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“The infinite is that in which one sees nothing else, hears nothing else,
and knows nothing else. But the finite is that in which one sees

something else, hears something else, and knows something else.
That which is infinite is immortal, and that which is finite is mortal.”

– Chandogya Upanishad, 7.24.1



ABS TRACT

This doctoral thesis undertakes an in-depth exploration of limiting shape theorems across
diverse mathematical structures, with a specific focus on subadditive processes within
finitely generated groups exhibiting polynomial growth rates, as well as standard
First-Passage Percolation (FPP) models applied to Random Geometric Graphs (RGGs).
Employing a diverse range of techniques, including subadditive ergodic theorems and
tailored modifications suited for polygonal paths within groups, the thesis examines the
asymptotic shape under varying conditions. The investigation extends to subadditive
cocycles characterized by at least and at most linear growth. Moreover, the study delves
into moderate deviations for FPP models on RGGs, refining previous results with theorems
that quantify its speed of convergence to the limiting shape, the fluctuation of the
geodesics, and its spanning trees. Additionally, we apply the obtained results in a
competition model to verify the positive probability of coexistence of two species
competing for territory in a random geometric graph.

Keywords: subadditive cocycles, limiting shape, virtually nilpotent groups, Cayley graphs,
percolation, ergodic theory, moderated deviations, Gilbert disk model, random growth,
spanning trees, geodesics, competition, coexistence.



RESUMO

Esta tese de doutorado apresenta uma investigação aprofundada sobre teoremas da forma
limite em diversas estruturas matemáticas, com um foco especial nos processos subaditivos
em grupos finitamente gerados que exibem taxas de crescimento polinomial, além dos
modelos padrão de Percolação de Primeira Passagem (FPP) aplicados aos Grafos
Geométricos Aleatórios (RGGs). Utilizando uma ampla gama de técnicas, que vão desde
teoremas ergódicos subaditivos até modificações adaptadas para caminhos poligonais
dentro de grupos, a tese investiga a forma assintótica sob diferentes condições. O estudo se
estende a cociclos subaditivos caracterizados por crescimento linear no mínimo e no
máximo. Ademais, o estudo se estede a desvios moderados para modelos FPP em RGGs,
refinando resultados anteriores com teoremas que quantificam sua velocidade de
convergência para a forma limite, a flutuação das geodésicas e suas árvores geradoras. Por
fim, aplicamos os resultados obtidos em um modelo de competição para verificar a
probabilidade positiva de coexistência de duas espécies disputando território em um grafo
geométrico aleatório.

Palavras-chave: cociclos subaditivos, forma limite, grupos virtualmente nilpotentes, grafos
de Cayley, percolação, teoria ergódica, disco de Gilbert, crescimento aleatório, árvores
geradoras, geodésicas, competição, coexistência.
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1 I N T RODUCT ION

1.1 background and motivation
In this doctoral thesis, we have studied the limiting shape phenomenon for subadditive
processes on groups and random geometric graphs. We have obtained several results on the
existence, uniqueness and convergence of the limiting shape for various models of interest.
We have also explored some connections between the limiting shape and other topics in
geometric group theory. Our methods combine probabilistic, combinatorial and geometric
techniques. It led us to contribute with advances of research in this area and we hope that
them inspire further studies.

The asymptotic shape theorem for random processes is a fundamental concept in
probability theory and stochastic processes. It provides a framework for understanding the
long-term behavior of random processes and has found applications in various areas such as
mathematics, ergodic theory, and contact processes. The theorem establishes conditions
under which the set of points reachable within a given time from the origin, once
appropriately rescaled, converges to a compact and convex limiting shape. This result is
significant as it allows for the characterization of the macroscopic behavior of random
processes, describing their global properties and providing insights into their long-term
dynamics.

Historically, the development of the asymptotic shape theorem has been marked by
significant advancements in the understanding of random processes. Early work by
Richardson [56] and Cox and Durrett [21] laid the foundation for the Shape Theorem,
providing precise conditions for the convergence of rescaled sets of points in First-Passage
Percolation to a deterministic compact and convex set. Subsequent research extended the
applicability of the theorem to various models, such as the contact process in random
environment, where Asymptotic Shape Theorems were proven, demonstrating the existence
of a norm such that the hitting time is asymptotically equivalent to the norm when the
process survives.

13



1.1 background and motivation 14

In recent years, the investigation of the limiting shape theorem for random processes has
seen significant advancements. Garet and Marchand [29] provided an asymptotic shape
theorem for the contact process in random environment, demonstrating the convergence of
rescaled sets of points to a compact and convex limiting shape. Benjamini and Tessera [7]
focused on first passage percolation on nilpotent Cayley graphs, proving an asymptotic
shape theorem for the first-passage percolation in the case of independent and identically
distributed weights on the edges. Cantrell and Furman [14] extended this concept to ergodic
families of metrics on nilpotent groups. Additionally, Coletti and de Lima [15] focused
on the frog model on finitely generated abelian groups. Ahlberg et al. [1] investigated
inhomogeneous first-passage percolation, showing that the asymptotic growth of the resulting
process obeys a shape theorem. Björklund [8] contributed to the field by proving further
structure theorems and providing rates of convergence for the asymptotic shape theorem
in certain classes of generalized first passage percolation. These recent investigations
have expanded the understanding of the asymptotic shape theorem for random processes,
demonstrating its applicability across various models and providing insights into their
long-term dynamics.

In particular, one can also consider the speed of convergence for the limiting shape,
also referred to as the quantitative asymptotic shape theorem. This result, delineated by
Kesten [40] and later subject of interest in many other studies (see, for instance, [8, 53, 62]),
represents a refinement of the standard shape theorem, necessitating sophisticated techniques
to effectively govern the stochastic growth of these processes.

Overall, the evolution of the asymptotic shape theorem has been developed by
contributions from diverse mathematical subfields, playing a pivotal role in elucidating the
long-term behavior of random processes. Its historical development underscores the
interdisciplinary essence of probability theory, manifesting in its multifaceted applications
across various realms of research. The methodologies employed in proving such results
hinge upon subadditive ergodic theorems, concentration inequalities, or moderated
deviations of random growth.

In the context of this doctoral thesis, the geometric properties of the limiting space
sometimes do not admit a direct application of ergodic theorems. This challenge leads us
to explore alternative techniques. By employing distinct methods, we extend the results
found in the literature to study this phenomenon in groups and within a family of random
graphs. The approaches are shaped by the geometric structures we are investigating, as
highlighted in the next section.
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1.2 objectives and contributions
The primary objective of this thesis is to explore limiting shape theorems using various
techniques applied to structures of interest in contemporary mathematical studies. These
techniques range from the straightforward application of subadditive ergodic theorems to
modified versions of the ergodic theorem tailored for polygonal paths in groups. Additionally,
the thesis presents a study of moderated convergence for First-Passage Percolation (FPP)
models on Random Geometric Graphs (RGGs), resulting in a quantitative shape theorem
that refines previous results under stronger conditions.

In particular, we first extend shape theorems found in [7, 14, 15] by obtaining results
for subadditive cocycles with conditions of at least and at most linear growth, replacing
the hypotheses of i.i.d. or L∞ random processes. The application of these new theorems
is illustrated through examples. Furthermore, in the case of FPP models on RGGs, we
present the limiting shape result that we obtained in [17], representing an advancement
over prior works such as [36, 64, 65]. However, we focus on refining the results obtained
in [17] under stronger conditions. The study we conducted in the last chapters of the thesis
delved into moderate deviations and related topics, leading to an investigation of the speed
of convergence. This enabled us to quantify rates of convergence, estimate fluctuations
of geodesics and spanning trees within FPP models on RGGs. Moreover, we study a
two-species competition model on the infinite connected component of an RGG, where the
growth and competition of the species are determined by Richardson’s and Voter’s models.
We show that there is a positive probability of coexistence of the two species at any time.

The theoretical implications of this work may lead to advancements in the field, paving
the way for future research related to this subject matter.

1.3 overview of the thesis
The main topics examined are divided into two parts, with the third section dedicated to
concluding remarks and a comparative discussion.

Part I This part of the doctoral thesis dedicated to the study of the limiting shape
for subadditive random processes on finitely generated groups with polynomial growth
rates. It begins by laying down the foundational groundwork in Chapter 2 with preliminary



1.3 overview of the thesis 16

concepts and notation, encompassing basic algebraic background, groups with polynomial
growth rates, subadditive random processes, and the metric geometry of locally compact
groups. Through these foundational elements, the thesis establishes a solid framework for
the subsequent exploration.

Moving forward, Chapter 3 delves into the heart of the matter with the investigation
of the asymptotic shape. It commences with an introduction, and intermediate results
are then presented, focusing on the establishment of a candidate for the limiting shape
and the approximation of admissible curves along polygonal paths. Section 3.3 includes
detailed proofs of the first and second theorems, accompanied by an additional result
for First-Passage Percolation (FPP) models. The results obtained in this part extend
the theorems found in the literature [7, 14, 15]. Throughout these discussions, the thesis
showcases applications to random growth models in Section 3.4, illustrating the broader
relevance and implications of the derived results. This part corresponds to the findings
reported in [16].

Part II Our focus shifts towards investigating the asymptotic shape theorem for standard
FPP models on RGGs, with a particular emphasis on studying their speed of convergence
and geodesics. Chapter 4 lays the groundwork by providing essential definitions and
auxiliary results on RGGs.

In Chapter 5, we delve into the existence of the limiting shape of FPP models on RGGs.
This chapter includes a proof of the standard shape theorem, demonstrating its validity
under specified conditions using classical techniques. While this work builds upon the
findings presented in our previous publication [17], we selectively omit certain intermediate
details to allow a more focused exploration of the improved version presented in the
subsequent chapter.

Chapter 6 further explores moderate deviation for FPP models on RGGs and its
implications. Here, we impose stronger conditions on the random variables involved. By
utilizing moderate deviations, we ascertain the speed of convergence to the asymptotic
shape, offering a quantification of convergence that does not rely on ergodic theorems.
Additionally, the chapter delves into fluctuations of geodesics and spanning trees within the
context of FPP models on RGGs, providing valuable insights into their behavior.

As a consequence of the theorems obtained in the previous chapters, in in Section 6.7,
we apply our results to the study of a two-species competition model. The growth and
competition dynamics are determined by Richardson’s and Voter’s models, and we
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demonstrate that the probability of coexistence of both species is positive. This is due to
the limiting shape being a Euclidean ball and the moderate deviations, along with several
other properties studied in this thesis.

Part III We conclude by commenting and comparing the main results with an additional
discussion on possible further research topics in this area.



Part I

L IM I T I NG SHAPE FOR SUBADD I T I V E RANDOM
PROCESSE S ON F IN I T E LY GENERATED GROUPS W I TH

POLYNOMIAL GROW TH RATE



2 PRE L IM INAR I E S AND NOTAT ION

In this chapter, we delve into the fundamental concepts of geometric group theory, a field that
provides tools to comprehend the relationship between algebraic properties and geometric
structures. We begin by establishing the basic definitions that serve as the cornerstone
for our exploration. Central to our analysis is the construction of the asymptotic cone,
a powerful tool that reveals the geometric behavior of groups at infinity. To illustrate
the versatility of our framework, we present concrete examples of groups that satisfy the
conditions under consideration.

To simplify notation, we use N to represent the set {1, 2, . . . } and N0 = N ∪{0}. Let
us denote a∧ b := min{a, b} and a∨ b := max{a, b} for a, b ∈ R. Consider O(f(t)) as the
class of functions given by the big O notation. In other words, g(t) ∈ O(f(t)) as t → a

exactly when lim sup
t→a

∣∣∣ g(t)
f(t)

∣∣∣ < +∞. Additionaly, the cardinality of a set A is denoted by |A|.

2.1 basic algebraic background
This section explores fundamental concepts essential to our study. We commence with a
brief review of the basic notions surrounding groups, establishing a common language and
notation. Subsequently, we introduce key definitions that serve as building blocks for the
subsequent development in our thesis. While some concepts may appear elementary, their
explicit formulation ensures clarity and coherence in our exploration of more advanced
topics.

For a comprehensive treatment of group theory and abstract algebra, we recommend
consulting in-depth texts such as [26,44].

Definition (Groups ans Subgroups). A group (Γ, .) is a set Γ equipped with a binary
operation . : Γ × Γ → Γ satisfying the following properties:

• (Associativity) For all x, y, z ∈ Γ, (x.y).z = x.(y.z).

19



2.1 basic algebraic background 20

• (Neutral Element) There exists e ∈ Γ such that, for all x ∈ Γ, x.e = e.x = x.

• (Inverse Element) For each x ∈ Γ, there exists x−1 ∈ Γ such that x.x−1 = x−1.x = e.

A subgroup H of a group Γ is a subset of Γ that is a group with the same binary operation
restricted to H ×H, denoted as H ≤ Γ.

The pair (Γ, ·) is commonly denoted as Γ, omitting the binary operator. In our operations,
we often skip the use of the dot when working with elements of the group. Here, the symbol
+ serves as a binary operator to indicate that the group is abelian, i.e., when x+ y = y + x

for all x, y ∈ Γ. For n ∈ N, the repeated operation of x ∈ Γ n times is given by

xn := x.x. · · · .x︸ ︷︷ ︸
n times

and n · x := x+ x+ · · · + x︸ ︷︷ ︸
n times

.

Furthermore, the trivial group is a group (Γ, ·) with Γ = {e}. We continue defining basic
structures of group theory.

Definition (Cosets and Normal Subgroups). For a subgroup H ≤ Γ, the left coset of H in Γ
containing x ∈ Γ is given by x.H = {x.h : h ∈ H}. Similarly, H.x = {x.g : h ∈ H} is the
right coset. A subgroup N ≤ Γ is normal, denoted as N ⊴ Γ, if x.N = N.x for all x ∈ Γ.

Normal subgroups play a central role in the decomposition of the group, and their
properties are repeatedly applied throughout this text. An immediate consequence of the
definition above is that N ⊴ Γ if, and only if, for all x ∈ Γ, one has N = x.N.x−1.

Definition (Quotients). The quotient of a group Γ by its subgroup H is Γ/H, which consists
of left cosets of H in Γ, i.e.,

Γ/H := {x.H : x ∈ Γ}.

In particular, when H ⊴ Γ, the quotient group (Γ/H, ⋆) emerges, defined by the binary
operation x.H ⋆ y.H = xy.H. Additionally, for N ⊴ Γ, the cosets xN and yN are either
equal or disjoint for all x, y ∈ Γ. Consequently, Γ/N forms a partition of Γ. Observe that,
if H ≤ Γ, then for all x ∈ Γ and y ∈ x.H, we have x.H = y.H and, therefore, every element
of a coset is called a representative of the coset.

The finite index property will be a recurring necessity throughout the text. The index of
a subgroup can be defined as follows.
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Definition (Subgroup Index). The index of a subgroup H ≤ Γ is the cardinality of the set
of left cosets (or right cosets) of H in Γ and it is denoted by [Γ : H], i.e.,

[Γ : H] := |Γ/H| .

The groups and graph structure linked to our random processes are characterized by
finite symmetric generating sets. Please find the respective definitions outlined below.

Definition (Symmetric Set). A subset S ⊆ Γ is symmetric if S = S−1, where S−1 =
{s−1: s ∈ S}.

Definition (Generated Subgroup). The subgroup generated by a (non-empty) subset S ⊆ Γ
is denoted as ⟨S⟩ and is the smallest subgroup of Γ containing S. A set S ⊆ Γ is a generating
set of Γ when Γ = ⟨S⟩.

