1

i , ..., an
i ), ..., tMi

m (a1
i , ..., an

i ))

= lim
i,U

ϕMi(a1
i , ..., an

i ).

(1)

If the result holds for ϕ1(v1, ..., vn), ..., ϕm(v1, ..., vn) and u : [0, 1]m → [0, 1] is a uni-

formly continuous function, then for all a1, ..., an ∈ M we have

uM(ϕ1(a1, ..., an), ..., ϕm(a1, ..., an)) = u(ϕM1 (a1, ..., an), ..., ϕMm (a1, ..., an))

= u(lim
i,U

ϕ
Mi
1 (a1

i , ..., an
i ), ..., lim

i,U
ϕ
Mi
m (a1

i , ..., an
i ))

= lim
i,U

u(ϕ
Mi
1 (a1

i , ..., an
i ), ..., ϕ

Mi
m (a1

i , ..., an
i ))

= lim
i,U

uMi(ϕ1(a1
i , ..., an

i ), ..., ϕm(a1
i , ..., an

i ))

(2)

Now, let us consider the case supv̄ ψ(v̄, ȳ) and suppose the hypothesis holds for ψ. To

make the notations simpler we assume ȳ = ∅. Then for a1, ..., an ∈ M we have

ψM(a1, ..., an) = limi,U ψMi(a1
i , ..., an

i ) ≤ limi,U(supv̄ ψ(v̄))M

So,

30



3.4 ultraproducts

(supv̄ ψ(v̄))M ≤ limi,U(supv̄ ψ(v̄))Mi .

For the converse, let r = (supv̄ ψ(v̄))M and suppose the inequality above is strict.

Take r′ such that r < r′ < limi,U(supv̄ ψ(v̄))Mi . Then for U-almost all i we have

r′ < (supv̄ ψ(v̄))Mi . So, for U-almost all i there exists bi = (b1
i , ..., bn

i ) such that

r′ < ψMi(b1
i , ..., bn

i ). This means that r < ψM(b1, ..., bn) which is a contradiction. Thus

we see that the equality holds. The case of inf is similar.

Corollary 3.4. ([2], Corollary 5.8)(Compactness Theorem for continuous logic)

Let T be an L-theory and C a class of L-structures. Assume that T is finitely satisfiable in C 1.

Then there exists an ultraproduct of structures from C that is a model of T.

Proof. This is in every way the same that for classical logic (proposition 2.3). We

use conditions instead of sentences, and recall that conditions have the form ϕ = 0, but

limi,U 0 = 0.

The finite satisfiability hypothesis can be weakened to an approximate version, as

follows:

Definition. For any set Σ of L-conditions, let Σ+ be the set of all conditions ϕ ≤ 1/n

such that ϕ = 0 is an element of Σ and n ≥ 1.

Corollary 3.5. Let T be an L-theory and C a class of L-structures. Assume that T+ is finitely

satisfiable in C. Then there exists an ultraproduct of structures from C that is a model of T.

Proof. Just note that T and T+ have the same models.

1 We call T finitely satisfiable in C if every finite subset of T is satisfiable in C.
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3.5 relation between ultraproducts

In this section let us show there exists a natural isomorphism between the first and

second ultraproduct, on classical structures given the discrete metric.

We write (Ai : i ∈ I) for a family of classical structures, and for each i ∈ I letMi be the

metric structure which arises from Ai given the discrete metric, as discussed on page

16.

classical logic discrete metric logic

Φ : ΠAi/U −→ ΠMi/U

aU 7→ Φ(aU) = aU

Since a = b⇔ d(a, b) = 0, the equivalence relations ∼U in either setting are the same,

and so there is a natural way to identify a element of ΠAi/U into ΠMi/U. That is

what Φ(aU) = aU means.

First, we need to show this is well-defined.

a ∼U b⇔ {i ∈ I : ai = bi} ∈ U

=⇒ {i ∈ I : d(ai, bi) = 0} ∈ U

=⇒ ∀ε > 0{i ∈ I : d(ai, bi) < ε} ∈ U

=⇒ lim
i,U

d(ai, bi) = 0

=⇒ d((ai), (bi)) = 0

=⇒ a ∼U b.

Injective:

lim
i,U

d(ai, bi) = 0

=⇒ ∀ε > 0{i ∈ I : d(ai, bi) < ε} ∈ U

=⇒ {i ∈ I : d(ai, bi) < 1/2} ∈ U

=⇒ {i ∈ I : d(ai, bi) = 0} ∈ U (because d(ai, bi) equals either 0 or 1)

=⇒ {i ∈ I : ai = bi} ∈ U

=⇒ a ∼U b.
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Surjective:

Given aU in the discrete metric construction, we have a ∈ ∏i∈I Ai and form aU by

using classical logic construction.

We note that the atomic formulas are the same in both classical logic and metric

settings because constants, functions and terms are defined exactly the same way, and

RMi(a1, ..., an) =

{
0 if (a1, ..., an) ∈ RAi

1 if (a1, ..., an) 6∈ RAi

(uniformly continuous because the metric is discrete).

