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RESUMO

Nos últimos duzentos anos houve muitas inovações nas comunicações que ajudaram

as pessoas no mundo todo a se conectar. Porém, ainda lidamos com o problema

fundamental da comunicação, reproduzir num ponto exatamente ou aproximadamente

a mensagem enviada desde outro ponto. Deste problema, novos ramos da matemática

foram criados, tais como a Teoria de Códigos e a Teoria da Informação.

Na primeira parte desta tese estudamos "códigos nilpotentes" e tratamos do problema

da equivalência entre códigos. Além disso, damos condições para a equivalência

monomial entre códigos numa álgebra de grupo; em particular para códigos cíclicos.

No caso dos códigos minimais nilpotentes é dada uma condição suficiente para serem

equivalentes por permutação a códigos abelianos.

A segunda parte é dedicada a apresentar um método diferente para computar o

número de componentes simples de uma álgebra de grupo "twisted". Além disso,

calculamos os idempotentes centrais primitivos de uma álgebra de grupo "twisted"

de um grupo cíclico e, na última parte, damos um exemplo de idempotentes de uma

álgebra de grupo "twisted".

Palavras-chave: Teoria de Códigos, Álgebras de Grupo, Álgebras de Grupo Twisted,

Códigos Constacíclicos.
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ABSTRACT

In two hundred years many innovations in communication have helped people all

over the globe to connect. However, we still deal with the fundamental problem of

communication, reproducing at one point either exactly or approximately a message

send from another point. From this problem, new branches of mathematics were created,

such as Coding Theory and Information Theory.

In the first part of this thesis, we study "nilpotent codes" and approach the problem of

permutation equivalence between codes. In addition, we give conditions for monomial

equivalence between codes in a group algebra; in particular to cyclic codes. In the

case of minimal nilpotent codes a sufficient codition is given for being permutation

equivalent to abelian codes.

The second part is devoted to present a different method of computing the number of

simple components of a twisted group algebra. In addition, we compute the centrally

primitive idempotents of the twisted group algebras of a cyclic group and in the last

part we provide an example of idempotents in twisted group algebras.

Keywords: Coding Theory, Group Algebras, Twisted Group Algebras, Constacyclic

Codes.

xv





CONTENTS

1 preliminaries 7

1.1 Solvable and Nilpotent Groups 9

1.2 Permutation Groups 10

1.3 Cohomology of Groups 11

1.4 Crossed products and group rings 12

1.5 Semisimple Rings 14

1.6 Codes 16

2 nilpotent codes 19

2.1 Essential Idempotents 21

2.2 Group Codes Equivalence 29

2.3 Minimal Nilpotent Codes 35

2.4 Computation considerations 41

3 constacyclic codes and constabelian codes 45

3.1 The number of simple components 47

3.2 Minimal idempotents of FγCn 62

3.3 An Example 68

xvii





TABLE OF NOTATIONS

N Natural numbers

Z Integer numbers

Im( f ) Image of map f

Mn(R) Full n× n matrix ring over the ring R

dimF(V) Dimension of the F-vector space V

SpanF(X) Linear subspace generated by X over F

Fq Finite field with q elements

char(F) Characteristic of F

|G| Order of the group G

Z(G) Center of the group G

CG(X) Centralizer of the X ⊂ G

Cn Cyclic group of order n

Dn Dihedral group of order 2n

Sn Symmetric group of degree n

Q8 Quaternion group

A o B Semidirect product of the groups A and B
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INTRODUCTION

Communication is an essential part of life and along the centuries many inventions

enabled people to get their messages through. Nowadays, we use inventions such as

cell phones, internet, email, wearable technology, virtual reality and mobile network

to connect with the world in the blink of an eye. However, we expect not just to send

and receive messages instantaneously, but achieve a reliable data transmission. For

this reason of “doing things right”, R. W. Hamming in 1947 established the modern

theory of error-correcting codes by giving a method of constructing efficient codes,

even though the first mention of the modern approach to codes and the Hamming’s

method appears in the paper “A Mathematical Theory of Communication” [45] by C. E.

Shannon in 1948, which is the genesis of Information theory.

In his article, Shannon proved that ’good’ error correcting codes exist, but his proof

gave no hints on how to construct them. In 1949, M. Golay generalize the (7, 4)-code

presented in Shannon’s article to all other Hamming codes, prompting a dispute over

the actual creator of this family of codes. Golay invented four additional codes, of which

two are perfect codes. One of these, a tertiary (23, 12)-code denoted G23 introduces a

non-binary code in the literature and Cocke, a decade later, introduced codes in the

case where the symbols are taken from an arbitrary finite field.

In 1950, due to patent delays, Hamming in [19] created codes that enabled computers

to correct occurring error in transmissions and, as we said before, establish the modern

theory of error correcting codes. In his paper, Hamming defines the concept of sys-

tematic codes, parity check, Hamming distance, equivalent codes and apply concepts

of linear algebra and metric topology in the theory of error correcting codes. It is

worth mentioning that the notion of equivalence of codes was explored by Fontaine

and Prange in 1959 by considering codes as vector spaces and using the concept of

“combinatorial equivalence” of matrices defined by Tucker [48].

In 1957, E. Prange was the first person to study an important class of codes, the

cyclic codes [38] and in [34] W. W. Peterson and D. T. Brown introduced cyclic codes

from a new viewpoint, the well-known algebraic description of cyclic codes as ideals

in the algebra of polynomials modulo Xn − 1. In the same year, H. F. Mattson and

3
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G. Solomon [27] obtain a new class of codes, the pseudo-cyclic codes, by associating

every code word of odd length p with a certain polynomial. Later on, the pseudo-

cyclic codes were defined as ideals in the algebra of polynomials modulo some monic

polynomial f (X) ∈ F[X] (See [35]). Constacyclic codes were defined by Berlekamp [2]

as a particular case of pseudo-cyclic codes, when f (X) is a binomial. Constacyclic codes

are an extension of cyclic and negacyclic codes, which were introduced by E. Berlekamp

[3].

Blake started to study cyclic codes over Zm in 1972 and presented generalized notions

of Hamming codes, Reed-Solomon codes and BCH codes over arbitrary integer residue

rings [6]. Spiegel in [47] continued this work, concentrating on BCH codes involving

group algebras over rings of p-adic integers. Shankar [44] considered BCH codes over

integer residue rings as well, but started with monic divisors of Xn − 1 in R[X] used as

generator polynomials for these codes.

Slepian [46] introduced the theory of group codes, considering sequences of binary

digits as elements of a group. In 1967, generalizing the study of cyclic codes, the russian

mathematician S. D. Berman [5] introduced the abelian codes, a more general class of

codes using the concept of group algebra. In this paper, Berman proved that the well

known Reed-Muller codes over GF(2) are also a particular case of abelian codes and

used the methods of the finite group representations theory to study of abelian codes.

Afterwards, the Generalized Reed-Muller codes were described by Chapin [9] as ideals

in abelian group algebras over GF(p) and by Landrock and Manz [24] as abelian group

algebras over GF(q), where p is a rational prime integer and q is a power of a prime.

In 2009, Bernal, Del Río and Simón obtained a criterion to decide when a linear code

is a group code and as an application they provided a family of groups for which every

two-sided group code is an abelian group code. They also proved that Reed-Solomon

codes are cyclic, the parity check extensions of Reed-Solomon codes are elementary

abelian group codes and determine the Cauchy codes which are left group codes.

In the same paper [4], they introduced the concept of an abelian decomposition for

an arbitrary group G, and showed that if G has an abelian decomposition then every

G-code is an abelian code. So, some natural questions arise: under which conditions

a G-code is an abelian code? A cyclic code? When all minimal G-codes are abelian?

When G is nilpotent, do there exist G-codes which are not equivalent to an abelian

code? Some counterexamples to the last question were provided by [30], [31] and [36].
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In this thesis we shall approach the other questions and explore in more details the

nilpotent case. In addition, we will study codes that are actually better than cyclic and

abelian codes, the constacyclic codes.

In the first chapter we provide the definitions of nilpotent groups, permutation

groups and cohomology of groups. In addition, we cover all the background on crossed

product, group rings and codes that will be needed in the rest of this thesis.

The next two chapters contains the actual work of the author. In Chapter 2 we shall

study essential idempotents which were introduced by G. Chalom, R. Ferraz and C.

Polcino [8] in order to provide non repetition codes, since repetition codes have bad

performance and low rate of transmission. Furthermore, we will present conditions for

monomial equivalence between codes in a group algebra and cyclic codes. Finally, in the

two last sections, we shall study permutation equivalence between minimal nilpotent

codes and abelian codes and provide some computations considerations.

Chapter 3 contains results about constacyclic codes when these are considered as

ideals in a twisted group algebra or ideals in the algebra of polynomials modulo Xn− λ.

In the first section we present a different method of computing the number of simple

components of a twisted group algebra. Then, we determine necessary and sufficient

conditions for the set of minimal idempotents of the twisted group algebra FγG to

coincide with the set of minimal idempotents of a subalgebra which is group algebra.

Finally, in the last section, we show how to compute the minimal idempotents in twisted

group algebras by providing an example.





1 PREL IMINARIES

7





PREL IMINARIES

In this chapter we gather the needed background. We introduce notation and conven-

tions which will be used throughout this thesis. In most cases we do not provide a

proof, but we give classical references where it can be found.

1.1 solvable and nilpotent groups

Let G be a group. A normal series for G is a chain of subgroups

G = G1 ⊃ G2 ⊃ · · · ⊃ Gr = {1}

in which Gi+1 C Gi, 1 ≤ i ≤ r− 1. The factors of the normal series are the factor groups

G1/G2, · · · , Gr−1/Gr. We say that G is solvable if G has a normal series in which all of

the factor groups are abelian.

Theorem 1.1.1. [37, p.29]

1. Subgroups of solvable groups are solvable.

2. Homomorphic images of solvable groups are solvable.

3. If H C G is such that both H and G/H are solvable, then G is also solvable.

We say that H is a minimal normal subgroup of G if H C G and between H and the

identity subgroup there are no other normal subgroup of G.

The (ascending) central series of a finite group G is the sequence of subgroups

{1} = Z0 ⊂ Z1 ⊂ Z2 ⊂ · · ·

where Zi+1 is the uniquely determined normal subgroup of G such that Zi+1/Zi is the

center of G/Zi. We call G nilpotent if G = Zn for some n.

Lemma 1.1.2. [37, Lemma 1.5.12] Subgroups and factor groups of nilpotent groups are nilpotent.

9
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If x and y are elements of a group G, their commutator [x, y] is defined by

[x, y] = x−1y−1xy.

The subgroup of G generated by all commutators [x, y], x, y ∈ G, is called the commutator

subgroup of G and is denoted by G′.

Proposition 1.1.3. [37, p.33] The following statements are true for nilpotent groups:

1. A finite p-group is nilpotent.

2. Finite direct products of nilpotent groups are nilpotent.

3. If {1} 6= H C G then H ∩ Z(G) 6= {1}.

4. A minimal nontrivial normal subgroup of a nilpotent group is contained in its center.

The following is a useful characterization of finite nilpotent groups.

Theorem 1.1.4. [37, Theorem 1.5.21] Let G be a finite group. Then, the following conditions

are equivalent:

1. G is nilpotent.

2. Every Sylow subgroup of G is normal in G.

3. G is the direct product of its Sylow subgroups.

1.2 permutation groups

If X is a nonempty set, a subgroup G of the symmetric group SymX is called a

permutation group on X.

Definition 1.2.1. The permutation group G is called transitive if, given any pair of

elements x, y of X, there exists a permutation π in G such that π(x) = y. The stabilizer

of x in G is

StG(x) = {σ ∈ G|σ(x) = x}.

The permutation group G is said to be semiregular if StG(x) = {1} for all x ∈ X. A

regular group is one that is both transitive and semiregular.
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Theorem 1.2.2. [42, Theorem 1.6.1] Let G be a permutation group on a set X.

1. Let x ∈ X. Then the mapping StG(x) 7→ π(x) is a bijection between the set of right cosets

of StG(x) and the orbit of x. Hence the latter has cardinality [G : StG(x)].

2. If G is transitive, then |G| = |X||StG(x)| for all x ∈ X.

3. If G is regular, then |G| = |X|.

Let X be the set {1, · · · , n}. Then by the Theorem 1.2.2, the subgroup G of Sn is

regular if and only if it is transitive and of order n (equivalently, |G| = n and σ(x) 6= x

for every 1 6= σ ∈ G and x ∈ X).

For a positive integer n denote Nn = {1, 2, · · · , n}. The next result is an important

technical tool.

Lemma 1.2.3. [4, Lemma 1.1] Let H be a regular subgroup of Sn and fix an element i0 ∈Nn.

Let ψ : H → Nn be the bijection given by ψ(h) = h(i0). Then there is an anti-isomorphism

σ : H → CSn(H), mapping h ∈ H to σh, where

σh(i) = ψ−1(i)(h(i0)) (i ∈Nn).

Moreover σh = h for every h ∈ Z(H) and so Z(H) = Z(CSn(H)).

1.3 cohomology of groups

Assume that G acts on an abelian group A. A map

γ : G× G → A

is called a 2-cocycle if for all g, h, k ∈ G

γ(g, h)γ(gh, k) = γ(h, k)gγ(g, hk)

Let Z2(G, A) denote the set of all 2-cocycles of G with coefficients in the G-module A.

If γ1 and γ2 are 2-cocycles, then their product γ1γ2 defined by

(γ1γ2)(g, h) := γ1(g, h)γ2(g, h), g, h ∈ G
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is again a 2-cocycle. It follows that Z2(G, A) constitutes an abelian group. The identity

element of Z2(G, A) is the 1-valued 2-cocycle and the inverse γ−1 of γ is given by

γ−1(g, h) := γ(g, h)−1 for all x, y ∈ G.

Let t : G → A be any map such that t(1) = 1. Then the map

δt : G× G → A

defined by

δt(g, h) = t(h)gt(g)t(gh)−1 g, h ∈ G

is a 2-cocycle. We shall refer to δt as a coboundary and denote by B2(G, A) the set of all

coboundaries. In addition, we say that the 2-cocycles γ and γ̃ are cohomologous if there

exist a coboundary δt such that γ(g, h) = δt(g, h)γ̃(g, h) for all g, h ∈ G.

It is straightfoward to verify that B2(G, A) is in fact a subgroup of Z2(G, A). The

corresponding factor group

H2(G, A) =
Z2(G, A)

B2(G, A)

is called the second cohomology group of G over A. The elements of H2(G, A) are called

cohomology classes. For any f ∈ Z2(G, A), we usually write [ f ] for the cohomology class

of f .

Definition 1.3.1. Let G and H be two groups and α ∈ Z2(G, F∗), β ∈ Z2(H, F∗). Define

γ = α× β ∈ Z2(G× H, F∗) by

γ((g, h), (g′, h′)) = α(g, g′).β(h, h′),

for all (g, h), (g′, h′) ∈ G× H.

1.4 crossed products and group rings

From now on, let R be a ring with unity and let G be a group. Then the crossed product

R ∗ G of G over R is an associative ring which contains R and has as an R-basis the

set G, a copy of G. Thus each element of R ∗ G is uniquely a finite sum ∑
g∈G

agg with
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ag ∈ R. Addition is as expected and multiplication is determined by the two rules below.