A straightforward consequence of the definition above is that every element x ∈ ⟨S⟩ is so
that, when S is symmetric, x = s1.s2. · · · sm with si ∈ S for i ∈ {1, 2, . . . ,m} and m ∈ N.

Definition (Order and Torsion Subgroup). The order of an element x ∈ Γ is the smallest
positive integer given by o(x) := inf{n ∈ N : xn = e} The torsion subgroup of Γ, denoted
as tor Γ, is the set of all elements in Γ with finite order. Alternatively,

tor Γ := ⟨x ∈ Γ : o(x) < +∞⟩.

The group Γ is called torsion-free when tor Γ is the trivial group.

Group actions are fundamental for defining subadditive cocycles, a cornerstone in the
study undertaken in this thesis.

Definition (Group Action). A group action of a group Γ on a set Ω is a map ϑ : Γ ×Ω → Ω

satisfying:

• (Identity) For all ω ∈ Ω, ϑ(e, ω) = ω;

• (Compatibility) For all x, y ∈ Γ and each ω ∈ Ω, ϑ(x, ϑ(y, ω)) = ϑ(xy, ω).

To simplify notation, we write ϑ : Γ ↷ Ω for a group action of Γ on Ω and ϑx(ω) :=
ϑ(x, ω). In particular, we also write ϑ : Γ ↷ (Ω,F ,P) for a group action of Γ on Ω when
more properties of ϑ are associated with the probability space (Ω,F ,P).
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Definition (Ergodic and Probability Measure-Preserving Group Actions). A group action
on a probability measure space ϑ↷ (Ω,F ,P) is ergodic

if E ∈ F is such that ϑx(E) = E for all x ∈ Γ, then P(E) ∈ {0, 1}.

The group action ϑ↷ (Ω,F ,P) is P-preserving (probability measure preserving or p.m.p.)
if, for all x ∈ Γ and every E ∈ F , one has P

(
ϑ−1

x (E)
)

= P(E).

Definition (Group Homomorphisms and Isomorphisms). Let (Γ, .) and (Ψ, ∗) be groups. A
group homomorphism ψ : Γ → Ψ is a map such that for all x, y ∈ Γ,

ψ(x.y) = ψ(x) ∗ ψ(y).

An isomorphism between groups Γ and Ψ is a bijective group homomorphism.
Furthermore, Γ and Ψ are said to be isomorphic when there exists a group isomorphism
between them, we denote it by Γ ≃ Ψ.

Definition (Commutator Element). The commutator of elements x, y ∈ Γ is defined as

[x, y] := xyx−1y−1.

The commutator elements are essential to describe the connection between algebraic
and geometric properties of the structures considered in this text. The aforementioned
properties are going to be explored by the following sequence of normal subsets. Let us
first consider U, V ⊆ Γ, then we write [U, V ] := ⟨[u, v] : u ∈ U, v ∈ V ⟩.

Definition (Commutator Subgroup and Lower Central Series). Set Γ0 := Γ and let Γn :=
[Γ,Γn−1] for all n ∈ N. Thus {Γn}n∈N is the lower central series with Γn ⊴Γn−1 for all
n ∈ N. The group Γ1 = [Γ,Γ] is called the commutator subgroup of Γ.

One can easily verify that Γn is indeed a normal subgroup of Γn−1. In particular, the
quotient of the group by its commutator subgroup is called the abelianization of Γ, which
is denoted by Γab := Γ/[Γ,Γ].

Definition (Nilpotent and Virtually Nilpotent Groups). A group Γ is nilpotent when there
is an n ∈ N such that Γn = {e}, i.e., when its lower central series stabilizes in the trivial
group. More specifically, Γ is nilpotent of class n when n is the minimal value such that
Γn = {e}.
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The group Γ is virtually nilpotent when there exists a normal subgroup N ⊴ Γ that is
nilpotent with finite index κ = [Γ : N ] < +∞. In particular, we are also interested in
torsion-free nilpotent groups associated with a given virtually nilpotent group Γ. Hence, let
Γ′ := N/torN where N ⊴ Γ is a nilpotent with finite index.

Later in the text, we will observe that the groups under consideration are both finitely
generated and virtually nilpotent. In particular, they are also going to be associated with
Lie groups. Lie groups are mathematical structures that combines the smoothness of a
manifold with the group structure. Intuitively, it is a space that, near each of its points,
resembles the Euclidean space.

We do not intend to introduce the concepts of Lie Theory here, for a broad introduction
we recommend reading books for this purpose such as Hall [33]. We continue with a brief
basic explanation of relevant elements of this theory.

Definition (Lie Group). A Lie group G is a group that is also a smooth manifold, such that
the group operations (g, h) 7→ gh and g 7→ g−1 are smooth.

A Lie group G is said to be a real Lie group when G is also a real manifold. Similarly,
G is simply connected when the manifold is simply connected and its dimension is also
determined by the manifold.

Definition (Lie Algebra). The Lie algebra g is algebra with a anti-symmetric bilinear product
[−,−] : g× g → g that satisfies the Jacobi identity,i.e., for all X, Y, Z ∈ g,

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

There is a correspondence between Lie groups and Lie algebras. In particular, one can say
that the elements of the Lie algebra represent group elements that are infinitesimally close
to the identity element of the Lie group. The Lie algebra provides a linear approximation
to the group structure around the identity, consisting of tangent vectors at the identity
equipped with a Lie bracket operation that captures the group commutator.

Lie’s third theorem establishes that every finite-dimensional real Lie algebra g is associated
to a Lie group G. This correspondence is given by the exponential Lie map, denoted by
exp : g → G. Moreover, if G is a simply connected nilpotent Lie Group, then the exponential
map is a bijective diffeomorphism. The logarithm map log : G → g serves as the inverse
of the exponential map. A remarkable property in this case is that the Lie algebra g is
isomorphic to the tangent space TeG.
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A Carnot group is a special type of Lie group that arises in the study of sub-Riemannian
geometry. Carnot groups are also known as stratified Lie Groups, they have applications
in the analysis of hypoelliptic differential operators and serve as fundamental examples in
geometric group theory.

Definition (Carnot Group). A Carnot group H is a simply connected, finite-dimensional
Lie group whose corresponding Lie algebra h admits a stratification by non-trivial linear
subspaces V1, . . . , Vl such that

h =
l⊕

i=1
Vi

where [V1, Vi] = Vi+1 for all i ∈ 1, . . . , l− 1, and [V1, Vl] = 0.

In particular, the limiting spaces of interest in Part I of this thesis are Carnot groups, as
highlited in Section 2.4.1.

2.2 groups with polynomial growth rate
The interplay among finitely generated groups, Cayley graphs, word metrics, and the
convergence of metric spaces establishes a bridge between the algebraic properties of groups
and geometric structures.

Definition (Right-invariant Cayley graph). Let (Γ, .) be a group generated by a finite
symmetric set S. The associated Cayley graph C(Γ, S) represents elements of G as vertices,
with edges connecting x and y if and only if y = sx for some s ∈ S. Formally, the
right-invariant Cayley graph C(Γ, S) = (V,E) is defined by

V = Γ and E = {{x, sx} : x ∈ Γ, s ∈ S}.

Cayley graphs provide a visual representation of the group structure and are fundamental
in the study of geometric group theory. Denote by u ∼ v the relation {u, v} ∈ E.

Definition (Self-avoiding paths and its Length). Let P(x, y) be the set of self-avoiding
paths from x to y, where each γ ∈ P(x, y) follows γ = (x0, . . . , xm) with m ∈ N, xi ∼ xi+1,
x0 = x, xm = y, and xi ̸= xj for all i ̸= j. We write e ∈ γ for e = {xi, xi+1} ∈ E, and
|γ|= m represents the length of the path.
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Definition (Word norm and Word Metric). The word length on Γ with respect to S is
defined as follows: For any x ∈ Γ, the length of the shortest word (or self-avoiding path) in
S that represents x is its word length, denoted by

∥x∥S = inf
γ∈P(e,x)

|γ|.

The word metric dS on Γ is given by dS(x, y) = ∥yx−1∥S . Observe that, since S generates
Γ, ∥x∥S< +∞ for all x ∈ Γ.

Throughout this text, various distinct metrics will be considered. Therefore, let us
consider a (semi-pseudo-quasi) metric d♢ on a non-empty set X, where the metric is indexed
by ♢. We define B♢(x, r) := {y ∈ X : d♢(x, y) < r} as the open d♢-ball centered at x ∈ X.

A finitely generated group Γ has polynomial growth with respect to S when |BS(e, r)|∈
O(nD′

) for a D′ ∈ N0 as n ↑ +∞. The growth is associated with the Cayley graph C(Γ, S).
The polynomial growth rate of Γ is a constant D ∈ N0 such that there exists k ∈ (1,+∞)
for all r > 1 satisfying

k−1rD ≤ |BS(e, r)|≤ krD.

Thus D = min {D′ ∈ N0 : |BS(e, r)|∈ O(nD′
)}. Moreover, one can verify that the

polynomial growth rate of C(Γ, S) does not depend on the choice of S.
A noteworthy result obtained by Gromov [32] is that a finitely generated group has

polynomial growth exactly when it is virtually nilpotent. Therefore, the growth established
by word metrics is strongly related to algebraic properties of the group.

2.3 subadditive random processes
The study of subadditive processes began with Hammersley and Welsh [34], who examined
problems related to percolation on graphs. They identified a subadditive relation in these
problems, noting that if this relation were additive, it would produce a result similar to the
Strong Law of Large Numbers through Birkhoff’s Ergodic Theorem. This work led to the
development of a new branch within Ergodic Theory, initially developed by Kingman [41,42],
known as Subadditive Ergodic Theory.
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Before stating the main elements of the theory, let us define the deterministic counterpart
of subadditive elements. A real sequence {an}n∈N is considered subadditive when, for all
n,m ∈ N, it satisfies the inequality

an+m ≤ am + an.

A notable result for subadditive sequences is given by Fekete’s lemma, which ensures that
limn↑+∞

an
n = infn∈N

an
n .

Extending this concept to functions defined on a group, a function f : (Γ, .) → (R,+, ·)
is said to be subadditive if it satisfies, for all x, y ∈ Γ,

f(xy) ≤ f(y) + f(x).

Consequentially, if + is the binary operation in Γ, and f : (Γ,+) → (R,+, ·) is such that
f(x+ y) ≤ f(x) + f(y) for all x, y ∈ Γ, then f is subadditive.

Building upon these definitions, we introduce the concept of a subadditivity of the
following random elements:

Definition (Subadditive Cocycles). Let {Xn}n∈N be a collection of random variables and
let θ : Ω → Ω be a probability measure preserving measurable map on a (Ω,F ,P). Then
{Xn}n∈N is said to be a subadditive random process (or subadditive cocycle) on (Ω,F ,P, θ)
when it satisfies, P-a.s., for all n,m ∈ N,

Xn+m ≤ Xm +Xn ◦ θm.

Consider a group (Γ, .) and let ϑ : Γ ↷ (Ω,F ,P) a p.m.p. group action. A function
c : Γ ×Ω → (R,+, ·) that satisfies, P-a.s., for all x, y ∈ Γ,

c(xy) ≤ c(y) + c(x) ◦ ϑy

is denominated subadditive cocycle function.

For simplicity, we refer to subadditive cocycle functions exclusively as subadditive cocycles
throughout the text. Note that {c(xn)}n∈N is a subadditive random process when c is a
subadditive cocycle. Furthermore, { E[Xn]}n∈N is a subadditive sequence and c : Γ → R

with c(x) := E[c(x)] is a subadditive function. Hence, the correspondence between the
random and deterministic subadditive properties can be explored.
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Below, we present a version of Kingman’s Subadditive Ergodic Theorem, as outlined
in [59] and, to some extent, in [45], among other sources.

Theorem 2.1 (Kingman’s Subadditive Ergodic Theorem). Let (Ω,F ,P, θ) be a probability
space with a measurable map θ : Ω → Ω which is probability measure preserving. Consider
{Xn}n∈N a collection of L1 random variables so that, P-a.s., for all n,m ∈ N,

Xn+m ≤ Xm +Xn ◦ θm

Then there exists a θ-invariant random variable Y ∈ [−∞,+∞) such that

Y = lim
n↑+∞

1
n
Xn P -a.s. and in L1, and

E[Y ] = lim
n↑+∞

1
n

E[Xn] = inf
n∈N

1
n

E[Xn].

Additionally, if θ is ergodic, then Y is constant.

This theorem provides an exceptional methodology for studying the asymptotic behavior
of subadditive cocycles. It demonstrates the feasibility of studying the asymptotic shape
through subadditive cocycles, as their behavior can be correlated with that of a norm
in space. Nevertheless, it remains essential to manage convergence in all directions or
undertake the approximation of geodesic curves.

There are various versions of Theorem 2.1, along with several improved subadditive
ergodic theorems, such as those derived by Derriennic [25], Liggett [45], and Kesten (refer to
comments in [13]). Our primary focus will be on examining processes that fit the hypotheses
of Kingman’s theorem. Nevertheless, these supplementary results suggest potential pathways
for future investigations into the object under study.

2.4 metric geometry of locally compact
groups

A key focus of our investigation lies in the construction of the norm in the limiting space,
which will be denoted as G∞, providing the foundation for defining the limiting shape.
We explore crucial results and properties in the following subsections. For an in-depth
discussion on this topic, we refer interested readers to [11,12, 20,23, 54]. Through this lens,
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we gain a deeper understanding of the interplay between algebraic properties and geometric
structures.

2.4.1 Volume Growth of Cayley Graphs

Let [U ]ε to be the ε-neighborhood of U ⊆ X of in a metric space (X, d♢), i.e., the set
[U ]ε = ⋃

u∈U B♢(e, ε). The Hausdorff distance dH detects the largest variations between
sets with respect to the given metric

dH(U, V ) := inf{ε > 0 : U ⊆ [V ]ε and V ⊆ [U ]ε}.

We define the convergence of metric spaces used in the main theorems employing the
Hausdorff distance. Let (Xn, d♢n , on)n∈N be a sequence of centered, locally compact metric
spaces. Consider {ψn}n∈N as a family of isometric embeddings ψn : (Xn, d♢n , on) →
(X, d♢, o).

The pointed Gromov-Hausdorff convergence of (Xn, d♢n , on) to (X, d♢, o) is denoted by

(Xn, d♢n , on) GH−−→(X, d♢, o)

and it implies, for all r > 0,

lim
n↑+∞

dH

(
ψn(B♢n(on, r)), B♢(o, r)

)
= 0.

The definitions above are immediately extended to random semi-pseudo-quasi metrics, as
employed in the main theorems (see Theorems 3.1 and 3.2 and Corollary 3.19). Here, a
pseudo-quasi metric refers to a metric where the properties of positivity and symmetry do
not necessarily hold true. It would also be possible to replace the triangle inequality with a
weaker condition; however, this is beyond the scope of our discussion here.

The assumption of almost sure local compactness is also maintained. We are now prepared
to present Pansu’s theorem on the convergence of finitely generated virtually nilpotent
groups.

Theorem 2.2 (Pansu [49]). Let Γ be a virtually nilpotent group generated by a symmetric
and finite S ⊆ Γ. Then (

Γ, 1
n
dS , e

)
GH−−→(G∞, d∞, e),
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where G∞ is a simply connected real graded Lie group (Carnot group). The metric d∞ is a
right-invariant sub-Riemannian (Carnot-Caratheodory) metric which is homogeneous with
respect to a family of homotheties {δt}t>0, i.e., d∞(δt(g), δt(h)) = t d∞(g, h) for all t > 0
and g, h ∈ G∞.