We see that for an atomic formula α(v1, ...vn), we have

α∏U Ai(a1, ..., an) =

{
0 if ∏U Ai |= α(a1, ..., an)

1 if ∏U Ai 6|= α(a1, ..., an)

So, Φ is an isomorphism (it preserves and reflects satisfaction). Of course, the word

"isomorphism" must be taken lightly here, since the languages and the logics themselves

are different.

We can understand this section under the view of functor maps.

First of all, let C be the collection of structures for a language L in classical logic,

i.e., C = {A : A is a L-structure} and let D be the collection of metric structures for the

corresponding language L′ in continuous logic, i.e., D = {M : M is a L’-structure }.
Note the language L′ is obtained from L in the way we describe on page 17, but D is

not confined to discretized classical structures.

The conversion we provide in this section is a function F : C → D, called functor and

it also preserves homomorphisms (a homomorphism between two structures in C will

induce a homomorphism between their images in D).

To work with an ultraproduct, say using a ultrafilter U on a set I, form for each

collection C of structures, the collection C I of sequences of structures in C indexed by I.
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Then the ultraproduct construction is a functor FC : C I 7→ C. Ultrapowers precompose

FC with the diagonal functor ∆C : C 7→ C I .

34



4 ON BANACH SPACES

In this chapter we do not intend to set the theory of Banach spaces. We consider that

these concepts and definitions are familiar for the reader. Thus, we start with the

construction of ultraproducts in the mentioned spaces and take [8] as our source for

this section. Thus, our role to play here is to justify some statements claimed there.

4.1 ultraproducts in banach spaces

Let (Xi)i∈I be a family of Banach spaces. Consider the set

`∞(I, Xi) =

{
(xi)i∈I ∈∏

i∈I
Xi : sup

i∈I
‖xi‖< ∞

}

Claim. The set `∞(I, Xi) together with the norm ‖(xi)‖= supi∈I‖xi‖ is a Banach space

under componentwise addition and scalar multiplication, we mean, (xi)i∈I + (yi)i∈I =

(xi + yi)i∈I and λ(xi)i∈I = (λxi)i∈I .

Proof. In fact, if (~xn) = ((xn,i)) is a Cauchy sequence in l∞(I, Xi), then for any ε > 0, there

is an Nε ∈ N so for all n, m ≥ Nε, ‖~xn − ~xm‖= supi∈I‖xn,i − xm,i‖< ε. Thus in each

component, i.e., for each i ∈ I, (xn,i) is a Cauchy sequence in Xi, which is a Banach

space, so it has a limit xi. Note that for all n ≥ N1, ‖~xn − ~xN1‖< 1, so for all i ∈ I,

‖xn,i − xN1,i‖< 1. Fix an index i ∈ I. Since (xn,i)→ xi there is an Mi,1 ∈N such that for

all n ≥ Mi,1, ‖xi − xn,i‖< 1. Now for n ≥ max(N1, Mi,1), we have

‖xi‖≤ ‖xi − xn,i‖+‖xn,i‖≤ 1 + ‖~xn‖≤ 1 + ‖~xn −~xN1‖+‖~xN1‖≤ 2 + ‖~xN1‖< ∞.

Thus, supi∈I‖xi‖Xi≤ 2 + ‖~xN1‖< ∞. Then consider ~x = (xi). We have shown that

~x ∈ l∞(I, Xi). We claim ~xn → ~x. Given ε > 0, then for n ≥ Nε/2 we claim

‖~xn −~x‖= sup
i∈I
‖xn,i − xi‖< ε.
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on banach spaces

As before for all n ≥ Nε/2, ‖~xn −~xNε/2
‖< ε/2, so for all i ∈ I, ‖xn,i − xNε/2,i‖< ε/2.

Fix an index i ∈ I. Since (xn,i)→ xi there is an Mi,ε/2 ∈N such that for all n ≥ Mi,ε/2,

‖xi − xn,i‖< ε/2.

For each i ∈ I, let mi = max(Nε/2, Mi,ε/2), then for all i ∈ I, n ≥ Nε/2.

‖xn,i − xi‖≤ ‖xn,i − xmi ,i‖+‖xmi ,i − xi‖< ‖~xn −~xmi‖+ε/2 < ε/2 + ε/2 < ε.

Thus `∞(I, Xi) is a Banach space.

For U an ultrafilter on I, let NU = {(xi)i∈I ∈ `∞(I, Xi) : lim
i,U
‖xi‖= 0}.

Remark. lim
i,U
‖xi‖= 0⇔ ∀ε > 0{i ∈ I : ‖xi‖< ε} ∈ U.

Claim. NU is a closed linear subspace of `∞(I, Xi).

Proof. In fact, suppose (xi), (yi) ∈ NU, λ 6= 0. Then for a given ε > 0, we have

{i ∈ I : ‖λxi‖< ε} = {i ∈ I : ‖xi‖< ε
|λ|} ∈ U

so (λxi) ∈ NU and

{i ∈ I : ‖xi + yi‖< ε} ⊇ {i ∈ I : ‖xi‖< ε/2} ∩ {i ∈ I : ‖yi‖< ε/2} ∈ U.