Specifically for g, h ∈ G we have

gh = γ(g, h)gh (twisting)

where γ ∈ Z2(G, R∗). Furthermore for g, h ∈ G and r ∈ R we have

gr = rη(g)g (action)

where η : G → Aut(R) is a homomorphism. We sometimes also denote the crossed

product by R ∗γ
η G.

Certain special cases of crossed products have their own names. If there is no action

or twisting, that is if η(g) = 1 and γ(g, h) = 1 for all g, h ∈ G, then R ∗γ
η G = RG is an

ordinary group ring. In case where R is commutative, RG is also called the group algebra

of G over R. If the action is trivial, then R ∗γ
η G = RγG is a twisted group ring. Finally if

the twisting is trivial, then R ∗γ
η G is a skew group ring.

In the case of twisted group algebras of cyclic groups, we will need the following

result.

Proposition 1.4.1. [22, Proposition 2.2.1] Let F be an arbitrary field and G a cyclic group of

order n generated by g, let γ ∈ Z2(G, F∗) and let λ =
n

∏
i=1

γ(g, gi). Then

FγG ∼=
F[X]

〈xn − λ〉 as F-algebras.

Lemma 1.4.2. [22, Lemma 3.6.1] Let G and H be groups, let F be an arbitrary field, and let

α ∈ Z2(G, F∗), β ∈ Z2(H, F∗). Then

FαG⊗F FβH ∼= Fα×β(G× H) as F-algebras.

Given an element α = ∑
g∈G

agg ∈ R ∗γ
η G we define the support of α to be the subset of

elements in G that appear effectively in the expression of α, that is:

supp(α) = {g ∈ G : ag 6= 0}.

We shall now consider the case when R ∗γ
η G = RG is a group ring. Let H be a

subgroup of G. We shall denote ∆R(G, H) (or simply ∆(G, H)) the left ideal of RG

generated by the set {h− 1 : h ∈ H}, that is,

∆(G, H) =

{
∑

h∈H
ah(h− 1) : ah ∈ RG

}
.
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If H C G, then the canonical homomorphism ω : G → G/H can be extended to an

epimorphism ω∗ : RG → R(G/H) such that

ω∗
(

∑
g∈G

agg

)
= ∑

g∈G
agω(g).

Since Ker(ω∗) = ∆(G, H), we have that ∆(G, H) is a two-sided ideal of RG and

RG
∆(G, H)

∼= R(G/H).

If H 6= {1} is a normal subgroup of G such that |H| is invertible in R, we define

Ĥ =
1
|H| ∑

h∈H
h ∈ RG.

Proposition 1.4.3. [37, Proposition 3.6.7] Let R be a ring and let H be a normal subgroup of a

group G. If |H| is invertible in R then

RG = RGĤ ⊕ RG(1− Ĥ)

where

RGĤ ∼= R(G/H) and RG(1− Ĥ) = ∆(G, H).

1.5 semisimple rings

An R-module M is called semisimple if every submodule of M is a direct summand. A

ring R is called semisimple if the module RR is semisimple. A left ideal I of R is minimal

if every non-zero left ideal J of R included in I coincides with I; similarly for right and

two-sided ideals.

Theorem 1.5.1. [37, Theorem 2.6.4] Let R be a semisimple ring and Ai, 1 ≤ i ≤ s, all minimal

two-sided ideals of R. Then:

1. Ai Aj = (0) if i 6= j.

2. R = ⊕s
i=1Ai as rings, where s is the number of isomorphic classes of minimal left ideals of

R.

Proposition 1.5.2. [37, Theorem 2.6.7] Let R = ⊕s
i=1Ai be the decomposition of a semisimple

ring R as a direct sum of minimal ideals two-sided. Then
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1. Every two-sided ideal I of R can be written in the form I = Ai1 ⊕ · · · ⊕ Ait , where

1 ≤ i1 < · · · < it ≤ s.

2. If R = ⊕s
i=1Bi is another decomposition of R into a direct sum of minimal two-sided

ideals, then s = r and, after a possible renumbering of the indices, Ai = Bi, for all i.

Definition 1.5.3. The unique minimal two-sided ideals of a semisimple ring R are called

the simple components of R.

Theorem 1.5.4. [37, Theorem 2.6.9] Let R = ⊕s
i=1Ai be a decomposition of a semisimple ring

as a direct sum of minimal two-sided ideals. Then, there exists a family {ei, · · · , es} of elements

of R such that:

1. ei 6= 0 is a central idempotent, 1 ≤ i ≤ s.

2. If i 6= j then eiej = 0.

3. 1 = e1 + · · ·+ es.

4. ei cannot be written as ei = e∗i + e∗∗i where e∗i , e∗∗i are central idempotents such that

e∗i , e∗∗i 6= 0 and e∗i e∗∗i = 0, 1 ≤ i ≤ s.

Definition 1.5.5. The elements of {ei, · · · , es} in the theorem above are called the centrally

primitive idempotents of R.

Theorem 1.5.6 (Wedderburn-Artin). [37, Theorem 2.6.18] A ring R is semisimple if and only

if is isomorphic to a direct sum of matrix algebras over division rings:

R ∼= Mn1(D1)⊕ · · · ⊕Mns(Ds).

Now, we shall concentrate on semisimple group rings and semisimple twisted group

algebras.

Theorem 1.5.7 (Maschke). [37, Theorem 3.4.7] Let G be group. Then, the group ring RG is

semisimple if and only if the following conditions hold:

1. R is a semisimple ring.

2. G is finite.

3. |G| is invertible in R.
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Theorem 1.5.8. [22, Theorem 3.3.6] Let F be an arbitrary field of characteristic p ≥ 0, let G be

a finite group and let γ ∈ Z2(G, F∗). Then the following conditions are equivalent:

1. R = FγG is a semisimple ring.

2. p = 0 or p > 0 and there exists an abelian Sylow p-subgroup P of G, say of order pn,

n ≥ 0, such that the elements gpn
with g ∈ P are Fpn

-linearly independent.

1.6 codes

Let F be a finite field with q elements. Let Fn denote the vector space of all n-tuples

over F. An (n, k) linear code C over F is a subspace of Fn of dimension k. The Hamming

distance d(x, y) between two vectors x, y ∈ Fn is defined to be the number of coordinates

in which x and y differ. The minimum distance of a code C is the smallest distance

between distinct codewords. The Hamming weight wt(x) of a vector x ∈ Fn is the

number of nonzero coordinates in x. The minimum weight of a code C is the weight of

the lowest-weight non-zero codeword. Since we only work with the Hamming distance

and Hamming weight in this thesis, we shall ommit the use of the word "Hamming".

Theorem 1.6.1. [26, Theorem 1.1] If x, y ∈ Fn, then d(x, y) = wt(x− y). If C is a linear code,

the minimum distance d is the same as the minimum weight of the nonzero codewords of C.

By the last Theorem, the minimum distance of a linear code C is equal to the minimum

weight of C.

Let us consider the action of the symmetric group Sn on the n-dimensional space Fn

defined by:

σ(a1, · · · , an) := (aσ(1), · · · , aσ(n)) for all (a1, · · · , an) ∈ Fn. (1)

The codes C1, C2 ⊂ Fn are permutation equivalent if there exists a permutation σ ∈ Sn such

that C2 = σ(C1). For a given code C ⊂ Fn, the group of all permutations σ ∈ Sn such

that σ(C) = C is denoted by PAut(C). In addition, given σ ∈ Sn and λ1, · · · , λn ∈ F∗,

the map T : Fn → Fn defined by

T(a1, · · · , an) = (λ1aσ(1), · · · , λnaσ(n)) (2)

is called a monomial transformation of degree n. Note that, we may identify T with

Diag(λ1, · · · , λn).σ ∈ (F∗)n o Sn. Then, by Equation 2 we have an action of the group
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M(Fn) := (F∗)n o Sn on the set Fn. The codes C1, C2 ⊂ Fn are monomially equivalent

if there is a permutation σ ∈ Sn and a matrix M = Diag(λ1, · · · , λn) for which C2 =

M.σ(C1). Let C be a linear code in Fn. The group of all monomial transformations T of

degree n in M(Fn) for which T(C) = C is denoted by MAut(C).

Let G = {g0 = 1, g1, ..., gn−1} be a finite group. Any (left) ideal I of the group algebra

FG defines a (left) group code K(I) of length n over F by the rule

(a0, · · · , an−1) ∈ K(I)⇔ a0g0 + a1g1 + · · ·+ an−1gn−1 ∈ I.

Any code that is permutation (monomially) equivalent to K(I) for some (left) ideal I of

the algebra FG is called a (left) G-code (G-mcode).

Theorem 1.6.2. [4, Lemma 1.2] Let C be a linear code of length n over a finite field F and G a

finite group of order n.

1. C is a left G-code if and only if G is isomorphic to a transitive subgroup H of Sn contained

in PAut(C).

2. C is a G-code if and only if G is isomorphic to a transitive subgroup H of Sn such that

H ∪ CSn(H) ⊂ PAut(C).

By the action of M(Fn) := (F∗)n o Sn on Fn, we obtain a homomorphism

φ : M(Fn)→ Sn, φ(M.σ) = σ (3)

Theorem 1.6.3. [30, Theorem 1] Let C be a linear code of length n over a finite field F and let

G be a finite group of order n. Moreover, let φ be the homomorphism given in Equation 3. Then,

it holds:

1. C is a left G-mcode if and only if G is isomorphic to a subgroup of H ≤ MAut(C) such

that φ(H) is a regular subgroup of Sn.

2. C is a G-mcode if and only if G is isomorphic to a subgroup H ≤ MAut(C) such that

H ∪ CM(Fn)(H) ⊂ MAut(C) and φ(H) is a regular subgroup of Sn.

Let B = {v0, · · · , vn−1} be an ordered basis of an algebra A over Fq. We shall think

codes as ideals of A. For an element α in the algebra A, the Hamming weight of α is the

number of elements in its support; i.e., if α =
n−1

∑
i=0

αivi, then

w(α) =| {i | αi 6= 0} | .
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The Hamming distance d on A is defined as

d(α, α′) = w(α′ − α).

for α, α′ ∈ A.

The weight or the minimum distance of an ideal I in A is

w(I) = min{w(α) | α 6= 0, α ∈ I}.

A code C is cyclic of length n if it is linear and whenever (a0, · · · , an−1) is in C then

so is (an−1, a0 · · · , an−2). Note that the cyclic codes of length n are Cn-codes. However,

not every Cn-code is a cyclic code.



2 NILPOTENT CODES
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NILPOTENT CODES

In this chapter we shall begin by studying essential idempotents, which will be our

main tool in the study of permutation equivalence between codes. In addition, we

will give conditions for monomial equivalence between codes in a group algebra and

cyclic codes. Finally, for minimal nilpotent codes, a sufficient condition for permutation

equivalence to abelian codes will be presented.

2.1 essential idempotents

Let G be a finite group and R a commutative finite ring with unity. If H 6= {1} is a

normal subgroup of G such that |H| is invertible in R, then

Ĥ =
1
|H| ∑

h∈H
h,

is a central idempotent of RG and

RG = RG.Ĥ ⊕ RG.(1− Ĥ).

where RG.(1 − Ĥ) = ∆(G, H) and RG.Ĥ ∼= R(G/H). Notice that, if H ⊂ K are

subgroups of G, then ĤK̂ = K̂.

Example 2.1.1. Let C6 = 〈g〉. The normal subgroups of C6 are:

H1 = {1}, H2 = {1, g2, g4}, H3 = {1, g3}, H4 = C6.

Then

Ĥ1 = 1

Ĥ2 = 2 + 2g2 + 2g4

Ĥ3 = 3 + 3g3

Ĥ4 = 1 + g + g2 + g3 + g4 + g5.

21
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are central idempotents of F5C6. So we consider the ideal generated by Ĥ2

F5C6Ĥ2
∼= F5C2 (4)

with {Ĥ2, g3Ĥ2} a basis over F5. The complement of F5C6Ĥ2 is

F5C6(1− Ĥ2) = ∆(C6, H2) (5)

which has a basis {1− g2, 1− g4, g3 − g5, g3 − g} over F5.

Example 2.1.2. Let D4 be the dihedral group of order 8 and presentation

〈a, b|a4 = b2 = 1, bab = a−1〉.

The normal subgroups of D4 are:

K1 = {1}, K2 = {1, a2}, K3 = {1, a, a2, a3}

K4 = {1, a2, b, a2b}, K5 = {1, a2, ab, a3b}, K6 = D4.

Then, we have the following central idempotents of F3D4:

K̂1 = 1

K̂2 = 2 + 2a2

K̂3 = 1 + a + a2 + a3

K̂4 = 1 + a2 + b + a2b

K̂5 = 1 + a2 + ab + a3b

K̂6 = 2(1 + a + a2 + a3 + b + ab + a2b + a3b).

The ideals which are generated by these idempotents and their respective complements

are

F3D4K̂1 = F3D4 and F3D4(1− K̂1) = (0); (6)

F3D4K̂2
∼= F3(C2 × C2) and F3D4(1− K̂2) = ∆(D4, K2); (7)

with basis {K̂2, bK̂2, aK̂2, abK̂2} and {1− a2, b− a2b, a− a3, ab− a3b}, respectively;

F3D4K̂3
∼= F3C2 and F3D4(1− K̂3) = ∆(D4, K3); (8)

with basis {K̂3, bK̂3} and {1− a, 1− a2, 1− a3, b− a3b, b− a2b, b− ab}, respectively;

F3D4K̂4
∼= F3C2 and F3D4(1− K̂4) = ∆(D4, K4); (9)

with basis {K̂4, aK̂4} and {1− a2, 1− b, 1− a2b, a− a3, a− ab, a− a3b}, respectively.
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Example 2.1.3. Let S4 with presentation

< a, b, c, d|a2 = b2 = c3 = d2 = 1, cac−1 = dad = ab = ba, cbc−1 = a, bd = db, dcd = c−1 > .

For future use, we shall use the notations a := (1, 2)(3, 4), b := (1, 3)(2, 4), c := (1, 2, 3)

and d := (1, 2).

The normal subgroups of S4 are:

L1 = {1}, L2 =< a, b, c >∼= A4,

L3 =< a, b >∼= K4, L4 = S4.

Then we have the following central idempotents:

L̂1 = 1

L̂2 = 3(1 + a + b + c + c2 + ab + ac + ac2 + bc + bc2 + abc + abc2)

L̂3 = 4(1 + a + b + ab)

L̂4 = Ŝ4.

The ideals which are generated by L̂2 and its complement are

F5S4 L̂2
∼= F5C2 and F5S4(1− L̂2) = ∆(S4, L2);

with basis {L̂2, dL̂2} and {t(1− h)|t ∈ {1, d}, h ∈ L2 \ {1}}, respectively.

Now, if α = ∑
g∈G

agg ∈ RGĤ, taking a transversal τ of H in G we can rewrite α as

α = ∑
t∈τ

αttĤ. (10)

Since Ĥ is central, it is a sum of centrally primitive idempotents called its constituents.

Suppose that e is a constituent of Ĥ. Since RGe ⊂ RGĤ, we have that α ∈ RGe implies

that α is of the form Equation (10). In terms of coding theory, this means that the

code given by the minimal ideal RGe is a repetition code. Note that, if e ∈ RG is a

centrally primitive idempotent then, for all H C G, we have eĤ = e or eĤ = 0. We shall

concentrate on the case that eĤ = 0, for all {1} 6= H C G.