Note that Theorems 3.1 and 3.2 are generalizations of the theorem above. Therefore, the
shape theorems under investigation can be interpreted as the convergence of random metric
spaces in large-scale geometry. The next subsection is dedicated to the construction of the
asymptotic cone G∞ and related results.

2.4.2 Rescaled Distance and Asymptotic Cone

Consider for now Γ as a nilpotent and torsion-free group, unless stated otherwise. We also
assume that its abelianization is torsion-free. In this subsection, we use Γ instead of Γ′ to
simplify notation, but we will subsequently extend the results to the more general case.

Let G denote the real Mal’cev completion of Γ. The group G can be defined as the
smallest simply connected real Lie group such that Γ ≤ G and, for all z ∈ Γ and n ∈ N,
there exists z ∈ G with zn = z. In this case, G is nilpotent of the same order of Γ and it is
uniquely defined. Furthermore, G is simply connected it is associated with the Lie algebra
(g, [·, ·]1) where Γ is cocompact in G. We write log : G → g for the Lie logarithm map.

Define g1 := g and gi+1 := [g, gi]1. It follows from the nilpotency of Γ that threre exists
l ∈ N such that Γl = {e}. Thus gl+1 = (0). Since [gi, gj ]1 ⊆ gi+j and, in particular,
[gi+1, gj ]1, [gi, gj+1]1 ⊆ gi+j+1, the Lie bracket on g determines a bilinear map

(gi/gi+1) ⊗ (gj/gj+1) −→ gi+j/gi+j+1

which in turn defines a Lie bracket [·, ·]∞ on

g∞ :=
l⊕

i=1
vi with vi := gi/gi+1 .

Consider the decomposition g = V1 ⊕ · · · ⊕ Vl given by gi := Vi ⊕ · · · ⊕ Vl. Thus,
(g∞, [·, ·]∞) is a graded Lie algebra. Let us define a family of linear maps δt : g∞ → g∞

given by
δt(v1 + v2 + · · · + vl) = tv1 + t2v2 + · · · + tlvl
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for each t > 0 and vi ∈ vi with i ∈ {1, . . . , l}. It follows from the definition of δt that
δt([u, v]∞) = [δt(u), δt(v)]∞ and δtt′ = δt ◦ δt′ for all u, v ∈ g∞ and t, t′ > 0. Hence, {δt}t>0

defines a family of automorphisms in the graded Lie group G∞ := exp∞ [g∞]. Here we
write exp∞ : g∞ → G∞ and exp : g → G to differentiate the distinct exponential maps of
g∞ and g. Similarly, log∞ and log stand for their correspondent Lie logarithm maps.

Let g = V1 ⊕ · · · ⊕ Vl be the decomposition given by gi = Vi ⊕ · · · ⊕ Vl. Set L : g → g∞

to be an linear map such that L(Vi) = vi. Consider now σt to be the linear automorphism
on g so that σt(vi) = tivi for each vi ∈ Vi and i ∈ {1, . . . , l}. Define the Lie brackets [·, ·]t
on g by

[v, w]t = σ1/t([σt(v), σt(w)]), for all t > 0,

thus (g, [·, ·]t) is isomorphic to (g, [·, ·]1) via σt. Furthermore,

[L(v), L(w)]∞ = lim
t↑+∞

[v, w]t

since, given v ∈ Vi and w ∈ Vj , one has that the main term belongs to Vi+j , the other
terms of superior order belong to Vi+j+1 ⊕ · · · ⊕ Vl and it makes them insignificant in the
rescaled limit (see [11,49] for a detailed discussion). Set

1
tn

•xn := (exp∞ ◦L ◦ σ1/tn
◦ log)(xn).

The convergence established by Theorem 2.2 determines the metric d∞ such that
(

Γ, 1
n
dS , e

)
GH−−→ (G∞, d∞, e) .

Hence, limn↑+∞
1
tn

•xn = g exactly when 1
tn

•xn converges to g in (G∞, d∞). The
corresponding metric statement shows that, given sequences {xn}n∈N, {x′

n}n∈N in Γ, and
tn ↑ +∞ as n ↑ +∞ with limn↑+∞

1
tn

•xn = g and limn↑+∞
1
tn

•x′
n = g′,

d∞(g, g′) = lim
n↑+∞

1
tn
dS(xn, x

′
n).

The abelianized Lie algebras are defined by gab
∞ := g∞/[g∞, g∞]∞ ∼= v1 and gab :=

g/[g, g]1. In particular, gab ∼= gab
∞ . According to the Frobenius integrability criterion, the

integrable curves in G∞ are those for which the tangent vectors at each point of the curve
belong to v1. An admissible (or curve) in G∞ is a Lipschitz curve γ : [t0, t1] → G∞ such
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that the tangent vector γ′(t) ∈ v1 for all t ∈ [t0, t1]. Let ϕ : gab
∞ → [0,+∞) be a norm in

the abelianized algebra. Then the ℓϕ-length of the admissible γ is

ℓϕ(γ) :=
∫ t1

t0
ϕ(γ′(t))dt.

Set dϕ to be the inner metric of the length space (G, ℓϕ) given by

dϕ(g, g′) := inf {ℓϕ(γ) : γ is an admissible curve from g to g′ in G∞}. (2.1)

In fact, the construction of dϕ can be employed to define d∞. The bi-Lipschitz property
is a consequence of the results in Section 3.2.1. One can also verify that the metric d∞ is
right-invariant and homogeneous with respect to δt. Let us define the projections

π : g → gab and π∞ : g∞ → v1 ∼= gab
∞

so that, if v = ∑l
i=1 vi ∈ g∞ with vi ∈ vi, then π∞(v) = v1 and π = L−1 ◦ π∞ ◦ L. The

next lemma compiles several well-known results that will be employed throughout the text.
We state the results and their proofs can be found in [14,20,49].

Lemma 2.3. Consider Γ a finitely generated torsion-free nilpotent group, then all of the
following hold true:

(i) Let g ∈ G∞. Then there exists a sequence {xn}n∈N ⊆ Γ such that

lim
n↑+∞

1
n

•xn = g.

(ii) Let {xn}n∈N, {yn}n∈N ⊆ Γ, g, h ∈ G∞, and tn ↑ +∞ as n ↑ +∞ be such that
limn↑+∞

1
tn

•xn = g and limn↑+∞
1
tn

• yn = h. Then

lim
n↑+∞

1
tn

•xnyn = gh.

(iii) Let x ∈ Γ, then

lim
n↑+∞

1
n

•xn = (exp∞ ◦L ◦ π ◦ log) (x)

= (exp∞ ◦ π∞ ◦L ◦ log) (x).
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Remark 2.1. The conditions imposed on Γ might appear somewhat restrictive. However,
we will subsequently regain many properties by making necessary adjustments for virtually
nilpotent Γ through the quotient Γ′ = N/torN (see Section 3.3.2).

The item (iii) in Lemma 2.3 has direct implications for the application of subadditive
ergodic theorems. To address this constraint, we overcome it by approximating the lengths
using polygonal curves. We present, without proof, Lemma 3.7 from [14], which will be
employed in the approximation.

Lemma 2.4. Consider Γ nilpotent. Let {yi}m
i=1 ⊆ Γ and ε > 0 be given. Then there exist

ξ > 0 and n ∈ N so that, for all n > n, for all nj ∈ {0, 1, . . . , ⌊ξn⌋},

1
n
dS

(
yn−nm

m y
n−nm−1
m−1 . . . yn−n1

1 , yn
my

n
m−1 . . . y

n
1
)
< ε.

One standout example that exemplifies several properties presented above is the discrete
Heisenberg group. As a prime example of a nilpotent group, it offers valuable insights
into the fusion of algebraic structures with geometric phenomena in both geometric group
theory and metric geometry.

Example 2.1 (The discrete Heisenberg group). The discrete Heisenberg group can be
visualized as a collection of integer lattice points in a three-dimensional space, with a unique
group structure derived from matrix multiplication. The nilpotent nature is the key to
understand its intricate geometric properties. Let R be a commutative ring with identity
and set H3(R) := {(x, y, z) : x, y, z ∈ R} to be the set of upper triangular matrices with

(x, y, z) :=


1 x z

0 1 y

0 0 1

 .

The Heisenberg group on R is H3(R) with the matrix multiplication. In particular,
H3(Z) is known as discrete Heisenberg group. Let Γ = H3(Z), X = (1, 0, 0), Y = (0, 1, 0),
Z = (0, 0, 1), and S = {X±1, Y±1}. Observe that

(x, y, z).(x′, y′, z′) = (x + x′, y + y′, z + z′ + xy′),

(x, y, z)−1 = (−x,−y, xy − z), and

[(x, y, z), (x′, y′, z′)] = (0, 0, xy′ − x′y).
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Figure 1: A section of the Heisenberg discrete Cayley graph C(H3(Z), S) embedded in R3. Fig.
from [16].

Therefore, for all m,n ∈ Z,

Xm = (m, 0, 0), Yn = (0, n, 0), and [Xm, Yn] = Zm·n = (0, 0,m · n). (2.2)

One can easily see that S is a finite generating set of Γ. Furthermore, Γ1 = [Γ,Γ] = ⟨Z⟩
and Γ2 = [Γ,Γ1] = {e}. Hence, Γ is nilpotent of class 2 and S ⊆ Γ \[Γ,Γ]. Consider ∥−∥S

the word norm of C(Γ, S). It follows from (2.2) that

∥Zm∥S∈ O(
√
m) as m ↑ +∞.

It highlights how the rescaled norm 1
n∥xn∥S vanishes as n ↑ +∞ when x ∈ [Γ,Γ].

Due to the properties above, one can write (x, y) = (x, y, z)[Γ,Γ]. Note that Sab =
{(±1, 0), (0,±1)} is a finite generating set of the abelianized group Γab = Γ/[Γ,Γ] which
yields an isomorphism of C(Γab, Sab) and the square Z2 lattice.

By construction of the asymptotic cone, the Mal’cev completion G of Γ ≃ Γ′ is the
continuous Heisenberg group H3(R) with its associated Lie algebra h = g, in this case,
g ≃ g∞ and G ≃ G∞. The Heisenberg algebra h is given by h = spanR{e12, e13, e23} with
{eij : i, j ∈ {1, 2, 3}} the canonical basis of M3×3(R).

Since for all A, B ∈ h one has [A, B]∞ = AB − BA ∈ spanR{e13} by matrix multiplication, it
then follows that h = v1 ⊕ v2 with v1 ≃ spanR{e12, e23} and hab ≃ gab

∞ ≃ v1.
Let A = u · e12 + v · e23 + w · e13, then exp∞(A) =

(
u, v, w + 1

2uv
)
.
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Since (x, y, z)n =
(
nx, ny, nz + n(n−1)

2 xy
)

one can verify by the procedure defined in
this section that 1

n •(x, y, z)n =
(
x, y, 1

nz − 1
2nxy + 1

2xy
)

∈ G∞. It implies that, for all
x, y, z ∈ Z,

lim
n↑+∞

1
n

•(x, y, z)n =
(

x, y,
1
2xy

)
= exp∞

(
π∞

(
log(x, y, z)

))
.

2.4.3 Some Examples of Virtually Nilpotent Groups

In this subsection, our focus shifts to examples of virtually nilpotent groups that can be
constructed through direct and outer semidirect products. The discussion of the virtually
nilpotent case will be explored more extensively later in the text.

Let L be a nilpotent group and consider M a finite group. Then the direct product

K = L ×M

is a group with the binary operation given by (x,m).(y,m′) = (xy,mm′). Note that the
commutator is [(x,m), (y,m′)] = ([x, y], [m,m′]). It follows that, for all A,A′ ⊆ L and
B,B′ ⊆ M ,

[A×B,A′ ×B′] = [A,B] × [A′, B′].

Hence, K is a nilpotent group if, and only if, M is nilpotent. On the other hand, for all
finite group M , K is virtually nilpotent.

Set SL and SM to be finite symmetric generating sets of L and M , respectively.

(SL × {e}) ∪ ({e} × SM )

is a finite generating set of K. We will consider another useful example of generating set of
K. Let Se

□ stand for S□ ∪ {e}. Then

S = SL × Se
M

is also a symmetric generating set of K. In Chapter 3, we will define a set JSK. Under the
assumption that L is torsion-free, the set JSK is analogous to SL, where Γ′ ≃ L.
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Example 2.2. Let SL(2, 3) be the of degree two over a field of three elements determined by

SL(2, 3) =
〈
ρ1, ρ2, ρ3 : ρ3

1 = ρ3
2 = ρ3

3 = ρ1ρ2ρ3
〉

A remarkable property of SL(2, 3) is that it is the smallest group that is not nilpotent. Let
Zm = ⟨ρ0⟩ the cyclic group with ρm

0 = e and consider H3(Z) to be the discrete Heisenberg
group, as defined in Example 2.1. Set

Γ = (H3(Z) × Zm ) × SL(2, 3).

Then Γ is virtually nilpotent with N = H3(Z) × Zm ×{e}⊴ Γ such that κ = [Γ : N ] =
|SL(2, 3)|= 24. Hence, considering this notation:

N ≃ H3(Z) × Zm, torN = {e} × Z3 ×{e} ≃ Z3 Γ′ = N/torN ≃ H3(Z).

Let us write SL(2, 3) = {zj}24
j=1 and fix z(j) = (e, e, zj) as representatives for each coset in

Γ/N . Thus,

πN (x, y, z) = (x, y, e), and J(x, y, z)K = {x} × Z3 ×{e} ∼= x ∈ H3(Z).

Now, set

SH3(Z) = {X±1, Y±1}, SZm =
{
ρ±1

0
}
, and SSL(2,3) =

{
ρ±1

1 , ρ±1
2 , ρ±1

3
}
.

Then
S = SH3(Z) × Se

Zm
× Se

SL(2,3)

is a finite symmetric generating set of Γ. Moreover, the Cayley graph C(Γ, S) is
homomorphically equivalent to C(Γ′, JSK), which is isomorphic to C

(
H3(Z), SH3(Z)

)
.

More generally, one can also obtain a virtually nilpotent group by the outer semidirect
product. Consider N a nilpotent and H a finite group. Let φ be a group homomorphism
φ : H → Aut(N), where Aut(N) is the automorphism group of N . Then the semidirect
group is

Γ = N ⋊φ H
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whose elements are the same of N ×H but the binary operation is characterized by

(x, h).(y, h′) = (xφh(y), hh′),

(x, h)−1 = (φh−1(x−1), h−1), and[
(x, h), (y, h′)

]
=
(
xφh(y)φhh′h−1(x−1)φ[h,h′](y−1), [h, h′]

)
.

Let SN and SH be finite symmetric generating sets of N and H, respectively. Hence,
similarly to the direct product,

(SN × {e}) ∪ ({e} × SH)

is a finite symmetric generating set of Γ. Moreover, SN × Se
H is also a finite generating set,

but not necessarily symmetric. However,
 ⋃

h∈H

φh(SN )
×H

is finite, symmetric, and generates Γ. The next example illustrates how some properties of
the outer semidirect product groups change in comparison to the direct product.

Example 2.3 (Generalized dihedral group). Let (N,+) be a finitely generated abelian group
with polynomial growth rate D ≥ 1 and (Z2,+) with Z2 = {0, 1}. Fix φ : Z2 → Aut(N)
such that φ0 = id and φ1 = −id. The generalized virtually nilpotent diheral group is

Dih(N) := N ⋊φ Z2 .