Thus (xi + yi) ∈ NU.

Furthermore, NU is closed: To prove this, let us show that `∞(I, Xi) \ NU is open.

Take any (xi)i∈I ∈ `∞(I, Xi) \ NU. We note that ‖(xi)‖= supi∈I‖xi‖= M, so we have

‖xi‖∈ [0, M] ⊆ R that is compact Hausdorff, thus lim
i,U
‖xi‖ exists and

lim
i,U
‖xi‖= L > 0 because (xi) 6∈ NU.

We claim B
(
(xi), L

2

)
⊆ `∞(I, Xi) \ NU.

Take any (yi) ∈ B
(
(xi), L

2

)
, then ‖(yi)− (xi)‖= supi∈I‖yi − xi‖< L

2 , then ‖yi − xi‖< L
2 for

all i ∈ I.

Now, lim
i,U
‖xi‖= L > 0⇔ ∀ε > 0{i ∈ I : ‖xi‖∈ (L− ε, L + ε)} ∈ U ⇔

∀ε > 0{i ∈ I : |L− ‖xi‖|< ε} ∈ U.

Taking ε = L and for i ∈ I L
2

= {i ∈ I : |L− ‖xi‖|< L
2} ∈ U, we have
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4.1 ultraproducts in banach spaces

‖yi‖≥ ‖xi‖−‖yi − xi‖≥ 3L
4 −

L
2 = L

4

From this, we have {i ∈ I : ‖yi‖< L
4} ⊆ I \ I L

2
6∈ U.

So, limi,U‖yi‖6= 0. Thus (yi) 6∈ NU as claimed.

Finally, we can define the ultraproduct of (Xi)i∈I with respect to U by

(Xi)U = `∞(I, Xi)/NU

We will denote the equivalence class of (xi) ∈ `∞(I, Xi) in the ultraproduct as (xi)i∈I +

NU.

We equip the ultraproduct (Xi)U with the canonical quotient norm:

‖(xi)i∈I + NU‖= inf
(ai)∈Nu

‖(xi − ai)‖= inf
(ai)∈Nu

sup
i∈I
‖xi − ai‖.

Claim. The norm can be computed as

‖(xi)i∈I + NU‖= lim
i,U
‖xi‖.

Proof. In fact, let L = lim
i,U
‖xi‖. Now, we note that for any ε > 0, we have Iε = {i ∈ I :

|‖xi‖−L|< ε} ∈ U.

Define the sequence (αi) by:

αi =

{
xi if i 6∈ Iε

0 if i ∈ Iε

Note that {i ∈ I : αi = 0} ⊇ Iε ∈ U. Thus {i ∈ I : αi = 0} ∈ U.

Also, we have

lim
i,U
‖αi‖= 0

because (αi)i∈I is U-almost always null. Thus (αi) ∈ NU and for all i ∈ I,

‖xi − αi‖=
{

0 if i 6∈ Iε

‖xi‖ if i ∈ Iε

< L + ε

Thus, ‖(xi)i∈I + NU‖= inf
(ai)∈NU

‖(xi − ai)‖≤ ‖(xi − αi)‖= sup
i∈I
‖xi − αi‖≤ L + ε.

Conversely, if (ai) ∈ NU,
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I(ai),ε = {i ∈ I : ‖ai‖Xi< ε/2} ∩ {i ∈ I : |‖xi‖−L|< ε/2} ∈ U.

Then for all i ∈ I(ai),ε, we have ‖xi − ai‖≥ ‖xi‖−‖ai‖> L− ε/2− ε/2 = L− ε.

Thus for any (ai) ∈ NU,

sup
i∈I
‖xi − αi‖≥ L− ε.

So,

‖(xi)i∈I + NU‖= inf
(ai)∈NU

sup
i∈I
‖xi − ai‖≥ L− ε.

So, we have shown that for all ε > 0,

lim
i,U
‖xi‖−ε ≤ ‖(xi)i∈I + NU‖≤ lim

i,U
‖xi‖+ε

And we conclude that ‖(xi)i∈I + NU‖= lim
i,U
‖xi‖ as claimed.

If all the spaces Xi = X then we speak of the ultrapower (X)U. There is a canonical

isometric embedding E of X into its ultrapower (X)U which is defined by E(x) = (xi)U

where xi = x for all i ∈ I.

Now that we introduced the ultraproduct of Banach spaces, we can define the

ultraproduct of operators. Let (Xi)i∈I and (Yi)i∈I be families of Banach spaces indexed

by the same set I, and for each i ∈ I, let Ti ∈ B(Xi, Yi) be a bounded linear map from Xi

to Yi, such that

sup
i∈I
‖Ti‖< ∞.

The ultraproduct of the family of operators (Ti)i∈I with respect to the ultrafilter U on I is

(Ti)U defined by

(xi)i∈I + NU 7→ (Tixi)i∈I + NU.