Definition 2.1.1. Let G be a finite group and R a finite commutative ring for which RG

is semisimple ring. A centrally primitive idempotent e ∈ RG for which e.Ĥ = 0, for all

{1} 6= H C G, is an essential idempotent. A minimal ideal of RG is called an essential ideal

if it is generated by an essential idempotent and non essential otherwise.
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Example 2.1.4. The centrally primitive idempotents of F5C6 are:

e0 = Ĉ6

e1 = 1 + 4g + g2 + 4g3 + g4 + 4g5

e2 = 2 + 4g + 4g2 + 2g3 + 4g4 + 4g5

e3 = 2 + g + 4g2 + 3g3 + 4g4 + g5.

Since

Ĥ1 = e0 + e1 + e2 + e3

Ĥ2 = e0 + e1

Ĥ3 = e0 + e2

by Example 2.1.1, we get the constituents of Ĥ1, Ĥ2 and Ĥ3. Notice that e0Ĥ2 = e0,

e1Ĥ2 = e1, e2Ĥ3 = e2 and e3Ĥ2 = e3Ĥ3 = 0, so the primitive idempotent e3 is the unique

essential idempotent of F5C6. In addition, we get that

1− Ĥ1 = 0

1− Ĥ2 = e2 + e3

1− Ĥ3 = e1 + e3.

Example 2.1.5. The centrally primitive idempotents of F3D4 are:

e′0 = D̂4

e′1 = 2 + a + 2a2 + a3 + 2b + ab + 2a2b + a3b

e′2 = 2 + a + 2a2 + a3 + b + 2ab + a2b + 2a3b

e′3 = 2 + 2a + 2a2 + 2a3 + b + ab + a2b + a3b

e′4 = 2 + a2.

With the notation of Example 2.1.2, we express K̂i (0 ≤ i ≤ 6) as

K̂1 = e′0 + e′1 + e′2 + e′3 + e′4
K̂2 = e′0 + e′1 + e′2 + e′3

K̂3 = e′0 + e′3

K̂4 = e′0 + e′1
K̂5 = e′0 + e′2

K̂6 = e′0.
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In addition, we have

1− K̂1 = 0

1− K̂2 = e′4
1− K̂3 = e′1 + e′2 + e′4
1− K̂4 = e′2 + e′3 + e′4
1− K̂5 = e′1 + e′3 + e′4
1− K̂6 = e′1 + e′2 + e′3 + e′4.

Since e′0, e′1, e′2, e′3 are constituents of K̂2, we have e′iK̂2 = e′i, 0 ≤ i ≤ 3. In addition,

e′4K̂j = 0, for 2 ≤ j ≤ 6, which implies that e′4 is the unique essential idempotent of

F3D4.

Example 2.1.6. With the notations of the example 2.1.3, we can use GAP to compute the

centrally primitive idempotents of F5S4

f0 = Ŝ4;

f1 = −1 + d + cd + abc2d + c2d + bcd + ad− a− b− ab− c + c2

− bc2 − abc− abc2 − bc + abcd + ac2d + abd + bc2d− bd + acd;

f2 = 1 + a + b + ab− 3c− 3c2 + 3bc2 + 3abc− 3abc2 − 3bc;

f3 = 2(3− d− cd− abc2d− c2d− bcd− ad− a− b− ab + abcd + ac2d + abd + bc2d + bd + acd);

f4 = 2(3 + d + cd + abc2d + c2d + bcd + ad− a− b− ab− abcd− ac2d− abd− bc2d− bd− acd)

so, we can write L̂1, L̂2 and L̂3 as:

L̂1 = f0 + f1 + f2 + f3 + f4;

L̂2 = f0 + f1;

L̂3 = f0 + f1 + f2.

Furthermore, we can compute the idempotents

1− L̂1 = 0;

1− L̂2 = f2 + f3 + f4;

1− L̂3 = f3 + f4.

As f0, f1 and f2 are constituients of L̂3, we have fi L̂3 = fi for 0 ≤ i ≤ 2. Since

f3 L̂j = 0 = f4 L̂j for j = 2, 3, we have that f3 and f4 are essential idempotents of F5S4.
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We shall now highlight some results about essential idempotents in the case when

R = F is a finite field.

Proposition 2.1.2. [8, Proposition 2.3] Let e ∈ FG be a centrally primitive idempotent. Then e

is essential if and only if the map π : G → Ge, g 7→ ge, is an isomorphism of groups.

Theorem 2.1.3. [8, Corollary 2.4] If A is abelian and FA contains an essential idempotent,

then A is cyclic.

Corollary 2.1.4. [8, Corollary 2.5] Let A be an abelian group non-cyclic. Then, for every finite

field F, every minimal code of FA is a repetition code.

On the other hand, we also know that if G is a cyclic group, then FG always contains

an essential idempotent.

We shall show that similar results hold when G is a finite nilpotent group and F a

finite field for which FG is a semisimple. We begin with the p-group case.

Lemma 2.1.5. Let G be a p-group. Then G contains only one minimal normal subgroup if and

only if Z(G) is cyclic.

Proof. Let us first prove that every minimal normal subgroup is a central subgroup.

Let {1} 6= H be a normal minimal subgroup of G. Since G is nilpotent, G = Zn(G)

for some index n, there exists an index i which is the least positive integer such that

H ∩ Zi(G) 6= {1}. Then [H ∩ Zi(G), G] ⊂ H ∩ Zi−1(G) = {1} and thus H ∩ Zi(G) ⊂
H ∩Z(G). Since H is a minimal normal subgroup and {1} 6= H ∩Z(G) ⊂ H is normal,

it follows that H = H ∩ Z(G), i.e. H ⊂ Z(G).

Assume, by way of contradiction, that Z(G) is not cyclic. Then, there are H and K

two different minimal subgroups of Z(G). However, H and K are minimal normal

subgroups of G, a contradiction. Conversely, since every minimal normal subgroup of

G is a minimal subgroup of Z(G), if Z(G) is cyclic, then G contains only one minimal

normal subgroup.

The results in [8] can be extended as follows.

Proposition 2.1.6. If G is a p-group whose center is cyclic then FG contains at least one

essential idempotent.

Proof. Let G be a p-group whose center is cyclic. Then, G has a unique minimal normal

subgroup H of order p. In this case, take e0 = 1− Ĥ 6= 0. Since H is normal in G it
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follows that e0 is a central idempotent of FG, thus e0 = ∑
i

ei, where ei are centrally

primitive idempotents of FG. Let {1} 6= K be a normal subgroup of G. Since H is the

unique minimal normal subgroup of G, we have H ⊂ K which implies that e0K̂ = 0.

Then eiK̂ = eie0K̂ = 0, for all ei. Since e0 6= 0 we have that G has at least one essential

idempotent.

Let G be a nilpotent group and let F be the family of all minimal normal subgroups

of G. For a field F such that char(F) - |G|, we define

e(G) = ∏
K∈F

(1− K̂) ∈ FG.

Lemma 2.1.7. With the notation above, e(G) is the sum of all the essential idempotents of FG.

Proof. Let e be a minimal central idempotent of FG. If e is essential, we have:

e.e(G) = ∏
K∈F

e(1− K̂) = ∏
K∈F

e = e.

On the other hand, if e is not essential, there exists a normal subgroup H in G such that

eĤ = e. If K is a minimal normal subgroup of G contained in H we have

e(1− K̂) = eĤ(1− K̂) = eĤ − eĤK̂ = eĤ − eĤ = 0.

Consequently, e.e(G) = 0.

Since a minimal central idempotent e is a constituent of a central idempotent f if and

only if e f = e, the result follows.

We are now ready to extend Theorem 2.1.3 to the case when G is nilpotent.

Theorem 2.1.8. Let G = P1 · · · Pr be a nilpotent group with cyclic center in which Pi is the

Sylow pi-subgroup of G, 1 ≤ i ≤ r. Suppose that e is a centrally primitive idempotent of FG.

Then, e ∈ FG is an essential idempotent if and only if e.e(G) = e.

Proof. Let e ∈ FG be an essential idempotent. Then, by the Lemma above, it follows

that e.e(G) = e.

Conversely, assume, by way of contradiction, that we have e.e(G) = e but e is non

essential. Then, there exists a normal subgroup H of G such that eĤ = e. Moreover,

for any minimal normal subgroup Ki ⊂ H we have Ĥ(1 − K̂i) = 0. Consequently,

e(G)Ĥ = 0 and

e.e(G) = (e.Ĥ).e(G) = e.(Ĥ.e(G)) = 0

a contradiction.
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Example 2.1.7. Using the notation of examples 2.1.4, 2.1.5 and 2.1.6, we have that H2, H3

are the minimal normal subgroups of C6; K2 is the unique minimal normal subgroup of

D4; L3 is the unique minimal normal subgroup of S4. Taking into account the previous

examples, we get

e(C6) = (1− Ĥ2)(1− Ĥ3) = e3;

e(D4) = 1− K̂2 = e′4;

e(S4) = 1− L̂3 = f3 + f4.

e3.e(C6) = e3;

e′4.e(D4) = e′4;

f3.e(S4) = f3;

f4.e(S4) = f4.

Theorem 2.1.9. Let G be a finite nilpotent group and F a field with characteristic relatively

prime with the order of G. Then FG contains at least one essential idempotent if and only if the

center of G is cyclic.

Proof. Let G be a nilpotent group with cyclic center and order m =
r

∏
i=1

pαi
i , where pi are

prime rational integers, 1 ≤ i ≤ r. Then, G is the product of their Sylow subgroups Pi,

where 1 ≤ i ≤ r. For each i there exists a unique minimal normal subgroup Ki of Pi. In

this case

e(G) = (1− K̂1) · · · (1− K̂r).

Since Ki is a minimal normal subgroup of G, we have Ki ⊂ Z(G). Therefore, Ki is also a

cyclic group. Without loss of generality we can assume Ki =< ai > of order pi. As FG

is semisimple, the order of G is invertible in F, hence p1, · · · , pr are invertible too. Thus

e(G) =

(
1−

1 + a1 + · · · a
p1−1
1

p1

)
· · ·
(

1− 1 + ar + · · · apr−1
r

pr

)
.

Notice that the coefficient of a1 · · · ar is (−1)r(1/p1) · · · (1/pr) 6= 0. We conclude that

e(G) 6= 0. Consequently, its constituents are essential idempotents in FG.

Conversely, when G is a finite nilpotent group with non-cyclic center, we have, by [21,

Lemma 2.2], that e(G) = 0. Consequently, FG contains no essential idempotents.



2.2 group codes equivalence 29

2.2 group codes equivalence

Let G1 and G2 be two groups of the same order. Let R be a ring with unity and

γ : G1 → G2 a bijection. Denote by γ : RG1 → RG2 the linear extension of γ. Clearly,

γ is a Hamming isometry, i.e., elements corresponding under this map have the same

Hamming weight. Two codes I1 ⊂ RG1 and I2 ⊂ RG2 such that γ(I1) = I2 are said to

be permutation equivalent.

Remark. Note that, the last definition given above is essentially the same as in Section 1.6 in

case of group algebras.

Example 2.2.1. As a consequence of example 2.1.5 we get that 1 - K̂2 = e′4 = 2 + a2 is an

essential idempotent. Now, consider I1 = (F3D4)e′4 = ∆(D4, K2) with basis

B1 = {1− a2, b− a2b, a− a3, ab− a3b}

over F3 and I2 = F3C8(1− Ĥ) = ∆(C8, H), where H =< g4 >⊂ C8, with basis

B2 = {1− g4, g− g5, g2 − g6, g3 − g7}

over F3. Let us define γ : D4 → C8 by

γ(1) = 1 γ(b) = g

γ(a) = g2 γ(ab) = g3

γ(a2) = g4 γ(a2b) = g5

γ(a3) = g6 γ(a3b) = g7.

Because γ(B1) = B2, we have γ(I1) = I2. So, we conclude that the essential code I1 is

permutation equivalent to the cyclic code I2.

More generally, the codes C1 and C2 are said to be monomially equivalent if there exists

a monomial transformation T (See chapter 1) such that T(C1) = C2. It is straightforward

to verify that if two codes are permutation equivalent then these codes are monomially

equivalent. By [30], there exists a nilpotent code which is not monomially equivalent to

an abelian code. Hence, by the remark above, there exists a nilpotent code which is not

permutation equivalent to an abelian code.

Given an arbitrary finite semisimple group algebra FG, we are now ready to determine

sufficient conditions for ideals in FG and abelian codes to be permutation equivalent.
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It is well know that all ideals in a group algebra FG are to be permutation equivalent

to abelian codes whenever G has an abelian decomposition, i.e., G = AB, where A

and B are abelian subgroups of G. We shall determine another sufficient condition for

permutation equivalence between ideals and abelian codes.

Theorem 2.2.1. Let G be a finite group of order n and F a finite field. If e ∈ FG is an

idempotent such that eĤ = e for some non-trivial subgroup H of G, then FGe is permutation

equivalent to an abelian code.

Proof. Let I = FGe. Since eĤ = e, it follows that I ⊆ FGĤ. Let {v1, · · · , vt} be a basis

of I over F, {xi}r
i=1 a transversal of H in G and m = |H|. Since {x1Ĥ, x2Ĥ, · · · xrĤ} is a

basis of FGĤ, we have

vi = ∑
j

aijxjĤ, aij ∈ F,

for all 1 ≤ i ≤ t.

Suppose that G = {g1, g2, · · · , gn} with n = mr and

xiH = {g(i−1)m+1, g(i−1)m+2, · · · , gim}.

So, if we fix the m-cycle σi = ((i− 1)m + 1, (i− 1)m + 2, · · · , im) ∈ Sn, 1 ≤ i ≤ r, we

have σi(vj) = vj for all 1 ≤ j ≤ t. This implies that σi ∈ PAut(I) and consequently

A = 〈σ1, σ2, · · · , σr〉 ⊆ PAut(I). Since the m-cycles σi, 1 ≤ i ≤ r, are disjoint, we have

that A is an abelian group. In addition, as

A ∼= Cm × · · · × Cm︸ ︷︷ ︸
r times

we have |A| = n = |G|.
We shall show now that A is a regular subgroup of Sn. Let σ ∈ A. Then

σ(i) =

i + 1, if m does not divide i

i−m + 1, if m divides i.

Thus, σ(i) 6= i for all i ∈ {1, 2, · · · , n}; so we conclude that A is a regular subgroup of

Sn. It follows by Theorem 1.6.2 that FGe is permutation equivalent to a left A-code.

Since FA is commutative, we have that FGe is actually equivalent to an abelian code.
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Remark. In the proof of the last theorem, we could have used the second part of Theorem 1.6.2;

we only need to compute CSn(A). Notice that

σ−1σiσ = σi ⇔ (σ((i− 1)m + 1), · · · , σ(im)) = ((i− 1)m + 1, · · · , im)

⇔ σ
∣∣
{(i−1)m+1,··· ,im} = σ

`i
i

⇔ σ = σ`1
1 · · · σ

`r
r

for all σ ∈ CSn(A). Then A = CSn(A).

In [8], it was shown that every minimal abelian code is permutation equivalent to a

minimal cyclic code. In what follows, we wish to find sufficient conditions on ideals of

an arbitrary finite semisimple group algebra which guarantee that they are monomially

equivalent to cyclic codes.

Lemma 2.2.2. Let I be an ideal of the group algebra FG of dimension t. If I contains a basis

{ui}t
i=1 whose elements have disjoint support, then there exists g1, · · · , gt ∈ G such that the

elements g1u1, · · · , gtu1 have disjoint support and form a basis of I.