Consider Γ = Dih(N), then for all (x, r), (y, r′) ∈ Γ,

(x, r).(y, r′) = (x+ φr(y), r+ r′),

(x, r)−1 = ((−1)r+1x, r),[
(x, r), (y, r′)

]
=
(
(1 − (−1)r′

)x− (1 − (−1)r)y, 0
)
.

Therefore, Γ is non-abelian and Γ1 = [Γ,Γ] = 2N × {0}. One can easily verify that all
elements of Γ2 = [Γ,Γ1] are

[
(x, r), (2y, 0)

]
=
(
2((−1)r − 1)y, 0

)
.
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Hence, for all n ∈ N, one has Γn ≃ 2nN . We can conclude that Γ is not nilpotent while
it is virtually nilpotent since N ⊴ Γ.

2.5 first-passage percolation models
Hammersley and Welsh [34] introduced the First-Passage Percolation (FPP) as a
mathematical model in 1965 to study the spread of fluid through a porous medium. In
FPP models, a graph with random edge weights is considered, where these weights
represent the time taken for the fluid to pass through the corresponding edge. These
concepts will be revisited in Section 3.3.3 and illustrated with examples in Section 3.4.
Furthermore, the random processes considered in Part III are i.i.d. FPP models.

Let G = (V,E) be a graph and set τ = {τ(e)}e∈E to be a collection of non-negative
random variables. We may regard each τ(u, v) as random length (also passage time or
weight) of an edge {u, v} ∈ E. It turns (G, τ) into a random length space and it motivates
the following construction.

The random passage time of a path γ ∈ P(x, y) is given by T (γ) = ∑
e∈γ τ(e). Let us

now define the first-passage time of y with the process starting at x by

T (x, y) := inf
γ∈P(x,y)

T (γ).

The random variable T (x, y) is also known as first-hitting time. Observe that T (x, y) is
a random intrinsic pseudometric, i.e., x ̸= y does not imply in T (x, y) > 0. We can now
consider the group action ϑ : Γ ↷ (Ω,F ,P) as a translation such that c(x) := T (e, x) is
a subadditive cocycle (see (3.2)) with τ(x, sx) ◦ ϑy = τ(xy−1, sxy−1) for all x, y ∈ Γ and
s ∈ S when G = C(Γ, S).

By requiring ϑ to be ergodic, we obtain for the FPP model that, for all x ∈ Γ and s ∈ S,

c(s) ◦ ϑx = τ(x, sx) ∼ τ(e, s) = c(s).

It also follows that τ(e, s) ∼ τ(e, s−1). Therefore, each direction of C(Γ, S) determines a
common distribution for its random lengths in a FPP model. Example 3.3 portraits an
FPP model with dependend and identically distributed random lengths. While the random
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variables of the FPP model presented in Example 3.4 are independent but not identically
distributed.

In the next chapter, we will introduce conditions to study a family of random processes on
groups. Specifically, we will examine conditions (i), (ii), (iii), (ii′), and (iii′) (see Chapter 3).
Since passage times are preserved under translation, condition (iii) is immediately satisfied
when S = F (ε), as it suffices to consider a geodesic path. However, other examples of
subadditive interacting particle systems do not exhibit these properties. For instance, the
Frog Model (see Example 3.5) can be described by a subadditive cocycle satisfying (i),
(ii), and (ii′). If we denote τ(x, sx) = |T (x) − T (sx)|, then τ describes the growth of the
process, and

τ(x, sx) ◦ θx ∼ τ(e, s) while τ(x, sx) ̸∼ τ(e, s).

The results and properties highlighted above will be crucial in the study of the asymptotic
shape and its applications in the subsequent discussions.



3 ASYMPTOT IC SHAPE OF SUBADD I T I V E
PROCESSE S ON GROUPS W I TH
POLYNOMIAL GROW TH

3.1 introduction
The investigation of the asymptotic shape for subadditive processes on groups with
polynomial growth, often synonymous with virtually nilpotent groups, has recently gained
significant attention in the mathematical community. This is in part due to the fact that
the usage of subadditive ergodic theorems for the limiting shape relies on vertex-transitive
properties that are natural for group actions. Typically, these actions involve translations
of the underlying space, providing motivation for the investigation of random processes
defined on groups. Our study brings to light the algebraic structures inherent in a class of
subadditive processes, offering a generalization beyond the fundamental settings of
previously studied models.

The findings presented in this work hold the potential to deepen our comprehension of
various mathematical and scientific phenomena. For instance, they could be instrumental
in exploring the geometry of random surfaces or modeling the propagation of information
or diseases through networks. The techniques used in this study could also be applied to
other types of random processes on graphs or manifolds.

Benjamini and Tessera [7] were the first to establish an asymptotic shape theorem for
First-Passage Percolation (FPP) models on finitely generated groups of subexponential
growth with i.i.d. random variables having finite exponential moments. Recently, Auffinger
and Gorski [4] demonstrated a converse result, revealing that a Carnot-Carathéodory metric
on the associated graded nilpotent Lie group serves as the scaling limit for certain FPP
models on a Cayley graph under specified conditions. Broadening the investigation, Cantrell
and Furman [14] explored the limiting shape for subadditive random processes on groups of
polynomial growth, focusing on a class of processes satisfying an almost-surely bi-Lipschitz

39
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condition. From a probabilistic standpoint, there is significant interest in relaxing this
bi-Lipschitz condition, which requires random variables to be in L∞. Here, we modify this
hypothesis by replacing it with conditions of at least and at most linear growth. These
new conditions widen the range of distributions of interest and improve the applicability to
random processes within Lp spaces for finite p. The implications and applicability of this
new result are illustrated through examples presented at the end of the chapter. Notably,
we enhance our previous result from [15] on a limiting shape theorem obtained for the Frog
Model, now extended to a broader class of non-abelian groups.

Addressing this challenge is primarily approached through the utilization of techniques
from metric geometry and geometric group theory. The existence of the limiting shape can
be viewed as an extension of Pansu’s theorem to random metrics. The primary strategy
involves considering the subadditive cocycle determining a pseudo-quasi-random metric,
with the standard case on ZD and RD extensively covered in the literature (see, for
instance, [8, 9]).

We describe the process and the obtained theorem below, more detailed definitions can
be found in the next section.

Basic description and main results

Let (Ω,F ,P) be a probability space and (Γ, .) a finitely generated group with polynomial
growth rate. Set ϑ : Γ ↷ (Ω,F ,P) to be a P-preserving (p.m.p.) ergodic group action.
Consider the family {c(x)}x∈Γ of non-negative random variables such that, P-a.s.,

c(xy) ≤ c(y) + c(x) ◦ ϑy (3.1)

Write c(x, ω) for c(x)(ω) and let z · ω := ϑz(ω). Recall that function c : Γ ×Ω → R≥0

satisfying (3.1) is referred to as a subadditive cocycle (see Section 2.3). Once given a
subadditive cocycle c, there is a correspondent random pseudo-quasi metric dω defined by

dz·ω(x, y) := (c(yx−1) ◦ ϑx )(z · ω),

which is Γ-right equivariant, i.e., for all x, y, z ∈ Γ, and for every ω ∈ Ω,

dω(x, y) = dz·ω(xz−1, yz−1).
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The correspondence is one-to-one since given a Γ-right equivariant random
pseudoquasimetric dω, one can easily verify that

c(x, ω) := dω(e, x) (3.2)

is a subadditive cocycle.
To avoid dealing with unnecessary technicalities, we initially consider Γ as a group of

polynomial growth, which is nilpotent and torsion-free. Later, we address the more general
case where Γ is virtually nilpotent. The essential definitions and notation are introduced as
we proceed with the text. The group will be associated with a finite symmetric generating
set S ⊆ Γ. We write ∥−∥S and dS for a word length and a word metric, respectively. The
following conditions will be needed throughout the paper. We assume the existence of
β > 0 and κ > 1 such that, for all x ∈ Γ,

P (c(x) ≥ t) ≤ g(t) for all t > β∥x∥S (i)

where g(t) ∈ O
(
1/t2D+κ

)
as t ↑ +∞.

Let [Γ,Γ] be the commutator subgroup of Γ and set ∥x∥ab
S := infy∈x[Γ,Γ]∥y∥S . Suppose

that there exists a > 0 such that, for all x ∈ Γ \[Γ,Γ] there is a sequence {nj}j∈N of
positive integers depending on x[Γ,Γ] with limj↑+∞ nj = +∞ and, for all y ∈ x[Γ,Γ] and
every j ∈ N,

a∥ynj ∥ab
S ≤ E [c (ynj )] . (ii)

We say that the process grows at least linearly when condition (i) is satisfied. Condition (ii)
provides a lower bound for the norm of the rescaled process ϕ, which will be defined later.

To obtain the asymptotic result, we will introduce an innerness assumption. Specifically,
for each ε > 0, we require the existence of a finite generating set F (ε) ⊆ Γ \[Γ,Γ] such
that, for P-a.s. ω ∈ Ω and for every x ∈ Γ, we can write x = znzn−1 . . . z1 with
zn, zn−1, . . . , z1 ∈ F (ε) satisfying

n∑
i=1

c(zi, zi−1 . . . z1 · ω) ≤ (1 + ε)c(x, ω). (iii)

When considering First-Passage Percolation models where S ⊆ Γ \[Γ,Γ], condition (iii) is
automatically fulfilled (see Section 2.5). Additionally, in the case where Γ is abelian, we
can eliminate the need for hypothesis (iii) in the main theorem altogether.
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Theorem 3.1 (Limiting Shape for Torsion-Free Nilpotent Groups). Let (Γ, .) be a torsion-
free nilpotent finitely generated group with polynomial growth rate D ≥ 1 and torsion-free
abelianization. Consider c : Γ ×Ω → R≥0 to be a subadditive cocycle associated with dω

and a p.m.p. ergodic group action ϑ.
Suppose that conditions (i), (ii), and (iii) are satisfied for a finite symmetric generating

set S ⊆ Γ. Then (
Γ, 1
n
dω, e

)
GH−−→ (G∞, dϕ, e) P -a.s. (3.3)

where G∞ is a simply connected graded Lie group, and dϕ is a quasimetric homogeneous
with respect to a family of homotheties {δt}t>0. Moreover, dϕ is bi-Lipschitz equivalent to
d∞ on G∞.

In addition, if Γ is abelian, then (3.3) remains true even when condition (iii) is not valid.

The limit space G∞ is also known as a Carnot group and d∞ coincides with the Carnot-
Carathéodory metric obtained by the asymptotic cone of Γ as the limit of 1

ndS . More details
about its construction and properties can be found in Chapter 2 and Section 3.2.1 along
with the definitions of δt and dϕ. The usage of the pointed Gromov-Hausdorff convergence
arises naturally from its correspondence with geometric group theory.

Let now (Γ, .) be a finitely generated group with polynomial growth rate. Gromov’s
Theorem [32] establishes the equivalence of polynomial growth and virtual nilpotency in
finitely generated groups. Then there exists a normal nilpotent subgroup N ⊴ Γ with finite
index κ := [Γ : N ] < +∞. Set torN to be the torsion subgroup of N and define

Γ′ := N/torN.

Pansu [49] showed that Γ and Γ′ share the same asymptotic cone. Let us fix z(j) as
a representative of the coset N(j) = z(j)N such that Γ = ⋃κ

j=1N(j). Consider z(j) = e

when N(j) = N . Set πN : Γ → N to be given by πN (x) = z−1
(j)x for x ∈ N(j). Define now

J−K : Γ → Γ′ to be given by
JxK := πN (x). torN.

To refine the first main theorem, let us introduce some new conditions. Suppose that
there exists a > 0 such that, for all x ∈ Γ there is a sequence {nj}j∈N of positive integers
depending on JxK.[Γ′,Γ′] with nj ↑ +∞ as j ↑ +∞,

a∥xnj ∥S≤ E [c (xnj )] . (ii′)
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Let c′ : Γ′ ×Ω → R≥0 by

c′(JxK) := max
y∈JxK

z∈tor N

c(y) ◦ ϑz . (3.4)

Fix, for each JxK ∈ Γ′, a υx ∈ JxK and consider θ : Γ′ ↷ (Ω,F ,P) given by θJxK ≡ ϑυx

and θz(ω) = z ∗ ω (see Section 3.3.2 and Remark 3.4 for a detailed discussion). We consider
a similar innerness assumption to replace (iii). Suppose that, for each ε > 0, there exists a
finite F (ε) ⊆ N \ [N,N ] which is a generating set of Γ′ such that, P-a.s., for every x ∈ Γ,
one can write JxK = znzn−1 . . . z1 with zn, zn−1, . . . , z1 ∈ F (ε) satisfying

n∑
i=1

c′(zi, zi−1 . . . z1 ∗ ω) ≤ (1 + ε)c′(JxK, ω). (iii′)

Similar to (iii), First-Passage Percolation models satisfy (iii′) under specific conditions.
In the case where Γ = N is nilpotent, it suffices to have S ⊆ N \ ([N,N ] ∪ torN) for an
FPP model to satisfy (iii′). The virtually nilpotent case is treated separately in Section 3.3.3
with additional conditions imposed on JSK and ϑ. Moreover, when Γ′ is abelian, hypothesis
(iii′) is not required to verify the theorem below.

Theorem 3.2 (Limiting Shape for Groups with Polynomial Growth). Let (Γ, .) be a finitely
generated group with polynomial growth rate D ≥ 1 and Γ′/[Γ′,Γ′] torsion-free. Consider
c : Γ ×Ω → R≥0 to be a subadditive cocycle associated with dω and a p.m.p. ergodic group
action ϑ.

Suppose that conditions (i), (ii′), and (iii′) are satisfied for a finite symmetric generating
set S ⊆ Γ such that JSK generates Γ′. Then

(
Γ, 1
n
dω, e

)
GH−−→ (G∞, dϕ, e) P -a.s. (3.5)

where G∞ is a simply connected graded Lie group, and dϕ is a quasimetric homogeneous
with respect to a family of homotheties {δt}t>0. Moreover, dϕ is bi-Lipschitz equivalent to
d∞ on G∞.

Furthermore, if Γ′ is abelian, then (3.5) remains true even when condition (iii′) is not
valid.

The primary technique employed in this work involves the approximation of admissible
curves through the use of polygonal paths and ergodic theory. In Section 3.3, we introduce
and delve into these tools, presenting their application in proving the theorems and a
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corollary for FPP models. Section 3.4 showcases examples dedicated to illustrating the
applicability of the theorems.

3.2 preparatory and intermediate results
This section is primarily dedicated to the establishment of a norm within G∞, a critical step
for defining the subsequent limiting shape. The formulation of this norm draws upon insights
from subadditive ergodic theorems, coupled with properties highlighted in Chapter 2. This
approach enables us to delve into the asymptotic behavior of sequences within the group
through the examination of expected values associated with subadditive cocycles, a topic
explored further in the subsequent sections. The convergence is not directly established as
an uniform convergence in RD because of the constraints imposed by admissible curves.

From this point until the proof of the first theorem in Section 3.3.1, let us once again
regard Γ as a finitely generated torsion-free nilpotent group.

3.2.1 Establishing a Candidate for the Limiting Shape

Set c(x) := E[c(x)], due to the subadditivity of the cocycle

c(xy) ≤ c(y) + c(x),

for all x, y ∈ Γ. Thus c(x) ≤ b∥x∥S with b = maxs∈S {c(s)}. It follows from (ii) that there
exists a subsequence of c(xn)/n such that c(xnj )/nj ≥ a∥x∥ab

S P-a.s. for sufficiently large
j.