We claim that this linear map is well-defined. If ‖Ti‖= 0 for all i ∈ I, then (Ti)U((xi)U) =

(0)U = (Ti)U((yi)U). If 0 < supi∈I‖Ti‖= M < ∞, and if (xi) ∼U (yi), then ‖(xi − yi)U‖=
limi,U‖xi − yi‖= 0, so for all ε > 0, {i ∈ I : ‖xi − yi‖< ε} ∈ U, thus

{i ∈ I : ‖Ti(xi − yi)‖< ε} ⊇ {i ∈ I : ‖xi − yi‖< ε
M} ∈ U.

And in particular
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limi,U‖Ti(xi − yi)‖= limi,U‖Ti(xi)− Ti(yi)‖= ‖(Ti(xi))U − (Ti(yi))U‖= 0

So (Ti(xi))U = (Ti(yi))U.

We see that (Ti)U is a linear map. Moreover, we show that ‖(Ti)U‖= lim
i,U
‖Ti‖.

Proof. In fact, it is clear lim
i,U
‖Ti‖ exists, since supi∈I‖Ti‖= M < ∞.

So, ‖Ti‖ takes values in [0, M] which is compact Hausdorff, so limi,U‖Ti‖= L exists.

Let ε > 0 be given. Let ‖(xi)U‖= 1, then

I0 = {i ∈ I : |1− ‖xi‖|< ε} ⊆ {i ∈ I : ‖xi‖< 1 + ε} ∈ U.

So we can pick an equivalent sequence (x′i) ∼U (xi) with ‖x′i‖< 1 + ε for all i ∈ I. Now

‖Ti(x′i)‖≤ ‖Ti‖‖x′i‖≤ ‖Ti‖(1 + ε).

So in particular,

‖T((xi)U)‖= lim
i,U
‖Ti(x′i)‖≤ (1 + ε) lim

i,U
‖Ti‖.

Likewise, for all i ∈ I we can find an x′′i ∈ Xi with ‖x′′i ‖> 1 − ε and ‖Ti(x′′i )‖≥
‖Ti‖(1− ε). Thus

‖T((xi))U‖= lim
i,U
‖Ti(x′i)‖≥ lim

i,U
‖Ti‖(1− ε).

Having introduced the ultraproduct of Banach spaces, we shall now mention the

following two results. We quote verbatim [14]:

Claim. Any Banach space X is isometric to a subspace of some ultraproduct of its finite-

dimensional subspaces.

In words of [8], this means that if X is a Banach space and B is a family of Banach

spaces such that for each ε > 0, and each finite-dimensional subspace M of X there is a

space E = EM,ε ∈ B such that M is (1 + ε)-isomorphic 1 to a subspace of E. There exists

an ultrafilter U on an index I and a map from I into B sending i 7→ Ei ∈ B.

1 Recall that an operator T : E→ F is a (1 + ε)-isomorphism (0 < ε < 1) if T is an isomorphism and for all x,

|‖Tx‖−‖x‖|≤ ε‖x‖
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Proof. (A sketch only).

Let I be the set of finite dimensional subspaces of X, ordered by inclusion. We get a

filter generated by all the upperset of any M0 ∈ I and thus an ultrafilter U containing

this filter.

Let us denote i ∈ I by (Mi, εi), and for each i there is a space Ei ∈ B and a (1 + ε)-

isomorphism Ti : Mi → Ei. Then, defining a map F : X → ∏U Ei for x ∈ X by

F(x) = (yi)U , yi =

{
Ti(x) if x ∈ Mi

0 if not

we have the desired linear isometric.

To finish this section, we also mention that ultraproducts are used to characterize

axiomatizability. The next result is thanks to C. W. Henson.

Proposition 4.1. ([2], Proposition 5.14)

Suppose that C is a class of L-structures. The following statements are equivalent:

- C is axiomatizable in L, that is, C is the class of structures which satisfy some given theory.

- C is closed under isomorphisms and ultraproducts, and its complement is closed under

ultrapowers.

Thus, we have the next result:

Claim. The class of Lp Banach spaces, where 1 ≤ p < ∞, is axiomatizable.

Proof. This fact was proved by C. Ward Henson. See ([2], pages 98− 100).

4.2 comparing ultraproducts

Now, let us compare the unit open ball of the ultraproduct of Banach spaces to the

ultraproduct of metric structures.
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Start with (xi) + NU ∈ B1(0) ⊆ (Xi)U.

Recall that

(xi) + NU = {(yi)i∈I : (xi)i∈I − (yi)i∈I ∈ NU}
= {(yi)i∈I : limU‖xi − yi‖= 0}
= {(yi)i∈I : ∀ε > 0{i ∈ I : ‖xi − yi‖< ε} ∈ U}.

Since (xi) + NU ∈ B1(0), we have that ‖(xi) + NU‖= limi,U‖xi‖= k, for some k < 1.