Proof. We may assume, without loss of generality, that |Supp(u1)| = min{|Supp(ui)| :

1 ≤ i ≤ t}. Since {gu1, · · · , gut} is basis of I with Supp(gui) ∩ Supp(guj) = ∅,

whenever i 6= j, we assume that 1 ∈ Supp(u1). Set g1 = 1, gi ∈ Supp(ui), 2 ≤ i ≤ t. For

1 ≤ i ≤ t, we have

giu1 =
t

∑
j=1

ajuj.

As gi ∈ Supp(giu1) ∩ Supp(ui), we have ai 6= 0. From the minimality of |Supp(giu1)| =
|Supp(u1)| and from the fact that ui, 1 ≤ i ≤ t, have disjoint support, it follows that

giu1 = aiui.

For σ ∈ Sn we consider the permutation matrix [σ] ∈ Mn(F) defined by

[σ]ij =

1, if j = σ(i)

0, otherwise.

Lemma 2.2.3. Let λ1, · · · , λn ∈ F and π ∈ Sn. Then

[π].Diag(λ1, · · · , λn) = Diag(λπ(1), · · · , λπ(n)).[π].
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Proof. Assume that A = [π].Diag(λ1, · · · , λn) and B = Diag(λπ(1), · · · , λπ(n))[π]. Since

the entries of A and B are

[A]ij =

λj, j = π(i)

0, otherwise

and

[B]ij =

λπ(i), j = π(i)

0, otherwise

respectively, we conclude that A = B.

Theorem 2.2.4. Let G be a finite group of order n and let F be a finite field. Suppose that

I 6= (0) is a code in FG with dimension t and basis whose elements have disjoint support. Then,

I is monomially equivalent to a cyclic code.

Proof. Let {ui}t
i=1 be a basis of I whose elements have disjoint support. By Lemma

2.2.2, the code I contains a basis of the form v1 = gi1u1, ..., vt = git u1 for some gij ∈ G,

1 ≤ j ≤ t. Since I 6= (0) there exists 0 6= α ∈ I. Then, for g ∈ supp(α) we have that

h ∈ supp(hg−1α), for all h ∈ G. Since hg−1α ∈ I, it follows that G = ∪t
i=1supp(vi).

So, the subsets supp(vj) form a partition of G, because are disjoint sets. As vj = gij u1,

we have, for 1 ≤ j ≤ t, that supp(vj) are sets of equal cardinality m = n/t. Then we

enumerate the elements of G so that we can write

supp(v1) = {g1, gt+1, g2t+1, · · · , g(m−1)t+1 }
supp(v2) = {g2, gt+2, g2t+2, · · · , g(m−1)t+2 }
supp(v3) = {g3, gt+3, g2t+3, · · · , g(m−1)t+3 }

...

supp(vt) = {gt, g2t, g3t, · · · , gmt }

and thus vi =
m−1

∑
j=0

aj+1gjt+i, with ai ∈ F.

We can define an action of Sn on G by τ.gi = gτ(i), for all τ ∈ Sn, and extend linearly

to FG. Take the n-cycle σ = (1, 2, · · · , n) ∈ Sn. Set
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M =



a−1
m a1 0 0 · · · 0

0 1 0 · · · 0
...

...
...

...
...

0 0 0 · · · 1

a−1
2 a3 0 0 · · · 0

0 1 0 · · · 0
...

...
...

...
...

0 0 0 · · · 1
. . .

a−1
m−1am 0 0 · · · 0

0 1 0 · · · 0
...

...
...

...
...

0 0 0 · · · 1



.

As M is a diagonal matrix, we can identify M.σ = M.[σ] ∈ GLn(F) with the element

(λ1, · · · , λm).σ in the group (F∗)n o Sn, where (λ1, · · · , λm) is the diagonal of M.

Since (M.[σ]−1)vi = vi+1 for 1 ≤ i ≤ t − 1 and (M.[σ]−1)vt = v1 , we have

M.[σ]−1(I) = I which implies that M.[σ]−1 ∈ MAut(I). We claim that M.[σ]−1 has

order n. Notice that if M = Diag(λ1, · · · , λn), then by Lemma 2.2.3, we have

[σ]−1.M = Diag(λσ−1(1), · · · , λσ−1(n)).[σ]
−1.

Now, (M[σ]−1)n =
n−1

∏
k=0

Diag(λσ−k(1), · · · , λσ−k(n))[σ]
−n and the entry ij is


n−1

∏
k=0

λσ−k(i), if i = j

0, otherwise.

Since
n−1

∏
k=0

λσ−k(i) = (a−1
m a1)(a−1

1 a2) · · · (a−1
m−1am) = 1 for any 1 ≤ i ≤ n, we have that

(M[σ]−1)n is the identity matrix. As n is the order of [σ], we conclude that M[σ]−1 has

order n.

Let H = 〈M.σ〉 ⊆ MAut(C) and φ : (F∗)n o Sn → Sn, φ(A.π) = π as defined in

Equation (3). Since every n-cycle generates a transitive group, we have that φ(H) = 〈σ〉
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is a regular subgroup of Sn. By Theorem 1.6.3 (1), we conclude that I is monomially

equivalent to a cyclic code.

Now, assume that R is a commutative ring. Let K1 and K2 be normal subgroups of G1

and G2, respectively, where G1 and G2 are of the same order such that G1/K1
∼= G2/K2.

Then

R[G1/K1] ∼= R[G2/K2]

and

RG1.K̂1
∼= R[G1/K1] ∼= R[G2/K2] ∼= RG2K̂2.

Denote by µ : R[G1/K1] → R[G2/K2] the linear extension of the isomorphism

G1/K1
∼= G2/K2 and denote by θ : RG1.K̂1 → RG2K̂2 the corresponding isomorphism.

Let T1 = {g1, · · · , gt} be a transversal of K1 in G1. Choose any ηi ∈ G2 such that

ηiK2 = µ(giK1). Then T2 = {η1, · · · , ηt} is a transversal of K2 in G2. Suppose that

f : K1 → K2 is a bijection. We can define a map η : G1 → G2 by η(gik) = ηi f (k), for all

gi ∈ T1 and k ∈ K1.

If α ∈ RG1.K̂1, then it follows from Equation (10) that

α =
t−1

∑
i=0

αigiK̂1.

Then

θ(α) =
t

∑
i=1

αiηiK̂2 =
t

∑
i=1

αiηi

( 1
|K2| ∑

k′∈K2

k′
)
=

1
|K1|

t

∑
i=1

αiηi

(
∑

k∈K1

f (k)
)

.

By comparing the expressions for α and θ(α), we see that the linear extension η :

RG1 → RG2 of η coincides with θ in RG1.K̂1.

Proposition 2.2.5. Let K1 and K2 be normal subgroups of G1 and G2, respectively, where

G1 and G2 have the same order and G1/K1
∼= G2/K2. If e1 is an idempotent of RG1 where

e1 ∈ RG1K̂1, then RG1.e1 is permutation equivalent to RG2.e2, with e2 = θ(e1).

Proof. Since RG1.e1 ⊂ RG1K̂1, we have

θ(RG1.e1) = θ(RG1K̂1)θ(e1) = RG2K̂2.e2 = RG2.e2.

As η coincides with θ in RG1.e1, we conclude that RG1.e1 is permutation equivalent to

RG2.e2, with e2 = θ(e1).
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Example 2.2.2. Let G1 = S4 and K1 = L2, where L2 is the same as in example 2.1.3.

Let G2 = C24 =< g > and K2 =< g2 >. Since S4/L2
∼= C24/K2, it follows that

(F5S4)L̂2
∼= (F5C24)K̂2. Set τ1 = {1, d} a transversal of L2 in S4 and τ2 = {1, g} a

transversal of K2 in C24. Consider f : L2 → K2 a bijection between L2 and K2; define

η : S4 → C24 by η(dh) = g. f (h) for all h ∈ L2; take η : (F5S4)L̂2 → (F5C24)K̂2 the linear

extension of η. By example 2.1.3, the set {L̂2, dL̂2} is a basis of (F5S4)L̂2 over F5. Then

η(α1 L̂2 + α2dL̂2) = α1K̂2 + α2gK̂2

for every α1, α2 ∈ F5. As {K̂2, gK̂2} is a basis of (F5C24)K̂2, we conclude that η :

(F5S4)L̂2 → (F5C24)K̂2 is bijective. In addition,

η
(
(α1 L̂2 + α2dL̂2)(β1 L̂2 + β2dL̂2)

)
= η

(
(α1β1 + α2β2)L̂2 + (α1β2 + α2β1)dL̂2)

)
= (α1β1 + α2β2)K̂2 + (α1β2 + α2β1)gK̂2)

= (α1K̂2 + α2dK̂2)(β1K̂2 + β2gK̂2)

which implies that θ = η : (F5S4)L̂2 → (F5C24)K̂2 is an isomorphism of algebras over

F5. Again, by the example 2.1.3, we have L̂2 = e0 + e1, where e0, e1 are centrally primitive

idempotents. Since e1 ∈ (F5S4)L̂2 and can be expressed as

e1 = −1 + d + cd + abc2d + c2d + bcd + ad− a− b− ab− c + c2

− bc2 − abc− abc2 − bc + abcd + ac2d + abd + bc2d− bd + acd,

we obtain

θ(e1) = η(e1) = −
23

∑
i=0

(−1)igi = e2,

where e2 is an idempotent of (F5C24)K̂2. We conclude that (F5S4)e1 is permutation

equivalent to (F5C24)e2.

2.3 minimal nilpotent codes

In this section, we shall prove that every non essential centrally primitive idempotent

generates a code which is permutation equivalent to an abelian code. In addition, we

shall determine a condition on the given group so that every minimal nilpotent code is

permutation equivalent to an abelian code.
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Let G be a finite group and R a finite semisimple ring such that |G| is invertible in R.

Let e ∈ RG be a centrally primitive idempotent. We define

Ke = {g ∈ G : ge = e}. (11)

Notice that Ke is the kernel of the homomorphism of groups π : G → Ge, g 7→ ge. Thus

G
Ke
∼= Ge.

The following Lemma will be a useful result.

Lemma 2.3.1. Let e ∈ RG be a centrally primitive idempotent and let K be a normal subgroup

in G. Then e.K̂ = e if and only if K ⊂ Ke. Furthermore, if K 6⊂ Ke then e.K̂ = 0.

Proof. Assume that e.K̂ = e. For any k ∈ K, we have ek = e.K̂k = e.K̂ = e. Then K ⊂ Ke.

Conversely, if K ⊂ Ke then, for any k ∈ K, we have ek = e, which implies that e.K̂ = e.

Finally, if K 6⊂ Ke then e.K̂ 6= e. As e is a centrally primitive idempotent, we conclude

that e.K̂ = 0.

The following is Theorem 3.1 of [8] slightly generalized.

Theorem 2.3.2. Let e 6= Ĝ be a centrally primitive idempotent of RG and ψ the natural

projection ψ : RGK̂e → R[G/Ke], gK̂e 7→ gKe ∈ G/Ke for each g ∈ G. Then, the element

ψ(e) is an essential idempotent of R[G/Ke].

Proof. Since ψ is an isomorphism of rings, it follows that

ψ(e)2 = ψ(e)ψ(e) = ψ(e2) = ψ(e),

i.e., ψ(e) is an idempotent of R[G/Ke]. If β ∈ R[G/Ke] then β = ψ(α), for some

α ∈ RGK̂e. It follows that β.ψ(e) = ψ(α.e) = ψ(e.α) = ψ(e).β which implies that ψ(e) is

central. Suppose that ψ(e) = f1 + f2 expresses ψ(e) as a sum of two orthogonal central

idempotents of R[G/Ke]. Then fi = ψ(ei), where ei is an idempotent for i = 1, 2. Since

e1, e2 are orthogonal idempotents, we have that e1 = 0 or e2 = 0, hence, f1 = 0 or f2 = 0.

Now, we want to prove that ψ(e) is essential. Assume that K = K/Ke is a non-trivial

normal subgroup of G/Ke. Let T be a transversal of Ke in K. Then

K̂ =
1
|K| ∑

k∈K
k =
|Ke|
|K| ∑

t∈T
tK̂e =

1
|K| ∑t∈T

tK̂e.
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Thus, we have

ψ(K̂) =
1
|K| ∑t∈T

ψ(tK̂e) =
1
|K| ∑t∈T

tKe = K̂.

Since K 6⊂ Ke, by Lemma 2.3.1 we conclude

ψ(e).K̂ = ψ(e)ψ(K̂) = ψ(eK̂) = 0.

Example 2.3.1. Let Q8 be the quaternion group with presentation

< a, b|a4 = 1.b2 = a2, bab−1 = a−1 > .

Consider G = C2 × Q8 with C2 = {1, g}. The centrally primitive idempotents of F3G

not associated to linear characters are

e1 = (1 + g)− (1 + g)a2

e2 = (1− g)− (1− g)a2.

Note that Ke1 = {x ∈ G : xe1 = e1} = {1, g} and Ke2 = {x ∈ G : xe2 = e2} = {1, ga2}.
If we consider ψi : F3GK̂ei → F3[G/Kei ] with i = 1, 2, then ψ1(e1) = 2(1− a2)Ke1 and,

since ga2Ke2 = Ke2 and gKe2 = a2Ke2 , we have ψ2(e2) = 2(1− a2)Ke2 . In both cases, we

have that G/Kei
∼= Q8, with i = 1, 2. As 2(1− a2) ∈ F3Q8 is an essential idempotent

(unique in this case) we have that ψ1(e1) and ψ2(e2) are essential idempotents.

Now, let us take R = F3C2 instead of F3. As RQ8
∼= F3G, we have the same centrally

primitive idempotents. In addition, since

K̃e1 = {x ∈ Q8 : xe1 = e1} = {1} = {x ∈ Q8 : xe2 = e2} = K̃e2

we conclude that e1 and e2 are essential idempotents of RQ8.

Corollary 2.3.3. Let e 6= Ĝ be a centrally primitive idempotent of RG. Then, the group G/Ke

has cyclic center.

Proof. By the last theorem, we have that R[G/Ke] contains an essential idempotent. It

follows from Theorem 2.1.9 that G/Ke is cyclic.

It was proved in [8] that every minimal abelian code is permutation equivalent to a

cyclic code. The main idea of the proof is, for every minimal idempotent e of the abelian

group algebra FA, to consider a cyclic group C which has the same order as A and a
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subgroup H of C such that A/Ke ∼= C/H. Now, if we want to use the same argument

for a nilpotent group G, we shall need that, for any centrally primitive idempotent

e ∈ FG, there exists a nilpotent group N with cyclic center and a subgroup H of N for

which G/Ke ∼= N/H. However, as the next example shows, the same does not happen

necessarily with the nilpotent groups.

Example 2.3.2. Consider the group G = C4 o C4 with presentation

G =< a, b|a4 = b4 = 1, bab−1 = a−1 >

and center Z(G) = {1, a2, b2, a2b2}. The element e = 2 + 5b2 + 5a2 + 2a2b2 ∈ F7G is a

central idempotent. Notice that

aibje =



ai mod 2bj mod 2e, if i, j = 0, 1

6ai mod 2bj mod 2e, if i = 0, 1 and j = 2, 3

6ai mod 2bj mod 2e, if i = 2, 3 and j = 0, 1

ai mod 2bj mod 2e, if i, j = 2, 3.