Recall that Γab = Γ/[Γ,Γ] and consider xab = x[Γ,Γ], To simplify notation, we also use
xab interchangeably with (π∞ ◦L ◦ log)(x) when it is clear from the context. Let

∥x∥ab
S := inf

y∈x[Γ,Γ]
∥y∥S .

Since ∥−∥ab
S is discrete, there exists y ∈ x[Γ,Γ] such that ∥x∥ab

S = ∥y∥S . Hence, for all
x, y ∈ Γ, there exist x′, x′′ ∈ x[Γ,Γ] and y′, y′′ ∈ y[Γ,Γ] such that

∥xy∥ab
S = ∥x′y′∥S , ∥x∥ab

S = ∥x′′∥S , and ∥y∥ab
S = ∥y′′∥S ;
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which implies the subadditivity

∥xy∥ab
S = ∥x′y′∥S≤ ∥x′′y′′∥S≤ ∥x′′∥S+∥y′′∥S= ∥x∥ab

S +∥y∥ab
S .

Now, regarding ∥x∥ab
S = 0 whenever x ∈ [Γ,Γ], one has for all x ∈ [Γ,Γ] and y ∈ Γ,

∥xy∥ab
S = ∥y∥ab

S . Let y = sm . . . sj+1sjsj−1 . . . s1 with sj ∈ [Γ,Γ]. Since [Γ,Γ] is a normal
subgroup of Γ, s̄j = (sj−1 . . . s1)−1sj(sj−1 . . . s1) ∈ [Γ,Γ] is such that
y = sm . . . sj+1sj−1 . . . s1s̄j . Hence

∥y∥ab
S = ∥sm . . . sj+1sj−1 . . . s1∥ab

S .

Therefore, ∥y∥ab
S = ∥y∥S= m if, and only if, there exists {si}m

i=1 ⊆ S \ [Γ,Γ] such that
y = sm . . . s1. Observe that Γab is a topological lattice of Gab and Gab ≃ Γab ⊗ R ≃
Rdim v1 ≃ gab. Let ∥−∥ be an Euclidean norm on Gab and fix a, b > 0 such that

a := min {∥s[Γ,Γ]∥: s ∈ S \ [Γ,Γ]}, and b := max {∥s[Γ,Γ]∥: s ∈ S \ [Γ,Γ]},

Due to the properties of a normed vector space, one has, for all x ∈ Γ,

a∥x∥ab
S ≤ ∥x[Γ,Γ]∥ ≤ b∥x∥ab

S . (3.6)

Set f : Γab → R≥0 to be given by

f(xab) = inf{c(y) : y ∈ x[Γ,Γ]}.

It follows immediately from the subadditivity of c and the definition of f that

f(xabyab) ≤ f(xab) + f(yab).

We are now able to state the following a subadditive ergodic theorem obtained by
Austin [5] and improved by Cantrell and Furman [14].

Proposition 3.3 (Subadditive Ergodic Theorem). Let the subadditive cocycle
c : Γ ×Ω → R≥0 associated with a p.m.p. ergodic group action ϑ : Γ ↷ Ω be such that
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c(x) ∈ L1(Ω,F ,P) for all x ∈ Γ. Then there exists a unique homogeneous subadditive
function ϕ : gab

∞ → R≥0 such that, for every x ∈ Γ,

lim
n↑+∞

1
n
c(xn) = ϕ(xab) P -a.s. and in L1.

Moreover, ϕ is given by

ϕ(xab) = lim
n↑+∞

1
n
f
(
n · xab

)
= inf

n≥1

1
n
f
(
n · xab

)
. (3.7)

Remark 3.1. The function ϕ obtained above is naturally associated with the abelianized
space considering the well-known fact of the convergence of 1

n •xn to the projection of x
onto a subspace isomorphic to gab

∞ . It will allow us to measure distances in G∞ with ℓϕ by
considering the rescaling of the subadditive cocyle.

The bi-Lipschitz property established in the following lemma is crucial for the main
results.

Lemma 3.4. Let c : Γ ×Ω → R≥0 be a subadditive cocycle under the assumptions of
Proposition 3.3. Set ϕ as in (3.7). Consider c satisfying (i) and (ii). Then there exist
a′, b′ > 0 such that, for all x ∈ Γ,

a′∥xab∥≤ ϕ(xab) ≤ b′∥xab∥.

Proof. Observe that condition (i) implies c ∈ L1(Ω,F ,P). Consider a, b > 0 as in (3.6)
and fix a′ := a/b. By (ii), one has

f(nj · xab) = inf
y∈x[Γ,Γ]

c(y) ≥ a∥xnj ∥ab
S ≥ a′nj∥xab∥.

We know by Proposition 3.3 that ϕ exists and

ϕ(xab) = inf
n∈N

1
n
c(xab) = lim

j↑+∞

1
nj
f(nj · xab) ≥ a′∥xab∥.

It follows from (i) and subaditivity that there exists b > 0 such that, for all x ∈ Γ,

c(x) ≤ b∥x∥S .
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Let us fix b′ := b/a, then

ϕ(xab) = inf
n∈N

1
n

inf
y∈xn[Γ,Γ]

c(y) ≤ b inf
n∈N

1
n

∥xn∥ab
S ≤ b′∥xab∥,

which is our assertion.

Remark 3.2. The Subadditive Ergodic Theorem guarantees the P-a.s. existence of the
limn↑+∞ c(xn)/n. By combining this fact with previous assertions and the L1 convergence,
we obtain the existence of 0 < a ≤ b < +∞ such that

a∥x∥ab
S ≤ c(x) ≤ b∥x∥S . (3.8)

Furthermore, one has from (3.8) that a∥x∥ab
S ≤ ϕ(xab) ≤ b∥x∥S for all x ∈ Γ. Since there

exists y ∈ x[Γ,Γ] with ∥x∥ab
S = ∥y∥S and xab = yab, one has by (3.6)

a

b
∥xab∥≤ a∥x∥ab

S ≤ ϕ(xab) ≤ b∥x∥ab
S ≤ b

a
∥xab∥.

Recall the definition of dϕ in (2.1). Therefore, there is a bi-Lipschitz relation between
d∞ and dϕ. We now define Φ : G∞ → [0,+∞) by

Φ(g) := dϕ(e, g).

3.2.2 Approximation of Admissible Curves along Polygonal Paths

The proof strategy for the main theorem involves approximating geodesic curves with
polygonal paths. Throughout the following discussion, we assume that c is a subadditive
cocycle, and Γ is finitely generated by the symmetric set S with polynomial growth rate
D ≥ 1. To set the stage, we begin by stating Proposition 3.1 from [14].

Proposition 3.5. Let γ : [0, 1] → G∞ be a Lipschitz curve and let ε̂ ∈ (0, 1). Then there
exists k0 = k0(γ, ε̂) > 0 so that one can find, for all k > k0, {yj}k

j=1 ⊆ Γ, p > 0 and n0 > 0
such that, for all n > n0,

k∑
j=1

d∞

(
1
np

• yn
j y

n
j−1 . . . y

n
1 ,γ

(
j

k

))
< ε̂
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Moreover, for ϕ : gab
∞ → R≥0 a subadditive homogeneous function bi-Lipschitz with respect

to ∥−∥, one has that ∣∣∣∣∣1p(ϕ(yab
k ) + · · · +ϕ(yab

1 )) − ℓϕ(γ)
∣∣∣∣∣ < ε̂.

The approximation technique outlined in the upcoming proposition will be utilized in the
subsequent subsections. It extends the guarantees of the subadditive ergodic theorem for
the decomposition of polygonal paths under certain properties. In what follows, we write
t∨ t′ := max{t, t′} and t∧ t′ := min{t, t′}.

Proposition 3.6. Let Γ be a torsion-free nilpotent finitely generated group with torsion-free
abelianization. Consider c : Γ ×Ω → R≥0 a subadditive cocycle associated with an ergodic
group action ϑ satisfying (i). Then for all integer j > 1 and {yi}j

i=1 ⊆ Γ,

lim
n↑∞

1
n
c(yn

j ) ◦ ϑyn
j−1...yn

1
= ϕ(yab

j ) P −a.s.

In particular, if we let ε̌ ∈ (0, 1), then there exists, P-a.s., a random M0 > 0 depending on
ε̌ and on ∑j

i=1∥yab
i ∥ such that, for all n > M0,

∣∣∣∣ 1nc(yn
j , y

n
j−1 . . . y

n
1 · ω) − ϕ(yab

j )
∣∣∣∣ < ε̌.

Before proving Proposition 3.6 we show the following lemma.

Lemma 3.7. Let ε ∈ (0, 1) and consider a subadditive cocycle c that satisfies condition (i).
There exists, P-a.s., M1 > 0 such that if {xn}n∈N, {yn}n∈N, {un}n∈N, and {vn}n∈N are
sequences in Γ satisfying, for a n0 = n0(ε) ∈ N and all n > n0:

(i) There exist elements x,u ∈ G∞ and cx,u > 0 such that

d∞

( 1
n

•xn,x
)
< ε, d∞

( 1
n

•un,u
)
< ε,

and ∥xn∥S , ∥un∥S< cx,u · n;

(ii) dS(un, vn) ≤ nε and dS(xnun, ynvn) ≤ nε.

Then
|c(xn) ◦ ϑun −c(yn) ◦ ϑvn | < 2βnε

for all n > max {n0,M1, exp ((2cx,u + 3)D)}.
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Proof. Fix an := vnu
−1
n and bn := ynvn(xnun)−1. Then ∥an∥S= ∥a−1

n ∥S= dS(un, vn) and
∥bn∥S= ∥b−1

n ∥S= dS(xnun, ynvn). Observe that yn = bnxna
−1
n and xn = b−1

n ynan. We thus
obtain the P-almost surely inequalities below:

c(yn) ◦ ϑvn ≤ c(bn) ◦ ϑxnun +c(xn) ◦ ϑun +c(a−1
n ) ◦ ϑvn (3.9)

c(xn) ◦ ϑun ≤ c(b−1
n ) ◦ ϑynvn +c(yn) ◦ ϑvn +c(an) ◦ ϑun . (3.10)

Observe now that, by items (i) and (ii), for n > n0(ε),

xnun, ynvn, un, vn ∈ BS (e, 2cx,u · n+ 3nε) .

Hence, by combining (3.9) and (3.10),

|c(xn) ◦ ϑuv −c(yn) ◦ ϑvn|≤ 2 sup
∥y∥S≤nε

∥z∥S≤ D
√

log(n)n

{c(y) ◦ ϑz} (3.11)

for all n > max {n0, exp ((2cx,u + 3)D)}. It follows from (i) that there exists C > 0 such
that

P

 sup
∥y∥S≤nε

∥z∥S≤ D
√

log(n)n

{c(y) ◦ ϑz} ≥ βnε

 ≤ Cn2D log(n)g(βεn) ∈ O(log(n)/nκ), (3.12)

for n > max {n0, exp ((∥x∥∞+∥u∥∞+3)D)}. Since ∑+∞
n=1

log(n)
nκ = −ζ′(κ) < +∞ for κ > 1

where ζ′ is the derivative of the Riemann zeta function, the proof is completed by applying
Borel-Cantelli Lemma to (3.11) and (3.12).

Remark 3.3. If {xn}n∈N, {un}n∈N ⊆ Γ are such that limn↑+∞
1
n •xn = x and

limn↑+∞
1
n •un = u in (G∞, d∞), then item (i) of Lemma 3.7 is immediately satisfied (see

Section 2.4.2).

Using the lemma above, the Proposition 3.6 becomes a straightforward extension of
Theorem 3.3 of [14]. The result can be verified by replacing the Parallelogram inequality
with Lemma 3.7. To be self-contained, let us first define, for each E ∈ F , ω ∈ Ω, x ∈ Γ,
ξ > 0, and n ∈ N,

Nξ
x,n(E,ω) := #{n′ ∈ {0, 1, . . . , ⌈ξn⌉ − 1}: ϑxn−n′ (ω) ∈ E}.
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Set

Ξ⋆(E, x, ξ) :=
ω ∈ Ω: lim inf

n↑+∞

Nξ
x,n(E,ω)
ξn

> 0
 , and

Ξ⋆
m(E, x, ξ) :=

ω ∈ Ω: ∀n ≥ m

Nξ
x,n(E,ω)
ξn

> 0
 .

We now state Lemma 3.6 of [14] without proof before the proving Proposition 3.6.

Lemma 3.8. Let x ∈ Γ, ξ > 0, and E ∈ F . Then, for all ε ∈ (0, 1), there is m0 > 0 such
that, for m > mo,

P (Ξ⋆(E, x, ξ)) ≥ P(E) and P (Ξ⋆
m(E, x, ξ)) > P (Ξ⋆(E, x, ξ)) − ε.

We proceed below with the proof of ergodic subadditive approximation via polygonal
paths.

Proof of Proposition 3.6. Consider ε′ ∈ (0, 1) and {yi}j
i=1 ⊆ Γ fixed. Let ξ > 0 and n ∈ N

be given by Lemma 2.4 for ε = ε′. Set η ∈ (0, 1
2j ) and m ∈ N sufficiently large so that, for

each i ∈ {1, . . . , j}, one has by Proposition 3.3,

Xi :=
{
ω ∈ Ω: ∀n > m

(∣∣∣∣ 1nc(yn
i , ω) − ϕ(yab

i )
∣∣∣∣ < ε̌

)}
and P(Xi) > 1 − η.

Fix Yj := Xj and define inductively Yi−1 := Xi−1 ∩ Ξ∗
mi

(Yi, yi, ξ) so that, for each
i ∈ {2, . . . , j}, mi ∈ N is given by Lemma 3.8 satisfying

P (Ξ∗
mi

(Yi, yi, ξ)) ≥ P(Yi) − η.

Therefore,

P(Y1) > P(Y2) − 2η > · · · > P(Yj) − 2(j − 1)η > 1 − (2j − 1)η.

Let now m̌ := max{m,m1, . . . ,mj}. Thence, for all ϖi ∈ Yi and every n > m̌ with
i ∈ {1, . . . , j − 1}, if ni < ξn, then ϑyn−ni (ϖi) = yn−ni ·ϖi ∈ Yi+1, and

∣∣∣∣ 1nc(yn
i+1, ϖi) − ϕ(yab

i+1)
∣∣∣∣ < ε′.
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It follows that, for all n > m̌, there exist non negative integers n1, . . . , nj−1 < ξn such
that, for all ω ∈ Y1,

∣∣∣∣ 1nc(yn
j , y

n−nj−1
j−1 · · · yn−n1

1 · ω) − ϕ(yab
j )
∣∣∣∣ < ε′.

By Lemma 2.4, for each i ∈ {2, . . . , j} and every n > n,

dS

(
yn

i−1 · · · yn
1 , y

n−ni−1
i−1 · · · yn−n1

1
)
< nε′ and

dS

(
yn

i y
n
i−1 · · · yn

1 , y
n
i y

n−ni−1
i−1 · · · yn−n1

1
)
< nε′.

Hence, by Lemmas 2.3 and 3.7, there exists Ωj ∈ F with P(Ωj) = 1, and a random
Mi ≥ n depending on ε′, and ∥yab

i yab
i−1 . . . y

ab
1 ∥∞∨∥yab

i−1 . . . y
ab
1 ∥∞ such that for all n > Mi

and all ω ∈ Ωj ,

∣∣∣c(yn
i , y

n
i−1 · · · yn

1 · ω) − c(yn
i , y

n−ni−1
i−1 · · · yn−n1

1 · ω)
∣∣∣ < 2βnε′.