Define (zi)i∈I ∈∏
i∈I

BXi
1 (0):

zi =

{
xi if ‖xi‖< 1

0 otherwise

Take ε > 0 small enough such that k + ε < 1, so {i ∈ I : ‖xi‖< k + ε} ∈ U, hence

zi = xi U-almost always.

So, we can form z = (zi)U ∈
(

∏ BXi
1 (0)

)
U

and define z = Φ(x) where x = (xi)U.

Banach space continuous logic

Φ : (Xi)U ⊇ B1(0) −→ B1(0) ⊆
(
∏ BXi

1 (0)
)

U
x 7 −→ Φ(x) = z

Let us show that Φ is well-defined.

Take (yi)i∈I ∈ (xi)i∈I + NU, then we define:

wi =

{
yi if ‖yi‖< 1

0 otherwise

and we must prove z = w = (wi)U.

In fact,

d(z, w) = lim
i,U

di(zi, wi) = lim
i,U

di(xi, yi) = 0 (because zi = xi and wi = yi U-almost always).

Now, we show that ‖z‖= ‖x‖
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‖z‖Łoś= lim
i,U
‖zi‖= k (here the norm is considered as a predicate)

⇔ ∀ε > 0{i ∈ I : |‖zi‖−k|< ε} ∈ U

⇔ ∀ε > 0{i ∈ I : |‖xi‖−k|< ε} ∈ U (because zi = xi U-almost always)

⇔ k = lim
i,U
‖xi‖Xi= ‖x‖.

Thus, ‖Φ(x)‖= ‖x‖.

Injectivity:

Φ(x) = Φ(y)⇔ z = w⇔ (zi)U = (wi)U ⇔ (zi)i∈I ∼U (wi)i∈I

⇔ d(z, w) = 0⇔ limi,U di(zi, wi) = 0

⇔ ∀ε > 0{i ∈ I : di(zi, wi) < ε} ∈ U

⇔ ∀ε > 0{i ∈ I : di(xi, yi) < ε} ∈ U

⇔ ∀ε > 0{i ∈ I : ‖xi − yi‖< ε} ∈ U

⇔ {i ∈ I : (xi)i∈I − (yi)i∈I ∈ NU}
⇔ (xi)i∈I + NU = (yi)i∈I + NU ⇔ x = y.

Surjectivity onto the open ball:

Take w = (wi)U with every wi ∈ BXi
1 (0), and assume k = ‖w‖< 1.

Form x = (wi)i∈I + NU ∈ (Xi)U in the ultraproduct of Banach spaces. Thus Φ(x) = w

since every ‖wi‖< 1.

Let us show that x ∈ B1(0) ⊆ (Xi)U.

We have x = (wi)i∈I + NU = {(zi)i∈I ∈ ∏i∈I Xi : (wi − zi)i∈I ∈ NU}
= {(zi)i∈I ∈ ∏i∈I Xi : ∀ε > 0{i ∈ I : ‖wi − zi‖< ε} ∈ U}.

So ‖x‖= limi,U‖wi‖= k. Thus x ∈ B1(0).

Linearity:

Start with x, y in B1(0) ⊆ (Xi)U and scalars α, µ ∈ R such that |α|+|µ|≤ 1, so

αx + µy ∈ B1(0).

Since αx + µy ∈ B1(0), we have limi,U‖αxi + µyi‖= k, for some k < 1.

Define (ti)i∈I ∈ ∏i∈I BXi
1 (0), thus:
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ti =

{
αxi + µyi if ‖αxi + µyi‖< 1

0 otherwise

Taking ε small enough such that k + ε < 1, we have {i ∈ I : ‖αxi + µyi‖< k + ε} ∈ U,

hence ti = αxi + µyi = αzi + µwi U-almost always. Note that Φ(αx + µy) = (ti)U.

Thus Φ(αx + µy) = αΦ(x) + µΦ(y).
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5 ON URYSOHN SPACE

In this chapter we describe some properties of the Urysohn space in continuous logic.

We focus on understanding the model-theoretic properties, and so we only demonstrate

the first two and give references for the proofs of the rest of them.

Since we are working with metric spaces bounded by 1, our space will be called

Urysohn sphere and denoted by U .

Definition. The Urysohn sphere U is the unique (up to isometries) universal and

ω-homogeneous complete separable metric space (bounded by 1). We mean:

- (Universal) Every separable metric space (bounded by 1) can be isometrically

embedded into it.

- (ω− homogeneous) Every isometry between finite subspaces can be extended to

an isometry of the whole space onto itself.

5.1 construction of the urysohn sphere

We show a sketch of its construction by using Katětov maps and inspired by [12].

A map f : X → [0, 1] is a Katětov map if

∀x, y ∈ X | f (x)− f (y)|≤ d(x, y) ≤ f (x) + f (y).

Let (X, d) be our starting separable metric space (bounded by 1). It determines a

metric space

E(X) = { f : X → [0, 1] : | f (x)− f (y)|≤ d(x, y) ≤ f (x) + f (y), ∀x, y ∈ X}
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endowed with the sup−metric (d( f , g) = sup{| f (x)− g(x)|: x ∈ X}∀ f , g ∈ E(X)).