Then, F7Ge is generated by the set B = {e, ae, be, abe} as a F-vector space. Since

e, ae, be, abe have disjoint support we have that B is a basis of F7Ge. It follows from

(ae)(be) = 2ab + 5a3b + 5ab3 + 2a3b3 6= 2 + 5a2 + 5b2 + 2a3b = (be)(ae)

that F7Ge ∼= M2(F7) implying that e is a centrally primitive idempotent. Note that

Ke = {g ∈ G|ge = e} = {1, a2b2} and G/Ke ∼= Q8 the quaternion group of order 8. By

[13] there exists six groups of order 16 with cyclic center:

C16 = 〈g〉;

D8 = 〈a, b|a8 = b2 = 1, bab = a−1〉;

Q16 = 〈a, b|a8 = 1, b2 = a4, bab−1 = a−1〉;

SD16 = 〈a, b|a8 = b2 = 1, bab = a3〉;

M4(2) = 〈a, b|a8 = b2 = 1, bab = a5〉;

C4 ◦ D4 = 〈a, b, c|a4 = c2 = 1, b2 = a2, ab = ba, ac = ca, cbc = a2b〉.

It follows from Lemma 2.1.5 that there exist a unique minimal normal subgroup in each

of these subgroups. The correspondent factor group are isomorphic to

C8, D4, D4, D4, C2 × C4, C3
2 ,
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respectively. Then, it is not possible to find a group N of order 16 with cyclic center

and a subgroup H for which G/Ke ∼= N/H. However, since the elements of B have

disjoint supports of the same cardinality, by the Theorem 2.2.4, we conclude that FGe is

monomially equivalent to a cyclic code.

As the previous example suggests, it will be of interest to determine when minimal

nilpotent codes are equivalent to abelian codes. The following theorem is an answer to

this question.

Theorem 2.3.4. Let e ∈ FG be a non essential centrally primitive idempotent. Then FGe is

permutation equivalent to an abelian code.

Proof. Since e is non essential idempotent, it follows that Ke 6= {1}. By Lemma 2.3.1, we

have that eK̂e = e and by Theorem 2.2.1 we conclude that FGe is permutation equivalent

to an abelian code.

Corollary 2.3.5. If G is a finite nilpotent group which has a non-cyclic center, then every

minimal code in FG is permutation equivalent to an abelian code.

Proof. Let e be a centrally primitive idempotent of FG. Since the center of G is non-cyclic,

we have that e is a non essential idempotent. Then the result follows from Theorem

2.3.4.

In Theorem 2.2.4, we determined a sufficient condition for a code to be monomially

equivalent to a cyclic code. Now, we shall present a sufficient condition for a code to be

permutation equivalent to a cyclic code depending on the group structure. For every

element g in a group G, denote by C+
g the sum of the elements of the G-conjugacy class

of g, i.e.,

C+
g = ∑

h∈Cg

h.

We begin with the following result of [21].

Lemma 2.3.6. [21, Lemma 2.3] Let G be a finite group and g ∈ G. If g−1Cg ∩ Z(G) 6= {1},
then G contains a central element z of prime order so that C+

g = C+
g ẑ.

Let G be a finite nilpotent group and let e ∈ FG be a centrally primitive idempotent.

Let G̃ be the subgroup of G such that G̃/Ke = Z(G/Ke). We already know that G̃/Ke

is cyclic.
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Lemma 2.3.7. If G/Ke is nilpotent of class c ≤ 2, then Supp(e) ⊂ G̃.

Proof. If c = 1 then G/Ke is cyclic and we are done. Now, assume that c = 2. Let C
be the full set of representatives of the conjugacy classes of G/Ke. Let e be the image

of e by ψ : FG → F(G/Ke), ψ the linear extension of the projection G → G/Ke. From

Theorem 2.3.2, it follows that ē is an essential idempotent, in particular, a centrally

primitive idempotent. Since G̃/Ke = Z(G/Ke), we can write

e = ∑
ḡ∈G̃/Ke

βg ḡ + ∑
ḡ∈C\(G̃/Ke)

βgC+
ḡ

where Cḡ denote the conjugacy class of ḡ ∈ G/Ke and βg ∈ F for ḡ ∈ C.

Again, as G̃/Ke = Z(G/Ke) 6= G/Ke, we have that, for any ḡ ∈ C \ (G̃/Ke), there

exists an x̄ ∈ G/Ke such that 1̄ 6= [ḡ, x̄] ∈ ḡ−1Cḡ ∩Z(G/Ke). So, by the previous Lemma,

there exists ωg ∈ Z(G/Ke) of prime order such that C+
ḡ = C+

ḡ .ω̂g. Then, we can rewrite

e as

ē = ∑
ḡ∈G̃/Ke

βg ḡ + ∑
ḡ∈C\(G̃/Ke)

βgC+
ḡ .ω̂g.

Since e ∈ F(G/Ke) is an essential idempotent, it follows from Theorem 2.1.8 that

e.e(G/Ke) = e. As every minimal normal subgroup of G/Ke is central, we have that

e(G/Ke) ∈ F(G̃/Ke). Then

ē = ē.e(G/Ke) = ∑
ḡ∈G̃/Ke

βg ḡ.e(G/Ke) + ∑
ḡ∈C\(G̃/Ke)

βgC+
ḡ .ω̂g.e(G/Ke)

= ∑
ḡ∈G̃/Ke

βg ḡ.e(G/Ke)

because ω̂g.e(G/Ke) = 0, for all ḡ ∈ C \ (G̃/Ke). By the last formula we conclude that

e ∈ F(G̃/Ke). We can express e = α + β, where Supp(α) ⊂ G̃ and Supp(β) ⊂ G \ G̃.

Then, e = α + β, which implies, by comparing the support, that β = 0. As the kernel of

ψ : FG → F(G/Ke) is FG(1− K̂e), we have that β ∈ FG(1− K̂e) and so, βK̂e = 0. Since

eK̂e = e, it follows that α + β = αK̂e ∈ FG̃. Then β = 0.

Now we are ready to prove the following result.

Theorem 2.3.8. Let G be a finite nilpotent group of order n and e ∈ FG be a centrally primitive

idempotent such that G/Ke of class c ≤ 2. Then every code C ⊂ FG is permutation equivalent

to a cyclic code C′ in FCn.
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Proof. By last Lemma, we have Supp(e) ⊂ G̃. Then e ∈ FG̃ and G̃/Ke is cyclic. By

Theorem 2.2.5 we have that FG̃e is permutation equivalent to a code in FCme′, where

m = |G̃| and e′ is an idempotent. Let ψ : FG̃e → FCme′ be an isometry and τ1 =

{g1, · · · , gt} a transversal of G̃ in G. Let Cn be a cyclic group of order n = |G| and let

Cm be its unique subgroup of order m. Let τ2 = {h1, · · · , ht} be a transversal of Cm in

Cn. We can define an isometry of ψ̃ : FGe→ FCne′ by

ψ̃(gα) = hiψ(g̃α),

for all g = gi g̃, g̃ ∈ G̃, α ∈ FG̃e.

2.4 computation considerations

In Theorem 2.2.4, we saw that every code in a group algebra which has a basis whose

elements have disjoint supports is monomially equivalent to a cyclic code. Now, we

shall use the following algorithms (in GAP) to see how often this condition holds.

Given a finite group G, the GAP do an enumeration of G as set. Every element

x ∈ FG associates to a sequence of coefficients of x.

ElementsAsRows:=function(G,q,x)

local SetG, S, L, i, g;

SetG:=AsList(G);

S:=CoefficientsAndMagmaElements(x);

L:=[];

for i in [1..Size(G)] do

Add(L, 0*Z(q));

od;

for g in SetG do

if g in S then L[Position(SetG,g)]:=S[Position(S,g)+1];

else L[Position( SetG , g) ] := 0*Z(q); fi;

od;

return L;

end;
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Given the group algebra FG, the next function gives a list of all the generator matrices

of minimal central codes in FG.

MatricesOfMinimalCodes:=function(FG)

local F, G, M, n, q, D, d, m, B, i;

D:=DirectSumDecomposition(FG);

G:=UnderlyingGroup(FG);

F:=UnderlyingField(FG);

q:=Size(F);

M:=[ ];

for d in D do

m:=[ ];

B:=Basis(d);

for i in [1..Length(B)] do

Add(m, ElementsAsRows(G,q,B[i]));

od;

Add(M,m);

od;

return M;

end;

The last function has a true value if all minimal codes in FG have bases whose elements

have disjoint support.

HasDisjointBasis:=function(M,q)

local n, MT, m, i, j, L, HDB;

MT:=[ ];

HDB:=true;

for m in M do

Add(MT,TransposedMat(m));

od;

n:=DimensionsMat(MT[1])[1];

for i in [1..Length(MT)] do

for j in [1..n] do

L:=Set(MT[i][j]);

RemoveSet(L,0*Z(q));
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if Size(L)>1 then HDB:=false;

elif Size(L)>1 then break; fi;

od;

od;

return HDB;

end;

Now, we shall use all these functions in the following algorithm. For each prime

power q, we can use the same algorithm. Let us write the algorithm for q = 3 and

compute the list of all non-abelian groups of order ≤ 100 such that all minimal codes in

FqG have bases whose elements have disjoint support and order relatively prime to 3.

L:=[ ];

for n in [1..100] do

for G in AllSmallGroups(Size, n, IsAbelian, false) do

FG:=GroupRing(GF(3),G);

if GcdInt(Size(G),3)=1 then M:=MatricesOfMinimalCodes(FG);

else break; fi;

if HasDisjointBasis(M,3) then Add(L,G); fi;

od;

od;

By using the above algorithms, we can produce a table. We say that a group has

disjunction over a field F if all minimum codes have disjoint bases. In the table 1 all

groups considered are non-abelian of order ≤ 100 and order relatively prime to q.

Table 1: Groups with order relatively prime to q

Size of field Fq

3 4 5 7 8 9

Total of groups 440 20 759 823 20 440

Nilpotent groups 326 12 388 397 12 326

Groups with disjunction 203 15 288 240 11 190

Nilpotent groups with disjunction 203 11 288 240 5 190
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Note that there are many nilpotent groups with disjunction. When we consider the

two bottom lines in the table above, we note that, for some fields, all groups with

disjoint basis are nilpotent. Let us consider all minimum codes of non-abelian nilpotent

group of order ≤ 100 with disjunction. In the table 2, all codes are in FG, where G

is nilpotent and |G| ≤ 100. We shall use the abbreviation BDS for basis with disjoint

supports.

Table 2: Number of minimum nilpotent codes over Fq

Size of field Fq

3 4 5 7 8 9

Number of minimum codes with BDS 5248 226 7231 7368 108 6466

Number of minimum codes 5849 232 8312 8291 150 7370

Now, taking into account the Corollary 2.3.5, we can construct a table with the number

of nilpotent groups which has non-cyclic center. Remember from 2.3.5, that the group

algebras over these groups have minimal codes permutation equivalent to abelian codes.

All the groups considered in the table 3 are nilpotents which have disjoint bases and

with order relatively prime to q.

Table 3: Number of nilpotent groups with disjoint basis over Fq

Size of field Fq

3 4 5 7 8 9

Cyclic center 43 7 55 56 3 29

Non cyclic center 160 8 233 184 2 161
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CONSTACYCL IC CODES

The first part of this chapter is devoted to present a different method of computing the

number of simple components of a twisted group algebra FγG. In the second part we

compute the centrally primitive idempotents of the twisted group algebras of a cyclic

group and in the last part we shall provide an example of idempotents in twisted group

algebras.

Let R be a finite commutative ring, C a linear code in Rn, that is, C is a R-submodule

of Rn and let λ be a unit in R. Recall that C is a λ-constacyclic code if

(c0, c1, · · · , cn−1) ∈ C =⇒ (λcn−1, c0, · · · , cn−2) ∈ C

for all (c0, c1, · · · , cn−1) ∈ C.

When λ = 1, the code is cyclic and, when λ = −1, the code is called negacyclic. Thus,

constacyclic codes generalize cyclic and negacyclic codes and they have been studied

for many authors ([39], [1], [11], [12]). Also, constacyclic codes can be realized as ideals

in polynomial factor ring R[x]/〈xn − λ〉. We will intensively use this fact in the last two

sections and to construct some examples.

3.1 the number of simple components

Let G be a finite group of exponent e and F a field of characteristic p ≥ 0 such that p

does not divide the order of G. We say that a 2-cocycle γ ∈ Z2(G, F∗) is normalized if

γ(g, 1) = 1 = γ(1, g)

for all g ∈ G. Given a normalized 2-cocycle γ, an element g ∈ G is said to be γ-regular if

γ(g, x) = γ(x, g)

for all x ∈ CG(g). Let Cg be the conjugacy class of g ∈ G and let γ ∈ Z2(G, F∗). We say

that Cg is γ-regular if g is γ-regular.

47
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Before exploring the theory any further, we compute some explicit examples. We

shall need one result. The following is well-known but we include its proof for sake of

completeness.

Lemma 3.1.1. Let Cn = 〈g〉 be a cyclic group of order n and A be a finite Cn-module, i.e., A is

a finite abelian group with an action of Cn in A. Let ACn = {a ∈ A : agi
= a for all gi ∈ Cn}.

Also, define the norm map N : A→ ACn by N(a) =
n−1

∏
i=0

agi
.

Then, for every λ ∈ ACn , we have that γλ : Cn × Cn → A defined by

γλ(gi, gj) =

1, i + j < n

λ, i + j ≥ n

is a 2-cocycle and H2(Cn, A) = {[γλ] : λ ∈ A} ∼= ACn /Im(N).

Proof. Let r1 and r2 be the residues of the division of i + j and j + k by n, respectively.

Then

γλ(gi, gj).γλ(gigj, gk) =


1, if i + j < n and r1 + k < n

λ, (if i + j < n and r1 + k ≥ n) or (i + j ≥ n and r1 + k < n)

λ2, if i + j ≥ n and r1 + k ≥ n.

Since λgi
= λ for all i, with 0 ≤ i ≤ n− 1, we have

γλ(gj, gk)gi
.γλ(gi, gjgk) =


1, if j + k < n and i + r2 < n

λ, if (j + k < n and i + r2 ≥ n) or (j + k ≥ n and i + r2 < n)

λ2, if j + k ≥ n and i + r2 ≥ n.

We wish to show that γλ(gi, gj).γλ(gigj, gk) = γλ(gj, gk)gi
.γλ(gi, gjgk) for every 0 ≤

i, j, k ≤ n− 1. First we observe that

r1 =

i + j, if i + j < n

i + j− n, if i + j ≥ n

and

r2 =

j + k, if j + k < n

j + k− n, if j + k ≥ n.

Let us consider four cases:
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1. Assume that i + j < n and r1 + k < n. Then i + j + k < n implying that j + k < n

and i + r2 < n.

2. Assume that j + k < n and i + r2 ≥ n. If j + k < n then i + r2 = i + j + k =

r1 + k ≥ n. If j + k ≥ n then i + r2 = i + j + k− n < k < n.

3. Assume that i + j ≥ n and r1 + k < n. If j + k < n then i + r2 = i + j + k ≥ n. If

j + k ≥ n then i + r2 = i + j + k− n = r1 + k < n.

4. Assume that i + j ≥ n and r1 + k ≥ n. Then j + k = (n − i) + r1 + k ≥ n and

i + r2 = i + j + k− n = r1 + k ≥ n.

It follows from these four cases that γλ is a 2-cocycle.