Therefore, for all ω ∈ Ωj ∩ Y1, every n > m̌∨Mi and all i ∈ {2, . . . , j}
∣∣∣∣ 1nc(yn

i , y
n
i−1 · · · yn

1 · ω) − ϕ(yab
i )
∣∣∣∣ < (2β+ 1)ε̌, (3.13)

and P (Ωj ∩ Y1) > 1 − (2j − 1)η. It suffices to consider ηn ↓ 0 replacing η ∈ (0, 1
2j ) with∑

n∈N ηn < +∞, then there exists, P-a.s., M0 ≥ m̌ ∨Mi by Borel-Cantelli Lemma such
that (3.13) is satisfied for all n > M0, which is our assertion with i = j and ε̌ = 1

2β+1ε
′.

3.3 the limiting shape
In this section, we undertake the task of proving the asymptotic shape theorems by utilizing
the tools meticulously developed in preceding sections. The concluding subsection is
dedicated to exploring a corollary specifically tailored for FPP models.

We initiate our proof by addressing the case of finitely generated torsion-free nilpotent
groups. Subsequently, we extend these results to encompass the virtually nilpotent property.
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3.3.1 Proof of the First Theorem

This subsection is dedicated to proving Theorem 3.1. Therefore, consider all conditions and
notations established in the first main theorem for the subsequent results. For instance,
here Γ is torsion-free nilpotent with torsion-free abelianization. Before turning to the proof
of the theorem, let us refine the techniques of approximation as outlined in the upcoming
propositions and lemmas.

Proposition 3.9. Let g ∈ G∞ and ϵ ∈ (0, 1). Consider {yj}k
j=1 ⊆ Γ and p > 0 given by

Proposition 3.5 for a d∞-geodesic curve γ : [0, 1] → G∞ from e to g and ε̂ = ϵ/2.
If conditions (i), (ii), and (iii) are satisfied, then there exists, P-a.s., M2 > 0 depending

on g, ϵ, and ω ∈ Ω, such that, for all n > M2,
∣∣∣∣∣ 1
pn
c(yn

k · · · yn
1 ) − ℓϕ(γ)

∣∣∣∣∣ < ϵ.

Proof. Let us write yn := yn
k . . . y

n
1 and consider n0 > 0 for ε̂ = ϵ/2 given by Proposition 3.5.

It follows from subadditivity that

c(yn) ≤
k∑

j=1
c(yn

j ) ◦ ϑyn
j−1...yn

1
P -a.s.

Then, one has by Proposition 3.6 with ε̌ ≤ p
2k ϵ that, P-a.s., for all n > M0 ∨ n0,

1
pn
c(yn) ≤ 1

p

k∑
j=1

ϕ(yab
n ) + ϵ

2 < ℓϕ(γ) + ϵ. (3.14)

Set ε ∈ (0, 1) to be defined later and apply condition (iii) to obtain

kn∑
j=1

cn,j ≤ (1 + ε) 1
pn
c(yn)

where cn,j = 1
pnc(zn,j , zn,j−1 . . . zn,1 ·ω) with zm,i ∈ F (ε). Define a sequence of piecewise d∞-

geodesic curves ζn between each 1
pn • zn,j . . . zn,1 and 1

pn • zn,j−1 . . . zn,1 for j ∈ {1, . . . , kn}
such that zn,0 = e and

ζn(τj) = 1
pn

• zn,j . . . zn,1 for τj =
j∑

i=1
cn,i

/ kn∑
i=1

cn,i.
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Set mε := minz∈F (ε)∥zab∥> 0. It follows from Lemma 3.4 that E[cn,j ] ≥ a′mε 1
pn and,

due the the L1 convergence in Proposition 3.3, there exists n1 > n0 such that, for all
n > M0 ∨ n1,

a′mε
1
pn

E[kn] ≤ (1 + ε) ℓ∞(γ) + kε.

Fix Cγ,ε >
2p

a′mε ((1 + ε)ℓ∞(γ) + kε) so that, for all n ∈ N, E[kn] ≤ Cγ,εn/2. By Chernoff
bound, P(kn ≥ Cγ,εn) ≤ exp(−2n). It then follows from an application of Borel-Cantelli
Lemma that, P-a.s., there exists M ′

0 ≥ M0 such that, for every n > M ′
0,

kn ≤ Cγ,εn. (3.15)

Let Mε := max
z∈F (ε)

∥1 • z∥∞ Observe now that, for every t, t′ ∈ [0, 1], P-a.s., for n > M ′
0,

d∞(ζn(t), ζn(t′)) ≤ kn

pn
Mε|t− t′|≤ 1

p
Cγ,εMε|t− t′|.

Hence, one has by Arzelà–Ascoli Theorem that a subsequence of ζn converges uniformly
to a Lipschitz curve ζ : [0, 1] → G∞ such that ζ(0) = e and ζ(1) = g.

We apply Proposition 3.5 once again fot the curve ζ with ε̂ = ε/2 to obtain p′ > 0,
{wi}k′

i=1 ⊆ Γ, tn = ⌊np/p′⌋, and n2 > 0 such that, for all n > n2

k′∑
i=1

d∞

(
1
p′tn

•wtn
i . . . wtn

1 , ζ
(
i

k′

))
<
ε

2 .

Recall that F (ε) is a generating set of Γ and C(Γ, F (ε)) shares the polynomial growth
rate of C(Γ, S). Then there exists C′ > 0 such that, for a given ε′ ∈ (0, 1),

P

 sup
z∈F (ε)

{
c(z) ◦ ϑz′ : z′ ∈ BF (ε)(e, Cγ,εn)

}
≥ ε′n

 ≤ C′|F (ε)|nDg(ε′n)

∈ Oε′(1/nκ)

as n ↑ +∞.
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It thus follows by an application of Borel-Cantelli Lemma and by (3.15) that for all
ε′ ∈ (0, 1), there exist, P-a.s., M ′′

0 ≥ M ′
0 and a subdivision function dn : {0, 1, . . . , k′} →

{0, 1, . . . , kn} with dn(0) = 0 < dn(1) < · · · < dn(k′) = kn such that, for all n > M ′′
0 ,

∣∣∣∣∣∣ 1
k′ −

dn(j)−1∑
i=dn(j−1)

cn,i+1

/ kn∑
i=1

cn,i

∣∣∣∣∣∣ < ε′.

Let
gn,j := 1

p′tn
• zn,dn(j)zn,dn(j)−1 . . . zn,1 for j ∈ {1, . . . , k′}.

Then there exist n3 ≥ n2 and, P-a.s., M ′
2 > M ′′

0 such that, for all n > M ′
2 ∨ n3, |gn,j −

ζ(j/k′)|< ε
2 . Hence, for n > M ′

2 ∨ n3, ∑k′
j=1 d∞

(
1

p′tn
•wtn

j . . . wtn
1 , gn,j

)
< ε.

It follows that there exists, P-a.s. M ′′
2 > M ′

2 ∨ n3 so that, for every n > M ′′
2 ,

k′∑
j=1

1
p′tn

dS

(
wtn

j . . . wtn
1 , zn,dn(j)zn,dn(j)−1 . . . zn,1

)
< ε

We thus get from Lemma 3.7 that there exists, P-a.s., M ′
1 > M ′′

2 , such that, for each
n > M ′

1,

k′∑
j=1

∣∣∣c(wtn
j , w

tn
j−1 . . . w

tn
1 · ω) − c(zn,dn(j), zn,dn(j)−1 . . . zn,1 · ω)

∣∣∣ < 4βp′tnε.

Set M2 ≥ M ′
1 ∨ p′

pε2 . Therefore, one has, P-a.s., for all n > M2,

1
pn
c(yn, ω) > 1

(1 + ε)pn

k′∑
j=1

dn(j)∑
i=dn(j−1)

c(zn,i, zn,i−1 . . . zn,1 · ω)

≥ 1
(1 + ε)pn

k′∑
j=1

c(zn,dn(j), zn,dn(j)−1 . . . zn,1 · ω)

≥ 1
1 + ε

p′tn
pn

 1
p′tn

k′∑
j=1

c(wtn
j , w

tn
j−1 . . . w

tn
1 · ω) − 4βε


> (1 − ε)

(
ℓϕ(ζ) − (4β+ 1)ε

)
.
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Fix ε = 1
2(ℓϕ(γ)+4β+1)ϵ. Hence, since ℓϕ(ζ) ≥ ℓϕ(γ) − ϵ/2, one has, P-a.s., for all n > M2,

1
pn
c(yn, ω) > ℓϕ(γ) − ϵ. (3.16)

We complete the proof by combining (3.14) and (3.16).

Lemma 3.10. Let {xn}n∈N be a sequence in Γ and let {tn}n∈N be an increasing sequence
in R such that limn↑+∞

1
tn

•xn = g ∈ G∞.
Consider a subadditive cocycle c : Γ ×Ω → R≥0 satisfying conditions (i) and (ii). If

condition (iii) is satisfied or if Γ is abelian, then, for all ϵ ∈ (0, 1), there exists, P-a.s., a
random M = M(g, ϵ) > 0 such that, for tn > M ,

∣∣∣∣ 1
tn
c(xn) − Φ(g)

∣∣∣∣ < ϵ
Proof. Set ε > 0 to be defined later. Consider yk, . . . , y1 ∈ Γ and p given by Proposition 3.5
for ε̂ = ε/2 and a d∞-geodesic curve γ : [0, 1] → G∞ from e to g. Let t′n := ⌊tn/p⌋. Since
1
tn

•xi converges to g. It follows from the Borel-Cantelli Lemma applied to (i) that there
exists, P-a.s., M ′ > 0 so that, for every tn > M ′,

(
1
pt′n

− 1
tn

)
c(xn) < p− 1

pt′n
β

∥xn∥S

tn
<
ϵ

4 . (3.17)

Let us write y′
i := yt′

n
k . . . yt′

n
1 . Since limn↑+∞ d∞

(
1

pt′
n

• y′
n, g

)
= 0, one can easily see that

there exists n′
1 > 0 such that, for all t′n > n′

1,

1
pt′n

d∞(xn, y
′
n) < ε.

Then there exists n′
2 ≥ n′

1 such that, for all t′n > n′
2, one has ∥xn(y′

n)−1∥S< pt′nε.
Let now t = βpt′nε in (i). Since c(x) is identically distributed to c(x) ◦ ϑy, we have by

Borel-Cantelli Lemma that there exists, P-a.s., M ′′ ≥ M ′ ∨ n′
2 such that, for tn > M ′′,

1
pt′n

|c(xn) − c(y′
n)| ≤ 1

pt′n
max {c(y′

nx
−1
n ) ◦ ϑxn , c(xn(y′

n)−1) ◦ ϑy′
n

}

< 2βε. (3.18)
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Set ε ≤ ϵ
8β and combine (3.17) and (3.18). We thus obtain that, P-a.s., for all tn > M ′′,

∣∣∣∣∣ 1
tn
c(xn) − 1

pt′n
c
(
y′

n

)∣∣∣∣∣ < ϵ

2 . (3.19)

Consider Γ abelian, then y′
n = (yk . . . y1)t′

n . In fact, it is straightfoward that k = 1 by
the standard approach for commutative groups. Then by Proposition 3.3, there is, P-a.s.,
M∗ ≥ M ′′ such that, for all tn > M∗,

1
p

∣∣∣∣∣ 1
t′n
c
(
y′

n

)
− ϕ(yab

1 )
∣∣∣∣∣ < ϵ

2 . (3.20)

Furthermore, we have ϕ(yab
1 )/p = ℓϕ(γ) = Φ(g). Combining the two previous inequalities

with (3.19), we can establish the result for the commutative case with M = M∗. Now, let’s
consider the non-abelian case, assuming that (iii) holds true. Notably, by Proposition 3.9
with ϵ/2 and M = M ′′ ∨M2, for all tn > M ,

∣∣∣∣∣ 1
pt′n

c
(
y′

n

)
− ℓϕ(γ)

∣∣∣∣∣ < ϵ

2 .

This result, when combined with (3.19), completes the proof.

We now proceed to demonstrate the proof of the first main theorem.

Proof of Theorem 3.1. We begin by proving the P-a.s. asymptotic equivalence given, which
is given by

lim
∥x∥↑+∞

|c(x) − Φ(1 •x)|
∥x∥S

= 0 P -a.s. (3.21)

Suppose, by contradiction, that (3.21) is not true. Consider {vn}n∈N ⊆ Γ to be such that
∥vn∥S↑ +∞ as n ↑ +∞. Let Sr stand for B∞(e, r), the closure of the d∞-ball or radius
r > 0 in G∞. Due to the compactness of S1 with respect to d∞, there exists a subsequence
{yn}n∈N ⊆ {vn}n∈N such that, for tn := ∥yn∥S

lim
n↑+∞

1
tn

• yn = h ∈ S1.

By construction, ∆ := ⋃
n∈N

(
1
n • Γ

)
is a countable dense subset of G∞. Fix, for each

g ∈ ∆, σ(g) = {xn}n∈N such that 1
n •xn converges to g under d∞ (see Lemma 2.3).
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Let Ωg ∈ F be the event with P(Ωg) = 1 given by Lemma 3.10 for σ(g). Hence,
Ω∆ := ⋂

g∈∆Ωg is such that P(Ω∆) = 1.
The compactness of Sr implies the existence of a finite ∆r,ε ⊆ Sr ∩ ∆ such that⋃
g∈∆r,ε

B∞(g, ε) covers Sr. Thus there exists g ∈ ∆1,ε so that h ∈ B∞(g, ε). Consider
σ(g) = {xn}n∈N as defined above and let ε > 0 to be determined later. Then, there exists
m(ε) > 0 so that, for all tn > m(ε),

d∞

( 1
tn

•xtn ,
1
tn

• yn

)
≤ d∞

( 1
tn

•xtn , g
)

+ d∞

( 1
tn

• yn, h
)

+ d∞(g, h)

≤ 3ε.

and dS(xtn , yn) < 7ε =: ηε.
Let M1(g, ηε) > 0 be given by Lemma 3.7 on Θg ∈ F with P(Θg) = 1 satisfying, for all

tn > M1(g, ηε) and un ∈ BS(xtn , tnηε),

|c(xtn) − c(un)|< 14∥yn∥Sβε.

Fix, for M(g, ε) given by Lemma 3.10,

M̂(ε) := max
g∈∆S1,ε

{M(g, ε),M1(g, ηε)},

which is finite on Θ∆ := ⋂
g∈∆(Ω∆ ∩ Θg) with P(Θ∆) = 1.

Set m̂(ε) > m(ε) to be such that
∣∣∣Φ( 1

tn
• yn) − Φ(h)

∣∣∣ < ε for all n > m̂(ε). Hence, for all
tn > M̂(ε) ∨ m̂(ε) on Θ∆,

|c(yn) − Φ(1 • yn)|
∥yn∥S

≤ 1
tn

|c(yn) − c(xtn)|+
∣∣∣∣ 1
tn
c(xn) − Φ(g)

∣∣∣∣
+ |Φ(g) − Φ(h)|+

∣∣∣∣Φ(h) − Φ
( 1
tn

• yn

)∣∣∣∣
≤ (14β+ 3)ε,

which contradicts the above assumption proving that (3.21) holds true.
It remains to show how 1

ndω converges to dϕ in the asymptotic cone. Recall that
dω(x, y) = (c(yx−1) ◦ ϑx )(ω). Consider now any given h, h′ ∈ G∞ and {un}n∈N a sequence
with {t′n}n∈N ⊆ N such that t′n ↑ +∞ and 1

t′
n

•un → h′h
−1. Then ∥un∥S/t

′
n converges to

d∞(h, h′) and 1
∥un∥S

•un converges as above. In particular, one can fix any r′ > d∞(h, h′)
to find kr′ > 0 such that ∥un∥S/t

′
n < r′ for all t′n > kr′ .
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Let us define Kr′ = (14β+ 3)r′ and mr′(ε) = m̂(ε) ∨ kr′ . The asymptotic equivalence
(3.21) implies the existence of a random M̂(ε) > 0 for ε ∈ (0, 1

14β+3) such that, for all
t′n > M̂(ε) ∨mr′(ε) on Θ∆,

∣∣∣∣∣ 1
t′n
c(un) − Φ(h′h

−1
)

∣∣∣∣∣ < Kr′ε.