One can identify x ∈ X with the function fx(z) : X 7→ [0, 1] where fx(z) = d(z, x), and

thus we assume X ⊂ E(X) ([13], Proposition 2.2).

If Y is a subspace of X, then E(Y) embeds isometrically into E(X) via the Katětov

extension: every f ∈ E(Y) extends to f̂ ∈ E(X),

f̂ (x) = inf{d(x, y) + f (y) : y ∈ Y}

Thus we may consider E(Y) as a subspace of E(X), and we can define for cardinals

κ > 1,

E(X, κ) =
⋃{E(Y) : Y ⊂ X, 0 < |Y|< κ} ⊂ E(X)

Now, taking κ = ω and by induction starting with X0 = X, define Xi+1 = E(Xi, ω). Let

now Xω =
⋃

i<ω

Xi; the construction ensures that Xω has the extension property, i.e., for

all A ⊆ Xω finite and f ∈ E(A), there is x ∈ Xω such that ∀a ∈ A, d(x, a) = f (a). Indeed,

any finite subset {y1, ..., yn} of Xω is contained in Xm for some big enough m; then the

extension to Xm of any map f ∈ E({y1, ..., yn}) appears as an element of Xm+1, which

shows that there is indeed a point y ∈ Xω such that d(y, yi) = f (yi) for all i = 1, ..., n.

Hence, the completion of Xω has the extension property too, and by ([13], Theorem 3.2)

it is universal and ω-homogeneous. Thus, we have proved the existence of the Urysohn

sphere.

5.2 model theoretic properties

These properties studied by Usvyatsov are found in [16]. Let us detail a little more.

Let us consider U as a metric structure in the empty language (containing only the

distance function d : U 2 → [0, 1]).

Denote by Φn the collection of all possible distance configurations on n points of

diameter ≤ 1. This means:

ϕ ∈ Φn if ϕ(v1, ..., vn) is a formula of the form

max
1≤i,j≤n

|d(vi, vj)− rij|
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where the matrix (rij)1≤i,j≤n is a distance matrix of some finite metric space of diam-

eter ≤ 1. Then ϕ(a1, . . . , an) = 0 if and only if {a1, . . . , an} has distance matrix (rij)1≤i,j≤n.

Remark. A distance matrix
(
rij
)

1≤i,j≤n is a two-dimensional array containing dis-

tances (all bounded by 1) as elements such that rii = 0, rij ≥ 0, rij = rji and rik + rkj ≥ rij,

for all i, j, k ∈ {1, 2, ..., n}.

Let us introduce the following notation: for ϕ ∈ Φn+1, let ϕ |n be the restriction of ϕ

to the first n variables, i.e., take the maximum up to n instead of n + 1.

Theorem 5.1. (See [16], p.1616). For every ϕ ∈ Φn+1 and ε > 0 there exists a δ = δ(ε) > 0

such that if a1, ..., an ∈ U satisfy ϕ |n (a1, ..., an) < δ, then there exists an+1 ∈ U such that

ϕ(a1, ..., an, an+1) ≤ ε.

Such result goes back to Vershik‘s 2002 preprint “Distance matrices, random metrics

and Urysohn space” [18], and is phrased thus in Usvyatsov‘s 2007 “Generalized Ver-

shik‘s Theorem and generic Metric Structures” [17], whose introduction yields more

details. This is an extension property (every finite metric subspace can be extended by

one extra point in any compatible configuration), but in an approximate way only.

In short,

σ(ε, δ) : ∀v1, ..., vn∃y(ϕ |n (v1, ..., vn) < δ→ ϕ(v1, ..., vn, y) ≤ ε)

Usvyatsov noted that it can be written in continuous logic thus:

sup
v1,...,vn

inf
y

min
(

ε

1− δ
(1− ϕ |n (v1, ..., vn)) , ϕ(v1, ..., vn, y)

)
≤ ε

Note that ε, and hence δ are both fixed in that instance of the axiom scheme, that is,

for each ε > 0 and accompanying δ we have a statement σ(ε, δ).

Let TU be the collection of all the conditions of that form.

According to [16], the only separable complete model of TU is U .

We will explain the following ground results:
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5.2.1 TU is ℵ0-categorical.

This means that TU has only one separable complete model (up to isometry), which is

U according to Theorem 5.2.

Proof. Let M and N be models of TU , and each one having density character 1 ℵ0.

Let M1 and N1 be countable dense subsets ofM and N , respectively. We have M1 =

{x0, x1, ...} and N1 = {y0, y1, ...} by listing. So, we will build a sequence of finite

isometries f0 ⊆ f1 ⊆ f2 ⊆ ... such that for all x, y in the domain of fk, we have

dN ( fk(x), fk(y)) = dM(x, y) (∗)

Let A and B finite subspaces ofM and N , respectively, and f an isometry between

them.