Suppose that γλ and γµ are cohomologous. Then, there exists a coboundary δ : Cn →
A such that γλ(gi, gj) = γµ(gi, gj)δiδ

gi

j δ−1
i+j, where δk = δ(gk) for any 0 ≤ k ≤ n − 1.

Then

λ =
n−1

∏
i=0

γλ(gi, g) =
n−1

∏
i=0

γµ(gi, g)δiδ
gi

1 δ−1
i+1 = µ

n−1

∏
i=0

δ
gi

1 = µN(δ1).

Let γ ∈ Z2(Cn, A). For any i, 0 ≤ i ≤ n− 1, define δ : Cn → A by

δi = δ(gi) =
i−1

∏
k=0

γ(gk, g)−1.

By the definition of 2-cocycle, we have

γ(gi, gj)γ(gi+j, g) = (γ(gj, g))gi
γ(gi, gj+1) (12)

for all 0 ≤ i, j ≤ n− 1. We can use the last formula again for i, j + 1 to get γ(gi, gj+1)

and substituting in 12 obtaining

γ(gi, gj) = (γ(gj, g))gi
(γ(gj+1, g))gi

γ(gi+j, g)−1γ(gi+j+1, g)−1γ(gi, gj+1)

Notice that, for a fixed i and j, we get that

γ(gi, gj+`)γ(gi+j+`, g) = (γ(gj+`, g))gi
γ(gi, gj+`+1)
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for all 0 ≤ ` ≤ n− 1. Let r be the remainder when i + j are divided by n. By induction,

we can write γ(gi, gj) as

γ(gi, gj) =
n−k−1

∏
`=0

γ(gj+`, g)gi
γ(gi+j+`, g)−1

=
i−1

∏
`=0

γ(g`, g)−1
j−1

∏
`=0

(
γ(g`, g)gi

)−1 r−1

∏
`=0

γ(g`, g)

= γλ(gi, gj)δi(δ
gi
j )(δ

−1
i+j).

Define the map AG → H2(G, A) by λ 7→ [γλ]. Since

n−1

∏
`=0

γλ(g`, g)γµ(g`, g) = λµ =
n−1

∏
`=0

γλµ(g`, g),

we have that [γλγµ] = [γλµ], so the map is a homomorphism of groups. Since every

2-cocycle is cohomologous to a 2-cocycle of the form γλ, we have an epimorphism.

Finally, γλ is cohomologous to γ1 if and only if λ = N(δ1) for some δ1 ∈ A. Then, the

kernel is im(N).

With this result in mind, we can produce our first example.

Example 3.1.1. Let F7 be a field with 7 elements and let G = C4 = 〈g〉 be a cyclic group

with 4 elements. Fix γ = γ6 : C4 × C4 → F7 defined by

γ(gi, gj) =

1, i + j < 4

6, i + j ≥ 4.

It follows easily that γ is normalized and every element in G is γ-regular. In addition,

notice that the γ-regular conjugacy classes are Cx̄ = {x̄} for x ∈ G.

Example 3.1.2. Let G = C4 × C12 = 〈g1〉 × 〈g2〉. Consider the following maps γ
(1)
6 :

C4 × C4 → F7 and γ
(2)
3 : C12 × C12 → F7 given by

γ
(1)
6 (gi

1, gj
1) =

1, i + j < 4

6, i + j ≥ 4.

and

γ
(2)
3 (gi

2, gj
2) =

1, i + j < 12

3, i + j ≥ 12.
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Let us define γ : G× G → F7 by

γ(gi1
1 gi2

2 , gj1
1 gj2

2 ) = γ
(1)
6 (gi1

1 , gj1
1 ) γ

(2)
3 (gi2

2 , gj2
2 ).

It is easy to verify that γ is normalized and every element in G is γ-regular.

Example 3.1.3. Let G = C2 × C6 = 〈g1〉 × 〈g2〉 and let F5 be a field with 5 elements. Let

us consider γ : G× G → F5 defined by

γ(gi1
1 gi2

2 , gj1
1 gj2

2 ) = 4i2 j1 .

Then γ is normalized and {1, g2
2, g4

2} is the set of γ-regular elements of G.

A 2-cocycle γ ∈ Z2(G, F∗) is called a normal cocycle if

γ(x, g) = γ(xgx−1, x)

for all x ∈ G and all γ-regular g ∈ G. Notice that a 2-cocycle γ is normal if and only if

x̄ḡx̄−1 = xgx−1 for all x ∈ G and all γ-regular g ∈ G. The following result shows that

any 2-cocycle is cohomologous to a normal 2-cocycle.

Lemma 3.1.2. [22, Lemma 2.6.2] Any 2-cocycle γ ∈ Z2(G, F∗) is cohomologous to a normal

cocycle.

We shall use this lemma to work with twisted group algebras in which the 2-cocycle

is normal. For these twisted group algebras we will extend the results about the number

of components in [14]. Let us begin with the following definition.

Definition 3.1.3. Let A be a F-algebra and let M be a simple left A-module with

dimFM < ∞.

1. We say that M is an absolutely simple A-module if for any field extension E ⊇ F,

E⊗F M is a simple E⊗ A-module.

2. We say that a field E ⊇ F is a splitting field for A if every left simple E⊗ A-module

is absolutely simple.

Let n be a positive integer and let p be either a prime rational integer or zero. Then

np′ denotes the p′-part of n if p 6= 0 and np′ = n if p = 0. We also write exp(G) for the

exponent of G.

The following result is an extension of a classic theorem of Brauer to twisted group

algebras.
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Theorem 3.1.4. [23, Theorem 6.2.2] Let E be an algebraically closed field of characteristic p ≥ 0

and let γ ∈ Z2(G, E∗) be of finite order n. Assume that F is a subfield of E which contains a

root of unity of order m = n.exp(G)p′ . Then, for any subgroup H of G , F is a splitting field

for FγH.

Let γ ∈ Z2(G, F∗) be a normal 2-cocycle and ` the minimal positive integer k such

that (γ(x, y))k = 1 for all x, y ∈ G.

Lemma 3.1.5. Considering above notations, if p > 0 then the integers p and ` are relatively

prime.

Proof. Assume, by way of contradiction, that p divides `. Since γ(x, y)` = 1 for all

x, y ∈ G, we have that γ(x, y) are roots of the polynomial X` − 1 ∈ F[X] for all x, y ∈ G.

As p is the characteristic of F, we get that γ(x, y), x, y ∈ G, are roots of X`/p − 1, with

`/p < `.

It follows from this lemma that we may take n = `.e, where e = exp(G), and a

primitive root of unity θ of order n. By Theorem 1.5.8 we have that F(θ)γG is a

semisimple algebra and by Theorem 3.1.4 we have that F(θ) is a splitting field for

F(θ)γG. Then, there exist an isomorphism

ψ : F(θ)γG → ⊕r
i=1Mni(F(θ)) (13)

of F(θ)-algebras.

Example 3.1.4. As in example 3.1.1, let G = C4 = 〈g〉 and γ = γ6 : C4 × C4 → F7. Let

` = 2, e = exp(G) = 4 and n = `e = 8. Suppose θ a primitive nth root of unity. Since

x8 − 1 = (x + 1)(x + 6)(x2 + 1)(x2 + 3x + 1)(x2 + 4x + 1), we have F7(θ) ∼= F72 . As

x4 − 6 = (x2 + 3x + 1)(x2 + 4x + 1), by Proposition 1.4.1, we have

F
γ
7 G ∼=

F7[x]
〈x4 − 6〉

∼=
F7[x]

〈x2 + 3x + 1〉 ⊕
F7[x]

〈x2 + 4x + 1〉
∼= F72 ⊕F72

and so, we conclude that

F
γ
72 G ∼= F72 ⊗F7 (F

γ
7 G) ∼= F72 ⊕F72 ⊕F72 ⊕F72 .

Example 3.1.5. Let G = C4×C12. With the notations of the Example 3.1.2, assume ` = 6,

e = 12 and n = `e = 72. Using SAGE we can decompose in F7[x]

x72 − 1 = p(x)(x6 + 2)(x6 + 4)(x6 + x3 + 4)(x6 + 2x3 + 3)(x6 + 5x3 + 2)(x6 + 6x3 + 4)
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where the irreducible factors of p(x) have degree less than 6. Since the roots of x6 + 2

and x6 + 4 are of order 36 in F∗7 and Φ(72) = 24, we conclude that all primitive roots

of unity of order 72 are the roots of x6 + x3 + 4, x6 + 2x3 + 3, x6 + 5x3 + 2, x6 + 6x3 + 4.

Then, the root θ of x6 + x3 + 4 is of order 72 in F∗7 and so F7(θ) ∼= F76 . By Lemma 1.4.2,

we get

F
γ
7 G ∼= (F

γ
(1)
6

7 C4)⊗F7 (F
γ
(2)
3

7 C12).

By the previous example F
γ
(1)
6

7 C4
∼= F72 ⊕F72 and since

F
γ
(2)
3

7 C12
∼=

F7[x]
〈x12 − 3〉

∼=
F7[x]

〈x6 + 2x3 + 2〉 ⊕
F7[x]

〈x6 + 5x3 + 2〉
∼= F76 ⊕F76

we conclude that

F
γ
7 G ∼= (F72 ⊕F72)⊗F7 (F76 ⊕F76) ∼= 8F76

and so F
γ
76 G ∼= 72F76 .

Example 3.1.6. Let G = C2 × C6. With the notations as in the example 3.1.3, we can also

write G = H × 〈g2
2〉, where H = 〈g1, g3

2〉 = 〈g1〉 × 〈g3
2〉 ∼= C2 × C2. Since 42 ≡ 1(mod 5),

we have

γ((gi1 g3i2
2 )g2i3

2 , (gj1 g3j2
2 )g2j3

2 ) = 4(3i2)j1 = γ(gi1 g3i2
2 , gj1 g3j2

2 )

which implies that γ = γ̃× α, where γ̃ = γ
∣∣

H×H, α ∈ Z2(〈g2
2〉, F∗5) and α = 1. Again,

by Lemma 1.4.2, we get

F
γ
5 G ∼= F

γ̃
5 H ⊗F5 F5〈g2

2〉.

If h = gi1 g3i2
2 ∈ H is γ̃-regular, then γ(h, gj1 g3j2

2 ) = γ(gj1 g3j2
2 , h) for all j1, j2 = 0, 1. Then,

4i2 j1 = 4i1 j2 for all j1, j2 = 0, 1, which implies that i2 j1 ≡ i1 j2(mod 2) for all j1, j2 = 0, 1.

As the unique possibility is i1 = i2 = 0, we conclude that 1 ∈ H is the only γ̃-regular

element of H. By [23, Theorem 8.2.8] we have

F
γ̃
5 H ∼= M2(F5).

Putting these two last formulas together, we get

F
γ
5 G ∼= M2(F5)⊗F5 (F5 ⊕F52) ∼= M2(F5)⊕M2(F52).

Let ` = 2, e = 6, n = `e = 12 and θ a primitive nth root of unity. Using SAGE we can

decompose

x12 − 1 =

(
4

∏
a=1

(x + a)

)
(x2 + x + 1)(x2 + 2x + 4)(x2 + 3x + 4)(x2 + 4x + 1)
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into irreducible factors in F5[x]. Since F5(θ) ∼= F52 we conclude that

F
γ
52 G ∼= M2(F52)⊕M2(F52)⊕M2(F52).

Theorem 3.1.6 ([22], Theorem 6.3, p. 96). Let F be an arbitrary field, let γ ∈ Z2(G, F∗) and

let Tγ be a full set of representatives for the γ-regular conjugacy classes of G. For each g ∈ Tγ

denote by τg a left transversal for CG(g) in G and by Cg the γ-regular conjugacy class of G

containing g. Then the elements

C+
ḡ = ∑

x∈τg

x̄−1 ḡx̄

constitute a F-basis of Z(FγG). In particular, if γ is a normal cocycle, then the elements

C+
ḡ = ∑

x∈Cg

ḡ

constitute a F-basis of Z(FγG).

Example 3.1.7. Let G = C2 × C6. With notations of examples 3.1.3 and 3.1.6, suppose

that g = gi1 gi2
2 ∈ G is γ-regular. Then γ(g, gj1 gj2

2 ) = 4i2 j1 = 4i1 j2 = γ(gj1 gj2
2 , g) for all

0 ≤ j1 ≤ 1, 0 ≤ j2 ≤ 5. This implies that i2 j1 ≡ i1 j2(mod 2) for all 0 ≤ j1 ≤ 1, 0 ≤ j2 ≤ 5.

Since the possibilities are i1 = 0 and i2 = 0, 2, 4 we conclude that {1, g2
2, g4

2} is the set of

γ-regular elements. It follows from the last theorem that

C+
1 = 1̄, C+

2 = ḡ2
2, C+

3 = ḡ4
2

constitute a basis of Z(Fγ
5 G). Notice that example 3.1.6 tell us that

Z(Fγ
5 G) ∼= Z (M2(F5))⊕Z (M2(F52)) ∼= F5 ⊕F52

and 3 is, in fact, the dimension of Z(Fγ
5 G) over F5.

Example 3.1.8. Let D8 be the dihedral group with 16 elements given by the presentation

〈a, b|a8 = b2 = 1, bab = a−1〉.

We define α : D8 × D8 → F∗3 by

α(aibj, akb`) = 2jk.

We claim that α ∈ Z2(D8, F∗3). In fact, given x = aibj, y = akb`, z = ambn ∈ D8 we have

α(x, y)α(xy, z) = 2jk2(j+`)m and α(y, z)α(x, yz) = 2`m2j(k−m)
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Since jk + (j + `)m ≡ `m + j(k−m)(mod 2) and the order of 2 ∈ F3 is equal to 2, we

obtain the equality of both equations above and the claim follows.

The centralizer of the elements in D8 are

CD8(aibj) =


D8 if (i, j) = (0, 0) or (i, j) = (4, 0);

〈a〉 if (i, j) = (i, 0) for i 6= 4;

〈aib〉 × 〈ai+4b〉 if (i, j) = (i, 1).

A direct computation shows that α(aibj, y) = α(y, aibj) for any y ∈ CD8(aibj). Then,

every element of D8 is α-regular. Notice that α is not a normal cocycle because a ∈ D8

is a α-regular element and α(b, a) = 2 6= 1 = α(bab, b).

As every element of D8 is α-regular, it follows that the α-regular conjugacy classes of

D8 are the conjugacy classes of G, that is,

{1}, {a4}, {a, a7}, {a2, a6}, {a3, a5},
{b, a2b, a4b, a6b}, {ab, a3b, a5b, a7b}.

Let us denote by Tij the left tranversal of CD8(aibj) in D8. Then

Tij =


{1} if (i, j) = (0, 0) or (i, j) = (4, 0);

{1, b} if (i, j) = (i, 0) for i 6= 4;

{1, a, a2, a3} if (i, j) = (i, 1).

It follows from last theorem that

C+
00 = 1̄

C+
40 = ∑

t∈T40

t̄a4(t̄)−1 C+
30 = ∑

t∈T30

t̄a3(t̄)−1

C+
10 = ∑

t∈T10

t̄ā(t̄)−1 C+
01 = ∑

t∈T01

t̄b̄(t̄)−1

C+
20 = ∑

t∈T20

t̄a2(t̄)−1 C+
11 = ∑

t∈T11

t̄ab(t̄)−1

constitute a basis of Z(Fα
3 D8) over F3.