Due to the fact that ϑ is a p.m.p. group action, one can repeat all arguments above
also in Proposition 3.9 and Lemma 3.10 to obtain M̂(ε, σ(g)) and Θ∆(σ(g)) for each
σ(g) = {xn}n∈N with g ∈ G∞ and P (Θ∆(g)) = 1 so that, for all converging 1

t′
n

•un as
above and every t′n > M̂(ε, σ(g)) ∨mr′(ε) on Θ∆(σ(g)),

∣∣∣∣∣ 1
t′n
c(un) ◦ ϑxt′

n
−Φ(h′h

−1)
∣∣∣∣∣ < Kr′ε. (3.22)

Let now {vn}n∈N be a sequence that 1
n • vn → h and choose r ≥ d∞(e, h). Fix g ∈ ∆r,ε

so that g ∈ B∞(h, ε). By Lemma 3.7, one can find a random Mr,r′(ε, σ(g)) > 0 and Ξσ(g)

with P (Ξσ(g)) = 1 such that, for all n > Mr,r′(ε, σ(g)) on Ξσ(g),

|c(wn) ◦ ϑxn −c(wn) ◦ ϑvn |< 2βnε, (3.23)

where {wn}n∈N is any convergent sequence 1
n •wn → w ∈ B∞(e, r′). Let us fix

Ξ∆ :=
⋂
g∈∆

(
Ξσ(g) ∩Θ∆(σ(g))

)
,

and set
Mr,r′(ε) := max

g∈∆r,ε

{
Mr,r′(ε, σ(g)), M̂(ε, σ(g))

}
.

Then Mr,r′(ε) is finite on Ξ∆ and P (Ξ∆) = 1. It follows from (3.22) and (3.23) that, for
all t′n > Mr,r′(ε) ∨mr′(ε) on Ξ∆,

∣∣∣∣∣ 1
t′n
c(un) ◦ ϑvt′

n
−Φ(h′h

−1)
∣∣∣∣∣ < (Kr′ + 2β)ε.

This establishes the P-a.s. convergence of 1
t′
n
dω(vt′

n
, unvt′

n
) to Φ(h′h

−1
) = dϕ(h, h′) for

ω ∈ Ξ∆ as n ↑ +∞. Observe that the bi-Lipschitz equivalence is a straightforward
consequence of Lemma 3.4, and this completes the proof.
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3.3.2 Proof of the Second Theorem

With the first main theorem now established, we have determined the asymptotic shape
for finitely generated torsion-free nilpotent groups. The objective of this subsection is to
extend this result to a finitely generated virtually nilpotent group Γ.

Recall that the nilpotent subgroup N ⊴Γ has a finite index κ = [Γ : N ], and for each coset
N(j) = z(j)N ∈ Γ/N , we designate a representative z(j) ∈ N(j). Also, define πN (x) = z−1

(j)x

for all x ∈ N(j) and j ∈ {1, . . . , κ}.
We commence by presenting results concerning the properties of p.m.p. ergodic group

actions of Γ with respect to N and Γ′. We adopt the notation ∪A := ⋃
A∈AA.

Lemma 3.11. Let Γ be a discrete group Γ and N ⊴ Γ a finite normal subgroup with finite
index [Γ : N ] = κ. Consider that ϑ : Γ ↷ (Ω,F ,P) is a p.m.p. ergodic group action.
Then there exists a finite BN ⊆ F such that, for all B ∈ BN , P(B) ≥ 1/κ and ϑ |N ,
the restriction of ϑ on N , induces a p.m.p. ergodic group action on (B,F ∩B,P( · | B)).
Furthermore, |BN |≤ κ and P(∪BN ) = 1.

Proof. Set AN ⊆ F to be the family of all non-empty N -invariant events under ϑ. Then,
for all A ∈ AN ,

P

 κ⋃
j=1

z(j) ·A

 = 1

which implies P(A) ≥ 1/κ. Observe that AN is closed under countable unions and non-
empty countable intersections. Let us fix A0 ∈ AN such that P(A0) = infA∈A P(A). Define
BN = {z(j) ·A0}κ

j=1.
Since N is a normal subgroup of Γ, N acts ergodically on (B,F ∩B,P( · | B)) for all

B ∈ BN and it inherits the measure preserving property.

We use Lemma 3.11 to write (B,F B,PB) with F B := F ∩B = {E ∩B : E ∈ F} and
PB(E) := P(E | B) for each B ∈ BN . Let us denote by [ω] = torN · ω, the orbit of ω ∈ B

under the action on torN . Set

([B],F ′
B,P

′
B ) := (B,F B,PB)/torN
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where F ′
B = {[E] : E ∈ F B } and P′

B ([E]) is the induced probability measure
(torN)∗ PB(E) = PB (∪[E]). Let us fix υx = υJxK ∈ JxK for each JxK ∈ Γ′. Define
θ : Γ′ ↷ ([B],F ′

B,P
′
B ) so that

θJxK([ω]) = [ ϑυx(ω)].

Lemma 3.12. Let BN be the set obtained in Lemma 3.11. Then, for each B ∈ BN ,
θ : Γ′ ↷ ([B],F ′

B,P
′
B ) is a p.m.p. ergodic group action.

Proof. The measure preserving property is immediately inherited from ϑ. Let ϑv(ω) = v · ω.
Due to the normality of torN ⊴N , for all A ∈ F B and each v′ ∈ v. torN ,

∪[v ·A] = v′ · (∪[A]) .

Hence, if for all v. torN ∈ Γ′, one has [v ·A] = [A]. Then, for all x ∈ N

x · (∪[A]) = ∪[A].

It follows from the ergodicity of ϑ : N ↷ (B,F B,PB) that P′
B ([A]) ∈ {0, 1}, which is the

desired conclusion.

Remark 3.4. Recall that definition (3.4) determines

c′(JxK) := max
y∈JxK

z∈tor N

c(y) ◦ ϑz .

It is straightforward to see that c′ is compatible with the probability space ([B],F ′
b,P

′
B )

for each B ∈ BN . Futhermore, it is a subadditive cocycle associated with θ. Additionally,
c′ is well defined on (B,F B,PB). Let Ω′ := ∪BN and P(Ω′) = 1. Consequently, one
can investigate c′ on ([B],F ′

B,P
′
B), and the results can be naturally extended P-a.s. to

(Ω,F ,P).

In preparation for the asymptotic comparison between cocycles c and c′, the following
lemmas provide essential insights into their respective properties and relationships.

Lemma 3.13. Let ε, r > 0 and consider a subadditive cocycle c that satisfies condition
(i). Then there exists, P-a.s., MN = MN (ε, r) > 0 such that, for all n > MN and every
x ∈ BS(e, rn),

|c(x) − c(πN (x))| < εn.
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Proof. It follows from subadditivity that, for x ∈ N(j),

|c(x) − c(z−1
(j)x)|≤ max

{
c(z(j)) ◦ ϑz−1

(j) x, c(z
−1
(j)) ◦ ϑx

}
P -a.s.

for every j ∈ {1, . . . , κ}. Let mκ = max
{
∥z(j)∥S : 1 ≤ j ≤ κ

}
. Hence, one has by (i) and a

C > 0 that

P

(
max

x∈BS(e,rn)
{|c(x) − c(πN (x))|} ≥ εn

)
≤ |BS(e, rn)|

κ∑
j=1

P
(
c(z±1

(j)) ≥ εn
)

≤ CrDnDg(nε) ∈ Oε,r(1/nD+κ)

for n > βmκ/ε. The result is derived through the application of the Borel-Cantelli Lemma.

Lemma 3.14. Let ε, r > 0 and consider a subadditive cocycle c that satisfies condition
(i). Then there exists, P-a.s., Mq = Mq(ε, r) > 0 such that, for all n > Mq and every
x ∈ BS(e, rn),

|c (x1) ◦ ϑy1 −c(x2) ◦ ϑy2| < εn

where x1, x2 ∈ JxK and y1, y2 ∈ torN .

Proof. Since torN is a normal subgroup of N , the exists v2 ∈ torN such that x1 = v2x2y3

with y3 = y2y
−1
1 . Thus

c(x1) ◦ ϑy1 ≤ c(y3) ◦ ϑy1 +c(v2x2) ◦ ϑy2

≤ c(y3) ◦ ϑy1 +c(x2) ◦ ϑy2 +c(v2) ◦ ϑx2y2 P -a.s.

We apply the same reasoning for c(x2) ◦ ϑy2 obtaining that

|c(x1) ◦ ϑy1 −c(x2) ◦ ϑy2| ≤ max
y,z∈tor N

{c(y) ◦ ϑz} + max
y,z∈tor N

{c(y) ◦ ϑx1z} P -a.s.

By (i) and the finitness of torN , there exists a constant C ′ > 0 such that

P

 sup
x∈BS(e,rn)
x1,x2∈JxK

y1,y2∈tor N

|c(x1) ◦ ϑy1 −c(x2) ◦ ϑy2 | ≥ εn

 ≤ 2|torN |4|BS(e, rn)|2g(εn)

≤ C ′(rn)2Dg(εn) ∈ Oε,r(1/nκ)
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for n > βmax{∥z∥S : z ∈ torN}/ε. The desired conclusion follows from an application of
Borel-Cantelli Lemma.

Let us define, for all JxK ∈ Γ′,

|JxK|inf
S := min

1≤i,j≤κ
min

y∈(z(j).JxK.z−1
(i) )

∥y∥S ,

and
|JxK|sup

S := max
1≤i,j≤κ

max
y∈(z(j).JxK.z−1

(i) )
∥y∥S .

Set
mκ,q := max

1≤i,j≤κ
max

z∈(z(j).JeK.z
−1
(i) )

∥z∥S .

Thus, one has, for all y ∈ z(j).JxK with j ∈ {1, . . . , κ},

|JxK|inf
S ≤ ∥y∥S≤ |JxK|sup

S ≤ |JxK|inf
S + 2 · mκ,q. (3.24)

By the same arguments employed in Section 3.2.1, the discrete norm

|JxK|ab
S := inf

JyK∈(JxK.[Γ′,Γ′])
|JyK|inf

S (3.25)

exhibits the same properties as ∥−∥ab
S when JSK is a generating set of Γ′.

Consider σ(g) = {JxKn}n∈N ⊆ Γ′ to be the sequences fixed for each g ∈ G∞ in the proof
of Theorem 3.1. Set xn := υJxKn

with υ defined by the group action θ. Then

JxnK = JxKn

when σ(g) is given. Let us write υσ(g) = {xn}n∈N for each σ(g) = {JxKn}n∈N ⊆ Γ′. Also,
one can easily verify that

lim
n↑+∞

∥xn∥S

n
= lim

n↑+∞

|JxnK|inf
S

n
= lim

n↑+∞

|JxnK|sup
S

n
= d∞(e, g).

The proposition below shows us that c and c′ share the same linear asymptotic behaviour.

Proposition 3.15. Let Γ be a virtually nilpotent group, and let c : Γ ×Ω → R≥0 be a
subadditive cocycle associated with ϑ.
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If condition (i) is satisfied, then c and c′ are asymptotically equivalent, i.e., there exists,
P-a.s., M ′(ε) > 0 such that, for all x ∈ Γ with ∥x∥S> M ′(ε),

|c(x) − c′(JxK)| < ε∥x∥S . (3.26)

In particular, (i) implies the P-a.s. existence of M ′(ε, r,υσ(g)) > 0 so that, for all
n > M ′(ε, r,υσ(g)) and every y ∈ BS(e, rn),

|c(y) − c′(JyK)| ◦ ϑxn < nε. (3.27)

Proof. From Lemmas 3.13 and 3.14, we can deduce that, for every ε > 0, one can fix M ′(ε) =
MN ( ε

2 , 1) ∨Mq( ε
2 , 1) so that, P-a.s., for all n > M ′(ε) and every x ∈ BS(e, n+ 1) \BS(e, n),

|c(x) − c′(x)|
∥x∥S

<
|c(x) − c(π(x))|

n
+ |c(π(x)) − c′(x)|

n
< ε.

The inequality above implies the asymptotic equivalence of c and c′ on Γ.
Since ϑ is p.m.p. group action, one can obtain from Lemmas 3.13 and 3.14 the random

variables MN > 0 and Mq > 0 depending on υσ(g)) > 0 determining

M ′(ε, r,υσ(g)) = MN (ε/2, r,υσ(g)) ∨Mq(ε/2, r,υσ(g))

so that (3.27) holds true.

The following result extends the subadditive ergodic theorem to c′ with respect to |−|ab
S .

Lemma 3.16. Consider Γ to be a virtually nilpotent group generated by a finite symmetric
set S ⊆ Γ with JSK a generating set of Γ′.

If the subadditive cocycle c satisfies (i) and (ii′) with respect to the word norm ∥−∥S,
then c′ satisfies (i) and (ii) with respect to |−|inf

S . In particular, Lemma 3.4 is still valid
with xab = JxKab and

ϕ(xab) = inf
n∈N

E[c′(JxKn)]
n

.

Proof. First, observe that (i) and (ii′) imply, for all x ∈ Γ and

P
(
c′(JxK) ≥ t

)
≤ κ |torN | g(t), for all t > β|JxK|sup

S ,

and
E
[
c′(JxK)

]
≥ a|JxK|inf

S .
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Therefore, it follows from (3.24) that c′ satisfy (i) and (ii) with respect to |−|inf
S for a

new g′(t) ∈ O(t2D+κ) and β′ > 0. The proof is complete by replacing ∥−∥S with |−|inf
S

and applying (3.25) in the proof of Lemma 3.4.

Having established the aforementioned results, we now move forward to prove the second
theorem.

Proof of Theorem 3.2. Observe that it follows from Lemmas 3.11, 3.12 and 3.16, and
Remark 3.4 that, for each B ∈ BN , Theorem 3.1 holds true for c′ on (B,F B,PB).
Therefore, it suffices to extend the results to (Ω,F ,P) and compare c with c′.

The asymptotic equivalence is an immediate consequence of (3.21) and (3.26), we focus
on the second part of the proof of Theorem 3.1. Recall de definition of ∆ as a dense
subset of G∞, the finite ∆r,ε. Similarly, we consider {un}n∈N ⊆ Γ and {t′n}n∈N ⊆ N with
tn ↑ +∞ as n ↑ +∞ and 1

t′
n

•un → h′h−1. Note that we may regard JuKn = JunK to replace
the orifinal sequence in the proof of Thm. 3.1 and let Kr′ and mr′(ε) be defined as before
with r′ > d∞(h, h′).

Set M̂(ε, σ(g), B) and Θ∆(σ(g), B) to be defined by (3.22) for each B ∈ BN with
P (Θ∆(σ(g)), B) | B) = 1 so that, for all t′n > M̂(ε, σ(g), B) ∨mr′(ε),

∣∣∣∣∣ 1
t′n
c′(JunK) ◦ ϑxtn

−Φ(h′h−1)
∣∣∣∣∣ < Kr′ε. (3.28)

on Θ∆(σ(g)), B) with υσ(g) = {xn}n∈N. Fix

M̂ ′(ε, σ(g)) :=
∑

B∈BN

M̂(ε, σ(g), B)1B + 1Ω \(∪BN ).