Let f0 = ∅, f1 = f . Assume we have defined f2, . . . , fk. We want to define fk+1. Then

k + 1 can be either even or odd.

Case k + 1 = 2i + 1: We make sure that xi is in the domain of fk+1.

If xi is in the domain of fk, let fk+1 = fk. If not, let α1, . . . , αm list the domain of fk and

let ϕ(α1, . . . , αm, xi) = 0 where ϕ ∈ Φm+1. Since N |= TU , for ε = 1/2 there is δ(ε) such

that σ(ε, δ) holds, and then we can find z1 ∈ N such that ϕ|m( fk(α1), . . . , fk(αm)) < δ→
ϕ( fk(α1), . . . , fk(αm), z1) < ε. Since ϕ|m(α1, . . . , αm) = 0, so ϕ|m( fk(α1), . . . , fk(αm)) = 0,

and then

ϕ( fk(α1), . . . , fk(αm), z1) <
1
2

.

Now let ϕ∗ ∈ Φm+2 such that ϕ∗(α1, . . . , αm, xi, xi) = 0. Since N |= TU and for ε = 1/4,

repeating above argument we find z2 ∈ N such that

ϕ∗( fk(α1), . . . , fk(αm), z1, z2) < 1/4.

In particular, d(z1, z2) < 1/4, but also ϕ( fk(α1), . . . , fk(αm), z2) < 1/4. In general, find

zt+1 such that ϕ∗( fk(α1), . . . , fk(αm), zt, zt+1) < 1/2t+1. Hence the sequence (zt) in N is a

Cauchy sequence since d(zt, zt+1) < 1/2t+1. Let its limit be z, so ϕ( fk(α1), . . . , fk(αm), z) =

0 since ϕ( fk(α1), . . . , fk(αm), zt) < 1/2t.

Extend fk to fk+1 by taking fk+1(xi) = z. Then fk+1 satisfies (∗).

1 A character density of X is the minimum cardinality of the dense subsets of it.
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Case k + 1 = 2i + 2: We make sure that yi is in the range of fk+1. Work as above by

letting β1, . . . , βm list the range of fk, letting ϕ(β1, . . . , βm, yi) = 0 and finding w ∈ M
such that ϕ( f−1

k (β1), . . . , f−1
k (βm), w) = 0, so take fk+1(w) = yi. Then fk+1 satisfies (∗).

Let f̂ =
∞⋃

k=0

fk. We have constructed a isometry between countable dense subsets of

M and N that extends f and satisfy (∗). In addition, we obtain an isometry F between

M and N from f̂ by using completeness. ThusM∼= N and TU is ℵ0-categorical.

This proof is the so-called “back-and-forth” method.

5.2.2 TU admits quanti�er elimination.

Definition. ([2], Definition 13.1) An L-formula ϕ(v1, ..., vn) is approximable in a theory T by

quantifier-free formulas if for every ε > 0 there is a quantifier-free L-formula ψε(v1, ..., vn)

such that for allM |= T and all a1, ..., an ∈ M, one has

|ϕM(a1, ..., an)− ψMε (a1, ..., an)|≤ ε.

An L-theory T admits quantifier elimination if every L-formula is approximable in T

by quantifier-free formulas.

Now, let us show that TU has quantifier elimination.

Proof. (We quote verbatim [7]). Given a = (a1, ..., an) ∈ U and C ⊆ U note that the

quantifier-free type 2 of a over C is entirely determined by the following quantifier-free

set of formulas (see below):

{d(vi, vj) = d(ai, aj) : 1 ≤ i, j ≤ n} ∪ {d(vi, c) = d(ai, c) : 1 ≤ i ≤ n, c ∈ C}.

We use Proposition 13.2 and Lemma 13.5 in [2].

Proposition 5.2. (Proposition 13.2). Let ϕ(v1, ..., vn) be an L-formula. The following state-

ments are equivalent.

2 In a quantifier-free type its L-conditions involved have quantifier-free formulas.
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(1) ϕ is approximable in T by quantifier-free formulas;

(2) Whenever we are given

• modelsM and N of T;

• substructuresM0 ⊆M and N0 ⊆ N ;

• an isomorphism Φ fromM0 onto N0; and

• elements a1, · · · , an ofM0;

we have

ϕM(a1, · · · , an) = ϕN (Φ(a1), · · · , Φ(an)).

Moreover, for the implication (2)⇒ (1) it suffices to assume (2) only for the cases in whichM0

and N0 are finitely generated.

Lemma 5.3. (Lemma 13.5). Suppose that T is an L-theory and that every restricted L-formula

of the form infv ϕ, with ϕ quantifier-free, is approximable in T by quantifier-free formulas. Then

T admits quantifier elimination.

Fix a quantifier-free formula ϕ(x, v1, ..., vn). We want to show that the formula

infx ϕ(y, v̄) is approximable in TU by quantifier-free formulas. Fix M,N |= TU , sub-

structuresM0 ⊆M and N0 ⊆ N , an isomorphism Φ fromM0 onto N0, and elements

a1, ..., an ∈ M0. It suffices to show that for any ε > 0,

infNx ϕ(x, Φ(a1), ..., Φ(an)) < infMx ϕ(x, a1, ..., an) + ε.