Recall that e = exp(G), γ ∈ Z2(G, F∗) is normal, ` = min{k ∈N : γ(x, y)k = 1, x, y ∈
G}, n = `.e and θ a primitive root of unity of order n. With the notations of previous

Theorem, the set {C+
ḡ |g ∈ Tγ} is a F(θ)-basis of Z(F(θ)γG).



56 constacyclic codes and constabelian codes

For each σ in the Galois group Gal(F(θ)/F) and (α1, · · · , αr) in ⊕r
i=1F(θ), we can

define

σ.(α1, · · · , αr) := (σ(α1), · · · , σ(αr)).

Set σψ = ψ−1σψ and denote ḡσ = ḡm(σ), where σ(θ) = θm(σ) for σ ∈ Gal(F(θ)/F). For

any σ ∈ Gal(F(θ)/F) denote by r(σ) the remainder in the division of m(σ) by e and

denote µ(σ) = m(σ)− r(σ).

Notice that ḡe = u(g).1̄ for each g ∈ G where u(g) =
e−1

∏
i=0

γ(g, gi). Since u(g) is a

`th root of unity, we can take v(g) ∈ F(θ) such that v(g)e = u(g). Since µ(σ) =

m(σ)− r(σ) = ej for some positive integer j, we get that v(g)µ(σ) = v(g)ej = u(g)j ∈ F.

Recall that ψ : F(θ)γG → ⊕r
i=1Mni(F(θ)) is an isomorphism of F(θ)-algebras. Let

πi : ⊕r
j=1Mnj(F(θ)) → Mni(F(θ)) be the projection of the i-th component, 1 ≤ i ≤ r.

We consider Ti = πiψ, 1 ≤ i ≤ r, the irreducible representations of F(θ)γG, and χi the

characters of Ti, respectively.

Theorem 3.1.7. For any σ ∈ Gal(F(θ)/F) denote by r(σ) the remainder in the division of

m(σ) by e and denote µ(σ) = m(σ)− r(σ). Then, for each g ∈ Tγ,

σψ(C+
ḡ ) = v(g)µ(σ)C+

ḡr(σ) ,

for all σ ∈ Gal(F(θ)/F).

Proof. Let λ1, · · · , λt be the eigenvalues of Ti(ḡ) with g ∈ Tγ. Since ḡe = u(g)1̄, we have

(Ti(ḡ))e = Ti(ḡe) = u(g)Ini , where Ini is the identity matrix of Mni(F(θ)). Then, the

polynomial Xe − u(g) ∈ F[X] annihilates Ti(ḡ). As the minimal polynomial p(x) of

Ti(ḡ) divides Xe − u(g) in F[X] and Xe − u(g) has no repeated roots, we have that p(x)

has no repeated roots. Furthermore, the elements v(g)θ`k ∈ F(θ), 0 ≤ k < e, are all

roots of Xe − u(g), which implies that p(x) splits over F(θ). By [20, Theorem 6.6], we
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have that Ti(ḡ) is diagonalizable and so t = ni. Since p(x) divides Xe − u(g), we get

that λj = v(g)θ`kj , for some 0 ≤ k j < e. Then

σ(χi(ḡ)) = σ

(
ni

∑
j=1

λj

)

=
ni

∑
j=1

(
v(g)θ`kj

)m(σ)

= v(g)µ(σ)v(g)−µ(σ)
ni

∑
j=1

(
v(g)θ`kj

)m(σ)

= v(g)µ(σ)
ni

∑
j=1

v(g)m(σ)−µ(σ)θ`kjm(σ)

= v(g)µ(σ)
ni

∑
j=1

v(g)r(σ)θ`kjr(σ)

= v(g)µ(σ)
ni

∑
j=1

λ
r(σ)
j .

where θ`kjm(σ) = θ`kjr(σ) because e divides µ(σ) = m(σ)− r(σ).

On the other hand, if we denote by tr(A) the trace of the square matrix A, then

χi(ḡr(σ)) = tr
(

Ti(ḡr(σ))
)

= tr
(

Ti(ḡ)r(σ)
)

=
ni

∑
j=1

λ
r(σ)
j .
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Hence σ(χi(ḡ)) = v(g)µ(σ)χi(ḡr(σ)). As C+
ḡ ∈ Z(F(θ)γG) and Ti is a homomorphism,

we have that Ti(C+
ḡ ) = αIni . Then, χi(C+

ḡ ) = tr
(

Ti(C+
ḡ )
)
= niα implying that Ti(C+

ḡ ) =

(χi(C+
ḡ )/ni)Ini . We conclude that

σψ(C+
ḡ ) = σ

(
r

∑
i=1

πi

)
ψ(C+

ḡ )

= σ
r

∑
i=1

πiψ(C+
ḡ )

= σ
r

∑
i=1

Ti(C+
ḡ )

=
r

∑
i=1

σ(χi(C+
ḡ ))/ni

=
r

∑
i=1

v(g)µ(σ)χi(C+
ḡr(σ))/ni

= v(g)µ(σ)
r

∑
i=1

πiψ(C+
ḡr(σ))/ni

= v(g)µ(σ)ψ(C+
ḡr(σ)).

For each g ∈ Tγ, we shall call

Sg = {v(g)µ(σ)C+
ḡr(σ) | σ ∈ Gal(F(θ)/F), µ(σ) = m(σ)− r(σ)}

the cyclotomic γ-classes of g.

Example 3.1.9. We continue with Examples 3.1.3 and 3.1.6. Since G = C2 × C6 = 〈g1〉 ×
〈g2〉, we have the exponent e = 6 of the group G. It follows from Example 3.1.6 that

F5(θ) = F52 , where θ is a root of the irreducible polynomial f (x) = x2 + x + 1 ∈ F5[x]

and f (x) divides x12 − 1. Then, the Galois group Gal(F52/F5) = {Id, σ}, where Id

is the identity map of F52 and σ : F52 → F52 is defined by σ(a + bθ) = a + bθ5 with

a, b ∈ F5. Since Tγ = {1, g2
2, g4

2}, we conclude that the cyclotomic γ-classes of G are

S1 = {1̄} and S2 = {ḡ2
2, ḡ4

2}.

We have to prove that the elements of Sḡ are central in FγG. We begin with the

following technical result.
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Lemma 3.1.8. If g ∈ G is a γ-regular element and m is a positive integer then

γ(h, gm) = γ(gm, h)

for all h ∈ CG(g).

Proof. We shall proceed by induction on m. If m = 1 then, since g is γ-regular, we

obtain γ(h, g) = γ(g, h), for all h ∈ CG(g). Assume that γ(h, gm−1) = γ(gm−1, h) for

all h ∈ CG(g). Using the cocycle identity γ(x, y)γ(xy, z) = γ(y, z)γ(x, yz) for x = g,

y = gm−1, z = h, we get

γ(g, gm−1)γ(gm, h) = γ(gm−1, h)γ(g, gm−1h).

Since g is γ-regular and gm−1h ∈ CG(g), we have γ(g, gm−1h) = γ(gm−1h, g). By the

induction hypothesis γ(gm−1, h) = γ(h, gm−1) for all h ∈ CG(g). Then

γ(g, gm−1)γ(gm, h) = γ(h, gm−1)γ(hgm−1, g).

Again, using the cocycle identity γ(x, y)γ(xy, z) = γ(y, z)γ(x, yz) for x = h, y = gm−1,

z = g, we get

γ(h, gm−1)γ(hgm−1, g) = γ(gm−1, g)γ(h, gm).

As γ(g, gm−1) = γ(gm−1, g), we conclude that γ(h, gm) = γ(gm, h), for all h ∈ CG(g).

Since γ ∈ Z2(G, F∗), we identify the center Z(FγG) with the subalgebra of Z(F(θ)γG)

which is obtained by restriction of coefficients, i.e., we identify the center of Z(FγG)

with a subalgebra of Z(F(θ)γG) via the map

ι

(
∑

g∈Tγ

agC+
ḡ

)
= ∑

g∈Tγ

agC+
ḡ .

Theorem 3.1.9. Let T be the full set of representatives of the cyclotomic γ-classes of G, Vg the

F-linear space of Z(FγG) spanned by Sg and

A = {α ∈ Z(FγG)|σψ(α) = α for all σ ∈ Gal(F(θ)/F)}.

For α ∈ Z(FγG), denote by pα(x) the minimal polynomial of α over F. Then

1. Z(FγG) = ⊕g∈TVg.
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2. The set {ηg}g∈T0 , with ηg = ∑
Γ∈Sg

Γ and T0 = {g ∈ T : ηg 6= 0}, is a F-basis of A.

3. A = {α ∈ Z(FγG)| pα(x) splits over F}.

Proof. 1. Let m be a positive integer with gcd(m, o(g)) = 1. Then there exist s, t ∈ Z

such that 1 = sm + to(g). If h ∈ CG(gm) then h−1gmh = gm, which implies that

g = gsm = h−1gsmh = h−1gh, so h ∈ CG(g). As CG(g) ⊆ CG(gm), we get that

CG(g) = CG(gm). By Lemma 3.1.8 we conclude that gm is γ-regular. Since for all

σ ∈ Gal(F(θ)/F) it is true that gcd(m(σ), o(g)) = 1, we have that gσ is γ-regular

implying that v(g)µ(σ)C+
ḡr(σ) is central in FγG. Then Sg ⊂ Z(FγG), which implies

that Vg ⊂ Z(FγG). As Vg = SpanF(Sg), and ∪g∈TSg is a F-basis of Z(FγG), we

get that ⊕g∈TVg ⊆ Z(FγG). Since ⊕g∈TVg and Z(FγG) are vector spaces of the

same dimension over F the result holds.

2. By definition A ⊂ Z(FγG) and by the first part we already know that ∪g∈TSg is a

basis of Z(FγG) over F. Let α = ∑
g,σ

ag,σv(g)µ(σ)C+
gr(σ) ∈ A, where ag,σ ∈ F. Then

∑
g,σ

ag,σv(g)µ(σ)C+
ḡr(σ) = ∑

g,σ
ag,σv(g)µ(τσ)C+

ḡr(τσ)

for every τ ∈ Gal(F(θ)/F). Then ag,σ = ag,τσ, for all τ ∈ Gal(F(θ)/F) and g ∈ T,

which implies that α = ∑
g∈T

agηḡ. Because {ηg}g∈T0 = {ηg}g∈T \ {0} and {ηg}g∈T0

is linearly independent over F, we get that {ηḡ}g∈T0 is a basis of A and we are

done.

3. Since α ∈ A if and only if σψ(α) = α for all σ ∈ Gal(F(θ)/F), we have that

σ(ψ(α)) = ψ(α), for all σ ∈ Gal(F(θ)/F). Then, we conclude that α ∈ A if and

only if ψ(α) ∈ ⊕r
i=1F. Because ψ is an isomorphism, we have that α and ψ(α) have

the same minimal polynomial, and this polynomial splits over F if and only if

ψ(α) ∈ ⊕r
i=1F.

Definition 3.1.10. The cyclotomic γ-classes of g, where g ∈ T0, are called regular

cyclotomic γ-classes.

Example 3.1.10. Let G = C2 × C6 = 〈g1〉 × 〈g2〉. With notations of examples 3.1.3, 3.1.6

and 3.1.9, we have by Example 3.1.9 that the cyclotomic γ-classes of G are

S1 = {1̄} and S2 = {ḡ2
2, ḡ2

4}.
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Since η1̄ = 1̄ 6= 0 and ηḡ2
2 = ḡ2

2 + ḡ2
4 6= 0, we conclude that 1, g2

2 ∈ T0 and by definition,

S1 and S2 are regular cyclotomic γ-classes.

Since p = char(F) does not divide |G|, there is an isomorphism

ϕ : FγG → ⊕m
i=1Mdi(Di)

where m and di are positive integers and Di is a division algebra over F, 1 ≤ i ≤ m.

Theorem 3.1.11. The number of simple components of FγG is equal to the number of regular

cyclotomic γ-classes of G.

Proof. With the notations above, let Fi be the center of Di, 1 ≤ i ≤ m. We know that

Z(FγG) ∼= ⊕m
i=1Fi. Since ϕ is an isomorphism andA = {α ∈ Z(FγG)|pα(x) splits over F},

we have

ϕ(A) = {ϕ(α) ∈ ϕ(Z(FγG))|pϕ(α)(x) splits over F} = ⊕m
i=1F.

From part 2 of Theorem 3.1.9, we have that {ϕ(ηg)}g∈T0 is a F-basis of ϕ(A). We

conclude that |T0| = dimF(ϕ(A)) = m.

Example 3.1.11. Let G = C2 × C6 = 〈g1〉 × 〈g2〉 and γ : G× G → F5 defined by

γ(gi1
1 gi2

2 , gj1
1 gj2

2 ) = 4i2 j1 .

By the last example (Example 3.1.10), we have

S1 = {1̄} and S2 = {ḡ2
2, ḡ2

4}.

and by Example 3.1.6, we have

F
γ
5 G ∼= M2(F5)⊕M2(F52).

T

Since we are interested in codes in twisted group algebras, we assume that the field F

and the group G are finite. Then, for some positive integer `, we have that (γ(x, y))` = 1

holds for every 2-cocycle γ. Let Cn be the cyclic group of order n and F a field with q

elements. By Lemma 3.1.1 we have that H2(Cn, F∗) ∼= F∗/(F∗)n which is a cyclic group

of order k = gcd(q− 1, n).

Finally, we give an important consequence of the Theorem 3.1.11.
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Corollary 3.1.12. Let γ be a 2-cocycle in Z2(Cn, F∗). Then the number of irreducible factors

of the polynomial xn − λ ∈ F[x], where λ =
n−1

∏
i=0

γ(g, gi), is equal to the number of regular

cyclotomic γ-classes of Cn.

Proof. By Lemma 3.1.1 we have that γ is cohomologous to γλ with λ ∈ F∗. Note that

λ =
n−1

∏
i=0

γλ(g, gi) =
n−1

∏
i=0

γ(g, gi). Since xn − λ is separable, we have

FγCn ∼= Fγλ Cn ∼= F[x]/〈xn − λ〉 ∼= ⊕r
i=1F[x]/〈pi(x)〉,

where xn − λ =
r

∏
i=1

pi(x). Since F[x]/〈pi(x)〉 are fields for 1 ≤ i ≤ r, it follows that r is

the number of simple components of FγCn so, using Theorem 3.1.11, we get that r is

the number of regular cyclotomic γ-classes of Cn and we are done.

Example 3.1.12. Let F7 be the field with 7 elements and C4 the cyclic group of order

4. Then k = |H2(C4, F∗7)| = gcd(6, 4) = 2. As (F∗7)
4 = {1, 2}, we have that γ6 is not

cohomologous to γ1, so, in this case H2(C4, F∗7) = {[γ1], [γ6]}. Let θ be a primitive root

of unity of order 8. Then, the Galois group of F7(θ) over F7 is {I, σ}, where σ(θ) = θ7.

Note that every element of G is γ6-regular, because γ6 is symmetric. The cyclotomic

γ6-classes are

S1 = {1̄}, Sg2 = {ḡ2, 6ḡ2}, Sg = {ḡ, ḡ3}.

Since ηg2 = ḡ2 + 6ḡ2 = 0 and η1, ηg 6= 0 we get that the regular cyclotomic γ6-classes

are

S1̄ = {1̄} and Sḡ = {ḡ, ḡ3}.