Let b ∈ M be such that ϕM(b, a) < infMx ϕ(x, ā) + ε. Note that, since Φ is an isometry,

the space X = {x, Φ(a1), ..., Φ(an)} with d(Φ(ai), Φ(aj)) = d(ai, aj) and d(x, Φ(ai)) = d(b, ai)

is a metric space.

Therefore the type

{d(x, Φ(ai)) = d(b, ai) : 1 ≤ i ≤ n}

is realized by some c ∈ N (N |= TU and the reasoning in 5.2.1 shows that the distance

matrix is realized in N ). Then Φ extends to an isomorphism from {a1, ..., an, b} to

{Φ(a1), ..., Φ(an), c}. Therefore ϕ(c, Φ(ā)) = ϕ(b, ā), since ϕ(x, v̄) is quantifier-free. It

follows that

infNx ϕ(x, Φ(ā)) ≤ ϕ(c, Φ(ā)) = ϕ(b, ā) < infMx ϕ(x, ā) + ε,
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as desired.

5.2.3 TU is the model completion of the empty L-theory.

A model completion of a theory T1 is a theory T2 satisfying three properties:

(i) Every model of T1 can be extended to a model of T2, and every model of T2 can

be extended to a model of T1.

(ii) T2 is a model complete, that is, every embedding between models of T2 is elemen-

tary.

(iii) IfM is a model of T1, then T2 plus the atomic conditions which hold inM form

a complete theory.

By unravelling that, the statement about the theory of the Urysohn space means:

every complete metric space can be embedded in a model of TU (which need not be U
itself) and such embedding is unique; plus every embedding between models of TU is

elementary 3, i.e., TU has universal axioms, that is, axioms of the form sup− sup− . . .−
sup-formula.

5.2.4 TU is the theory of existentially closed metric spaces of diameter bounded by 1.

This is a concept borrowed from algebra: A field K is algebraically closed if every

polynomial with coefficients in K and root in a extension of K already has a root in

K itself. In classical logic, a structure M is existentially closed if any formula with

parameters inM which is satisfied in some extension ofM already is satisfied inM
itself.

For continuous logic, this is written exactly the same way in Definition 18.15 in [2], but

with a difference: the inf quantifier is not an existence quantifier. Then U is existentially

closed because of quantifier elimination, and parameters in the approximate formula

form a finite metric subspace.

3 An elementary embedding ofM into N is a function F formula value preserving.
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5.2.5 Types are completely determined by distances.

First, let us define what a type is.

IfM is a L-structure, A ⊂M, and ā ∈ M, we say that the set {L(A)− conditions E(v̄) :

M |= E(ā)} is a n-type and we denote it by tpM(ā/A).

Thus, we have

tpU (ā/C) = {d(vi, vj) = d(ai, aj) : 1 ≤ i, j ≤ n} ∪ {d(vi, c) = d(ai, c) : 1 ≤ i ≤ n, c ∈ C}.

Now, let us see an interesting fact.

Fact. tpM(ā) = tpM(b̄) if and only if (MA, ā) ≡ (MA, b̄) 4.

Since tpM(ā) = { condition E(v̄) in L(A) :M |= E(ā)}.
Assume tpM(ā) = tpM(b̄). Let ϕ be a formula and let k = ϕM(ā) ∈ [0, 1]. Take condition

E(v̄) : |ϕ(v̄)− k|= 0, so E(v̄) ∈ tpM(ā), so E(v̄) ∈ tpM(b̄), so N |= E(b̄), so |ϕN (b̄)− k|= 0,

then ϕM(ā) = ϕN (b̄). Do that for every ϕ in L to obtain (M, ā) ≡ (N , b̄).

Conversely, assume (M, ā) ≡ (N , b̄).

If E(v̄) ∈ tpM(ā) then E(v̄) is of the form ϕ(v̄) = k, so ϕM(ā) = k, so ϕN (b̄) = k, then

E(v̄) ∈ tpM(b̄) (respectively for ϕ(v̄) ≤ k and ϕ(v̄) ≥ k).

Then types are completely determined by distances in U , because homogeneity of U
ensures that if ā, b̄ have the same distance metric with regard to a finite set {a1, . . . , an},
then there is an isometry taking ā to b̄, so (U , ā) ≡ (U , b̄).

Finally, we can state the definition of an ω-saturated structure: M is ω-saturated if

for every finite A ⊆M, any type p which is finitely realized inM is also realized inM.

By p finitely realized inM we mean: every finite subset of p is realized inM. It follows

that the inf quantifier works as ∃ in ω-saturatedM, because ifM |= infx ϕ(x) = 0 then

the type {ϕ(x) ≤ 1
n : n ∈N} is finitely realized inM, and so it is realized inM.

4 M and N are elementarily equivalent (M≡ N ), if σM = σN for all L-sentences σ.
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