Then F
γ6
7 C4 has two simple components. This agrees with the usual polynomial

approach, because x4 − 6 = p1(x)p2(x), where p1(x) = x2 + 3x + 1 and p2(x) =

x2 + 4x + 1 are irreducible over F7. Thus

F[x]
〈x4 − 6〉

∼=
F[x]
〈p1(x)〉 ⊕

F[x]
〈p2(x)〉

∼= F72 ⊕F72 .

3.2 minimal idempotents of Fγ Cn

The following result is easy to prove.
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Lemma 3.2.1. Let A be a semisimple commutative F-algebra with unity. Assume that B is a

semisimple subalgebra of A with the same unity and for which every minimal idempotent of B is

a minimal idempotent of A. Then B and A have the same complete set of minimal idempotents.

Let n be a positive integer with prime factorization n =
r

∏
i=1

pai
i . Let F be a finite

field with q elements and Cn = Cp
a1
1
× · · · × Cpar

r
a cyclic group of order n generated

by an element g, where Cp
ai
i

is a cyclic group of order pai
i generated by gi = gn/p

ai
i for

1 ≤ i ≤ r. We wish to find formulas for the minimal idempotents of a twisted group

algebra FγCn, where γ ∈ Z2(Cn, F∗).

Consider F∗ as trivial Cn-module. From the proof of Lemma 3.1.1, we have that

γλ, γλ′ ∈ Z2(Cn, F∗) are cohomologous if and only if λ = λ′.N(a) for some a ∈ F∗,

where N is the norm map. Since the action of Cn in F∗ is trivial, we have that agi
= a,

for all 0 ≤ i ≤ n− 1, and so,

N(a) =
n−1

∏
i=0

agi
= an.

By [22, Lemma 2.1.1], the Cn-graded F-algebras Fγλ Cn and Fγλ′Cn are isomorphic, if

and only if γλ and γλ′ are cohomologous. We conclude that Fγλ Cn and Fγλ′Cn are

isomorphic as Cn-graded F-algebras if and only if λ = λ′.an, for some a ∈ F∗. Again by

the proof of Lemma 3.1.1, if γ ∈ Z2(Cn, F∗) and λ =
n−1

∏
k=0

γ(g, gk), then

FγCn ∼= Fγλ Cn

as Cn-graded F-algebras.

Assume that first r = 2. Set λ = λ1λ2 with λ1, λ2 ∈ F∗. Consider γλi ∈ Z2(Cp
ai
i

, F∗),

with i = 1, 2. Set γ̃ = γλ1 × γλ2 ∈ Z2(Cn, F∗). Since

n−1

∏
k=0

γ̃(g, gk) =
p

a1
1 −1

∏
i=0

γλ1(g1, gi
1)

pa2
2 −1

∏
j=0

γλ2(g2, gj
2) = λ1λ2 = λ

we conclude that γ̃ is cohomologous to γλ ∈ Z2(Cn, F∗).

Proposition 3.2.2. Let λ = λ1λ2 ∈ F∗, γλ ∈ Z2(Cn, F∗) and γλi ∈ Z2(Cp
ai
i

, F∗), with

i = 1, 2. Then

Fγλ Cn ∼=
(

F
γλ1 Cp

a1
1

)
⊗
(

F
γλ2 Cpa2

2

)
.

Proof. Define ψ : Fγλ Cn →
(

F
γλ1 Cp

a1
1

)
⊗
(

F
γλ2 Cpa2

2

)
by ψ(g1g2) = ḡ1 ⊗ ḡ2. It is easy to

see that ψ is an isomorphism of F-algebras and the result follows.
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Corollary 3.2.3. Let γλ ∈ Z2(Cn, F∗) and γλi ∈ Z2(Cp
ai
i

, F∗), with i = 1, 2. If λ = λ1 = λ2

then

Fγλ Cn ∼=
(

Fγλ Cp
a1
1

)
⊗FCpa2

2

∼= FCp
a1
1
⊗
(

Fγλ Cpa2
2

)
.

An easy consequence is the next result.

Corollary 3.2.4. Let n =
r

∏
i=1

pai
i . Let γλ ∈ Z2(Cn, F∗) and γλi ∈ Z2(Cp

ai
i

, F∗), for some

1 ≤ i ≤ r. Then

Fγλ Cn ∼= FCp
a1
1
⊗ · · · ⊗

(
Fγλ Cp

ai
i

)
⊗ · · · ⊗FCpar

r
.

The following results will be very useful in the sequel.

Theorem 3.2.5. [7, Theorem 3.1] Let λ ∈ F∗ with order e. Then the binomial Xt − λ is

irreducible in F[X] if and only if the integer t ≥ 2 satisfies the following conditions:

1. gdc(t, (q− 1)/e) = 1;

2. each prime factor of t divides e;

3. if 4|t then 4|(q− 1).

Let f (X), g(X) ∈ F[X], and let P(X) =
n

∑
i=0

ciXi ∈ F[X] of degree n. Then the

following composition

P( f /g) = g(X)nP( f (X)/g(X)) =
n

∑
i=0

ci f (X)ig(X)n−i

is again a polynomial in F[X].

Theorem 3.2.6. [7, Theorem 3.7] Let f (X), g(X) ∈ F[X], and let P(X) ∈ F[X] be irreducible

of degree n. Then P( f /g) = gn(X)P( f (X)/g(X)) is irreducible over F if and only if

f (X)− λg(X) is irreducible over Fqn for some root λ ∈ Fqn of P(X).

Let d be an integer and θd a primitive root of unity of order d. For any integer s

denote by (F∗)(s) the subgroup {as : a ∈ F∗} of F∗. For a positive integer n and λ ∈ F∗

we define

hn,q(λ) = max
{

s ∈N : s|n and λ ∈ (F∗)(s)
}

.

Let Od(x) be the multiplicative order of x modulo the positive integer d.
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Theorem 3.2.7. Let γ = γλ ∈ Z2(Cn, F∗) for λ ∈ F∗. Let h = hn,q(λ) and λ = bh, with

b ∈ F∗. Denote g̃ = b−1 ḡn/h and C̃h = 〈g̃〉. Then, for any d|h, we have

1. gdc
(
(n/h) , (qOd(q) − 1)/d̃

)
= 1;

2. each prime factor of n/h divides d̃;

3. if 4|(n/h) then 4|(qOd(q) − 1),

where d̃ is the multiplicative order of bθd in F∗
qOd(q)

, if and only if the set of minimal idempotents

of the twisted group algebra FγCn coincides with the set of minimal idempotents of the group

algebra FC̃h.

Proof. Since {ḡi : 0 ≤ i ≤ n− 1} ⊂ FγCn is linearly independent over F, we have that

C̃h is linearly independent over F. As g̃h = b−h ḡn = λ−1λ = 1 it follows that C̃h is a

cyclic group of order h.

Let e be a minimal idempotent of FC̃h. By Perlis-Walker Theorem (See [37, Theorem

3.5.4]) we have that (FC̃h)e
ϕ∼= F(θd) for some d|h with ϕ(g̃e) = θd and Pd(X) the

minimal polynomial of g̃e over F. Now, we wish to prove that (FγCn)e is a field.

Consider the homomorphism of F-algebras ψ : F[X] → (FγCn)e defined by

ψ(X) = ḡe. Let fd(X) = Pd(b−1Xn/h). Then

fd(ḡe) = Pd(b−1 ḡn/he) = Pd(g̃e) = 0

and so, fd(X) ∈ Ker(ψ). By Theorem 3.2.6, fd(X) is irreducible over F if and only if

b−1Xn/h − θd ∈ FqOd(q) [X] is irreducible, where θd is a root of Pd(X). From Theorem

3.2.5, the polynomial b−1Xn/h − θd = b−1(Xn/h − bθd) is irreducible if and only if the

conditions 1, 2 and 3 are satisfied. Then, fd(X) is irreducible if and only if these

conditions holds. Since (FγCn)e is a field if and only if fd(X) is irreducible, the result

follows.

The above theorem is a natural generalization of the following result.

Proposition 3.2.8. [29, Theorem 3.1] Let F = F(θ4), let G = 〈g〉 be a cyclic group of order 2n

and let FγG be the twisted group algebra of G over F defined by equality ḡ2n
= λ ∈ F∗. Let

hn,q(λ) = 2s and λ = b2s
, b ∈ F∗. Let us denote h = b−1 ḡ2n−s

. Then

1. H = 〈h〉 is a group of order 2s and the elements of this group are linearly independent

over F, i.e., the group algebra FH is a subalgebra of FγG.
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2. The set of minimal idempotents of FγG coincides with the set of minimal idempotents of

FH.

For a subset X of the cyclic group Cn such that char(F) does not divide |X|, we shall

denote by X̂ the following element of FCn:

X̂ =
1
|X| ∑

x∈X
x.

Let p be a rational odd prime and γ = γλ ∈ Z2(Cpm , F∗). Assume that hpm(λ) = ps,

λ = bps
, for some b ∈ F∗, and the conditions 1, 2 and 3 of the Theorem 3.2.7 holds.

Then, we have the following result.

Theorem 3.2.9. Let

C̃ps = A0 ⊃ A1 ⊃ · · · ⊃ As = {1}

be the descending chain of all subgroups of C̃ps = 〈g̃〉, where g̃ = b−1 ḡpm−s
. If Ops(q) = Φ(ps)

then the set of minimal idempotents of FγCn are

e0 =
1
ps

(
∑

a∈A0

a

)
(14)

and

ei = Âi − Âi−1, 1 ≤ i ≤ s. (15)

Proof. By Theorem 3.2.7, the set of minimal idempotents of FγCpm are the set of minimal

idempotents of FC̃ps . Since Ops(q) = Φ(ps), we have by [39, Theorem 3.5] the formulas

for the idempotents.

Let λ ∈ F∗ and n a positive integer such that h = hn(λ) = 2ps, where p is a rational

odd prime integer. Then, λ = bh for some b ∈ F∗.

Theorem 3.2.10. Assume that the conditions 1, 2 and 3 of the Theorem 3.2.7 are satisfied. In

addition, suppose that Ops(q) = Φ(ps). Let g̃1 = b−2 ḡn/ps
, g̃2 = b−ps

ḡn/2 and C̃1 = 〈g̃1〉,
C̃2 = 〈g̃2〉 = {1, g̃2}. Let

C̃1 = A0 ⊃ A1 ⊃ · · · ⊃ As = {1}

be the descending chain of all subgroups of C̃1. Then the complete set of minimal idempotents of

FγCn is {ei f j : 0 ≤ i ≤ s, j = 0, 1} where

e0 =
1
ps

(
∑

a∈A0

a

)
, f0 =

1
2
(1 + g̃2) , f1 = 1− f0 (16)
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and

ei = Âi − Âi−1, 1 ≤ i ≤ s. (17)

Proof. First notice that C̃h = C̃1 × C̃2, where C̃n = 〈g̃〉, g̃ = b−1 ḡn/h and |C̃1| = ps,

|C̃2| = 2. By Theorem 3.2.7, the complete set of minimal idempotents of FγCn is the

complete set of minimal idempotents of FC̃h.

Let FC̃1
∼= ⊕t1

i=1Fdi , where di = [Fdi : F], and FC̃2
∼= F⊕F. Then

FC̃h
∼= FC̃1 ⊗F FC̃2

∼=
(
⊕t1

i=1Fdi

)
⊗F (F⊕F) ∼= ⊕t1

i=12Fdi .

Thus 2t1 is the number of minimal idempotents of FC̃h. Notice that, if e ∈ FC̃1 and

f ∈ FC̃2 are minimal idempotents, then (FC̃h)e f ∼= (FC̃1)e⊗F (FC̃2) f which is a field.

Then, the product of minimal idempotents of FC̃1 and FC̃2 forms a complete set of

minimal idempotents of FC̃h. Since Ops(q) = Φ(ps) by [39, Theorem 3.5] we get that

formulas for the minimal idempotents of FC̃1 and FC̃2 are given by equations 16 and

17.

We shall now determine the minimum distance and dimension of minimal codes in

twisted group algebras of cyclic groups of order pm. Let γ = γλ ∈ Z2(Cpm , F∗) with

λ ∈ F∗ and hpm(λ) = ps. Suppose that all assumptions of Theorem 3.2.9 are satisfied.

Then, the set of minimal idempotents of FγCpm is {ei : 0 ≤ i ≤ s} where ei are given by

equations 14 and 15.

Note that {g̃i ḡe : 0 ≤ i < ps, 0 ≤ e < pm−s} is a basis of FγCn over F. Let τi

be a transversal Ai−1 in C̃pm . As Ai−1/Ai is a cyclic group of order p we have that

Ai−1 =< ai, Ai > . Since B0 = {t(1− ai)Âi : t ∈ τi} is a basis of (FC̃pm)ei over F ( See

[?, Proposition 2.1] ), we get that

B = {vḡe : v ∈ B0, 0 ≤ e < pm−s}

is a basis of FγCpm ei over F. Then, we conclude that the minimum distance of FγCpm ei

is

w((FγCpm)ei) = 2pm−i

and the dimension is

dimF((F
γCpm)ei) = pm−sΦ(pi),

where Φ is the Euler’s totient function.
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3.3 an example

For each positive integer n, prime power q and λ ∈ F∗, we shall use the following

function in GAP [17] to compute hn,q(λ).

h:=function(q, n, lambda)

local L1, field, L3, UnitsField, UnitsFd, D, d, i, j;

L1:=[];

field:=AsList(GF(q));

L3:=[];

UnitsField:=field[2..q];

D:=DivisorsInt(n);

for d in D do

UnitsFd:=[];

for i in [1..(q-1)] do

Add(UnitsFd, UnitsField[i]∧d);

od;

Add(L1, UnitsFd);

od;

for j in [1..Length(D)] do

if lambda in L1[j] and lambda in field then Add(L3, D[j]); fi;

od;

return Maximum(L3);

end;

For any α ∈ F∗ denote by o(α) the multiplicative order of α. Now, we shall proceed

with the examples.

Example 3.3.1. Let n = 65, Cn = 〈g〉, q = 27 and let λ be a generator of F∗. Then,

h = h65,27(λ) = 5 and n/h = 13. Since 1 = 26 + (−5).5 and −5 ≡ 21 (mod 26), we have

that b = λ21 satisfies λ = b5.

If d = 1 then d̃ = o(b) = 26. The conditions of Theorem 3.2.7 are satisfied:

1. gdc
(
(n/h) , (qOd(q) − 1)/d̃

)
= gdc(13, (27− 1)/26) = 1;

2. each prime factor of n/h = 13 divides d̃ = 26;
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3. This condition is trivially true, because 4 - 13.

If d = 5 then d̃ = o(bθ5) = 130. Again, the conditions of Theorem 3.2.7 are satisfied:

1. gdc
(
(n/h) , (qOd(q) − 1)/d̃

)
= gdc(13, (274 − 1)/130) = gdc(13, 4088) = 1;

2. each prime factor of n/h = 13 divides d̃ = 130;

3. This condition is trivially true, because 4 - 13.

By Theorem 3.2.7, we conclude that the minimal idempotents of F
γλ
27 C65 are the minimal

idempotents of F27〈g̃〉, where g̃ = λ5 ḡ13. Since 〈g̃〉 is cyclic of order 5, we have that

e0 = (1/2)
4

∑
k=0

(λ5 ḡ13)k and e1 = 1− (1/2)
4

∑
k=0

(λ5 ḡ13)k

are the minimal idempotents of F
γλ
27 C65.
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