Consider {yn}n∈N with ∥yn∥S/n < r′ for every n > mr′(ε). Then Proposition 3.15
ensures the existence of M ′(ε, r′,υσ(g)) > 0 and Λσ(g) ∈ F with P(Λσ(g)) = 1 so that, for
all n > M ′(ε, r′,υσ(g)) on Λσ(g),

1
n

∣∣∣c(yn) − c′(JynK)
∣∣∣ ◦ ϑxn < ε. (3.29)

Let now {vn}n∈N ⊆ Γ be a sequence such that 1
n • vn → h and choose r ≥ d∞(e, h).

Fix g ∈ ∆r,ε so that g ∈ B∞(h, ε). Observe that (3.23) is still valid for c. Hence, by
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Lemma 3.7, one can find M ′
r,r′(ε, σ(g)) > 0 and Ξ′

σ(g) with P (Ξ′
σ(g)) = 1 such that, for all

n > M ′
r,r′(ε, σ(g)) on Ξ′

σ(g),

|c(wn) ◦ ϑxn −c(wn) ◦ ϑvn |< 2βnε, (3.30)

where {wn}n∈N ⊆ Γ is any convergent sequence 1
n •wn → w ∈ B∞(e, r′). Let us fix

Λ∆ :=
⋂
g∈∆

Λσ(g) ∩ Ξσ(g) ∩

 ⋃
B∈BN

Θ∆(σ(g), B)
 ,

and set
M ′

r,r′(ε) := max
g∈∆r,ε

{
M ′(ε, r′,υσ(g)), M ′

r,r′(ε, σ(g)), M̂ ′(ε, σ(g))
}
.

Then M ′
r,r′(ε) is finite on Λ∆ and P (Λ∆) = 1. It follows from (3.28), (3.29), and (3.30)

with un = wt′
n

= yt′
n

that, for all t′n > M ′
r,r′(ε) ∨mr′(ε) on Λ∆,

∣∣∣∣∣ 1
t′n
c(un) ◦ ϑvt′

n
−Φ(h′h

−1)
∣∣∣∣∣ < (Kr′ + 2β+ 1)ε.

This establishes the P-a.s. convergence of 1
t′
n
dω(vt′

n
, unvt′

n
) to Φ(h′h

−1
) = dϕ(h, h′) for

ω ∈ Λ∆ as n ↑ +∞.

3.3.3 An Additional Result for FPP Models

In the preceding sections, we delved into the asymptotic behavior of c and c′. The definition
of c′ depends only on the action of ϑ restricted to N ⊴Γ, ensuring that we can systematically
investigate the group action of Γ′ within a fixed B ∈ BN .

To broaden the scope of our findings and establish the validity of (iii′) for FPP models
on virtually nilpotent groups, we will introduce a new random variable induced by a graph
homomorphism. Let us now define, for all JxK ∈ Γ′ \{JeK},

c′′(JxK) := max
1≤i,j≤κ

max
y∈z(j).JxK

z∈z(i). tor N

c(y) ◦ ϑz
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and consider c′′(JeK) := 0. Note that c′′ restricted to B ∈ BN is not well-defined when
there exists another set B′ ∈ BN distinct from B. This inherent limitation prompts the
necessity for specific conditions in the subsequent result.

The following lemma outlines the criteria under which c′′ inherits the FPP property from
c. Before presenting this result, we establish the notation:

JSK± := {JsK±1: s ∈ S}.

Lemma 3.17. Let (Γ, .) be a virtually nilpotent group generated by a finite symmetric set
S ⊆ Γ with JSK a generating set of Γ′. Consider a subadditive cocycle c : Γ ×Ω → R≥0

determining a FPP model on C(Γ, S) which satisfies (i). Suppose that the restriction
ϑ |N : N ↷ (Ω,F ,P) is a p.m.p. ergodic group action.

If, for all s ∈ S, Js−1K = JsK−1, then c′′ determines a FPP model on C(Γ, JSK±) and
condition (iii′) is satisfied when JSK± ⊆ Γ′ \[Γ′,Γ′].

Proof. Define, for each x ∈ Γ and every JsK ∈ JSK±,

τ (JxK, JsKJxK) := max
1≤i,j≤κ

max
y∈z(j).JxK
h∈z(i).JsK

τ(y, hy)

and note that τ preserves the symmetry

τ (JxK, JsKJxK) = τ
(
JsKJxK, JsK−1(JsKJxK)

)
= τ (JsKJxK, JxK).

Condition (i) imply that c′′ is P-a.s. finite and there exists of a (finite) geodesic path.
Observe that Js−1K = JsK−1 for all s ∈ S induces a graph homomorphism of C(Γ, S) and
C(Γ′, JSK±). In other words, for all w1, w2 ∈ JwK and i, j ∈ {1, . . . , κ}, z(j).w1 ̸∼ z(i).w2

and if x ∼ y in C(Γ, S), then JxK ∼ JyK in C(Γ′, JSK±). Hence, one can easily verify by the
minimax property that

c′′(JxK) := max
1≤i,j≤κ

max
y∈z(j).JxK

z∈z(i). tor N

 inf
γ∈P(e,y)

∑
{u,v}∈γ

τ(u, v)
 ◦ ϑz

= inf
γ∈P(JeK,JxK)


∑

{JuK,JvK}∈γ

max
1≤i,j≤κ

max
u′∈z(j).JuK

s′∈z(i).Jvu−1K

τ(u′, s′u′)

 P -a.s.
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This is a direct consequence of the graph homomorphism. Property (iii′) arises naturally
from the given definition when JSK± ⊆ Γ′ \[Γ′,Γ′].

Proposition 3.18. Under the same hypotheses stated in Lemma 3.17, it follows that the
results in Lemmas 3.13, 3.14 and 3.16, Proposition 3.15, and Remark 3.4 also hold when
replacing c′ with c′′.

Proof. Notice that

P

 max
x∈BS(e,n)

max
y∈
⋃κ

j=1 z(j). tor N
c(y) ◦ ϑx >

√
n

 ∈ O(1/nκ).

Consequently, max
x∈BS(e,n)

max
y∈
⋃κ

j=1 z(j). tor N
c(y) ◦ ϑx ∈ o(n), P-a.s., as n ↑ +∞. Therefore,

defining c′′(JeK) = 0 is a suitable choice for investigating the asymptotic cone of c′′ in
comparison to c.

The arguments in the proofs of Lemmas 3.13, 3.14 and 3.16 and Proposition 3.15 can be
repeated for c′′, yielding the same properties up to a constant factor.

Corollary 3.19. Let (Γ, .) be a finitely generated group with polynomial growth rate D ≥ 1
and Γ′/[Γ′,Γ′] torsion-free. Consider c : Γ ×Ω → R≥0 to be a subadditive cocycle associated
with dω and a p.m.p. ergodic group action ϑ |N : N ↷ (Ω,F ,P).

Suppose that c describes a FPP model which satisfies conditions (i) and (ii′) for a finite
symmetric generating set S ⊆ Γ so that

(i) For all s ∈ S, Js−1K = JsK−1, and

(ii) JSK± ⊆ Γ′ \[Γ′,Γ′] generates Γ′.

Then (
Γ, 1
n
dω, e

)
GH−−→ (G∞, dϕ, e) P -a.s.

where G∞ is a simply connected graded Lie group, and dϕ is a quasimetric homogeneous
with respect to a family of homotheties {δt}t>0. Moreover, dϕ is bi-Lipschitz equivalent to
d∞ on G∞.

Proof. First, according to Proposition 3.18, the random variables c′ and c′′ share similar
properties. Observe that |BN |= 1, ensuring that c′′ is well-defined and a suitable replacement
of c′ in the proof of Theorem 3.2, which establishes the result.
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The next example highlights a case where ϑ |N acts ergodically on the probability space
followed by an example of virtually nilpotent group with generating set satisfying items (i)
and (ii) of Corollary 3.19.

Example 3.1 (Independent FPP models). The subadditive cocycle c exhibits equivariance.
Recall properties discussed in Section 2.5 for FPP models and notice that, for all x, y ∈ Γ
and s ∈ S,

τ(x, sx) ∼ τ (y, s±1y).

Consider that the random weights are independent, but not necessarily identically
distributed (see [7] for FPP with i.i.d. random variables). Let us define S′ := {{s, s−1} :
s ∈ S} and set ς(s′) := s ∈ s′ for s′ ∈ S′, i.e., the function ς fixes one element of each
s′ ∈ S′.

Suppose that, for all s ∈ S, s2 ̸= e and consider ν(s′) to be the law of τ(x, ς(s′)x) with
x ∈ Γ and s ∈ s′ ∈ S′. Thus, one can write

P ≡

⊗
s′∈S′

ν(s′)

⊗ Γ

=
 κ⊗

j=1

⊗
s′∈S′

ν(s′)

⊗N

≡
⊗
x∈N

ν(x),

where, for each x ∈ N , ν(x) ≡ ⊗κ
j=1

⊗
s′∈S′ ν(s′). Let E ∈ F be such that, for all x ∈ N ,

ϑx(E) = E. Then, for all x, y ∈ N ,

ν(x)(E) = ν(y)(E) =: kE ∈ [0, 1].

The condition of polynomial growth rate D ≥ 1 ensures that N is countably infinite.
Consequently,

P(E) =
∏

x∈N

kE ∈ {0, 1}.

Therefore, ϑ |N as defined in Section 2.5 constitutes a probability measure-preserving
(p.m.p.) ergodic group action for independent FPP models.

Example 3.2 (Direct product). Consider L a torsion-free nilpotent group with torsion-free
abelianization and a symmetric finite generating set SL ⊆ L \ [L,L]. Set M to be a finite
group. Recall the properties highlighted in Section 2.4.3. Let us define

Γ = L ×M, and S = SL ×M.
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Then S is a symmetric finite generating set of Γ. Fix πN (x,m) = (x, e) for all x ∈ L and
m ∈ M . One can easily see that Γ′ ∼= L with JSK = JSK± ∼= SL.

Furthermore, for any (x,m) ∈ Γ, the inverse (x,m)−1 is given by (x−1,m−1), leading to

J(x,m)−1K ∼= x−1 ∼= J(x,m)K−1.

As a consequence, both items (i) and (ii) of Corollary 3.19 hold when Γ is the direct
product equipped with the generating set S defined above.

3.4 applications to random growth models
In this section, we delve into three distinct examples that serve as applications of the main
results outlined in this monograph for a random growth on C(Γ, S). These examples have
been deliberately chosen to address scenarios that fall outside the scope of previous works,
thereby offering a nuanced examination of the versatility and robustness of our established
theorems.

The first example considers a First-Passage Percolation (FPP) model with dependent
random variables, challenging the assumption of L∞, since we allow random weights to be
zero with a strict positive probability. Transitioning to the second example, we investigate
a FPP model with independent random variables that are not identically distributed and
also not L∞. The third example shifts focus to an interacting particle system that is not a
FPP model. Notably, this model fails to meet the conditions found in the literature.

Example 3.3 (First-Passage Percolation for a Random Coloring of Γ). Let us now consider
a dependent Bernoulli FPP model based on the random coloring studied by Fontes and
Newman [27]. Set {Xx}x∈Γ to be a family of i.i.d. random variables taking values in a
finite set of colors F. The model generates color clusters by assigning weight 0 to edges
between sites with same color and weight 1 otherwise. We define for every edge u ∼ v

τ(u, v) = 1(Xu ̸= Xv),

Set for each self-avoiding path γ ∈ P(x, y) the random length T (γ) = ∑
e∈γ τ(e). The

first-passage time is
T (x, y) := inf

γ∈P(x,y)
T (γ)
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Let ps := P(Xx = s) then one can verify that T (x, y) is a FPP model with dependent
identically distributed passage times τ(x, y) ∼ Ber

(
1 −∑

s∈F p
2
s

)
. One can easily see that

c(x) := T (e, x) is a subadditive cocycle and the translations ϑ are ergodic due to the fact
that {Xx}x∈Γ are i.i.d. random variables.

Observe that c(x) is bounded above by the word norm ∥x∥S , items (i) and (iii) are
immediately satisfied. Consider ps ∈ (0, 1) for all s ∈ F. Set

p := max
s∈F

ps , q := max
s∈F

(1 − ps), and p′ := p

p+ q
.

The lemma below establishes a sufficient condition for (ii) and (ii′).

Lemma 3.20. Consider the Random Coloring Model of Γ on C(Γ, S) satisfying

p <
1

|S|−1 , (3.31)

then (ii) and (ii′) hold true.

Proof. Let γ = (x0 = e, x1, . . . , xn) ∈ Pn with Pn the set of all self-avoiding paths in
C(Γ, S) of graph length n starting at e. Fix [n] := {1, . . . , n}, then

P (T (γ) = m) ≤
∑

A⊆[n]
|A|=m

∏
i∈[n]\A

P(Xxi = Xxi−1|Xxi−1)
∏
j∈A

P(Xxi ̸= Xxi−1|Xxi−1)

≤
(
n

m

)
pn−mqm = (p+ q)nP (Y = m)

where Y ∼ Binomial(n, 1 − p′) with respect to P . Let us regard ∥x∥S= n, thus

P (c(x) ≤ α∥x∥S) ≤ P (∃γ ∈ Pn : T (γ) ≤ αn)

≤ |Pn|(p+ q)n · P (Y ≤ αn).

It is a well-known fact that |Pn|≤ |S|(|S|−1)n−1. Therefore, there exists C > 0 such that
|Pn|≤ C(|S|−1)n. By Chernoff bound, one can obtain

P (Y ≤ αn) ≤ exp
(
n

(
α− 1) log 1 −α

1 − p′ −α log α
p′

))

=
(
(p′)α(1 − p′)(1−α)α−α(1 −α)α−1

)n
. (3.32)
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Observe that the base of (3.32) converges to p′ as α ↓ 0. Hence, there exist α, p′′ > 0 such
that P (Y ≤ αn) ≤ (p′′)

n with p′ < p′′ < 1/((p+ 1)(|S|−1)) when p satisfies (3.31). It then
follows that there exists C′ > 0 such that

P (c(x) ≤ α∥x∥S) ≤ C(p′′(p+ q)(|S|−1))n = C exp(−C′n).

Let now a := α/2 and choose ∥x∥S≫ 1 so that P (c(x) ≤ α∥x∥S) ≤ 1/2, then a∥x∥S≤
E[c(x)], which yields (ii) and (ii′) as a consequence.

Similarly to Example 3.1, let ν be the law of the random coloring of a vertex. Then

P ≡ ν⊗ Γ =
(

κ⊗
j=1

ν

)⊗N

≡
⊗
x∈N

ν(x)

with ν(x) ≡ ⊗κ
j=1 ν. By the same reasoning employed for ν(x) in Example 3.1, we verify

that ϑ |N acts ergodically on (Ω,F ,P).
Hence, under the assumption of (3.31) and based on the aforementioned results, the

Shape Theorems 3.1 and 3.2 are applicable to the random coloring of Γ = N nilpotent
with a finite generating set S ⊆ N \ ([N,N ] ∪ torN) or in the case where Γ′ is abelian.
Moreover, under the fulfillment of conditions (i) and (ii) in Corollary 3.19, the existence of
the limiting shape is also guaranteed when Γ is virtually nilpotent.

Remark 3.5. Observe that (3.31) provides a lower bound for the critical probability of site
percolation on C(Γ, S) (see for instance [31]). To verify that, fix a color s ∈ F and we say
that a site x ∈ Γ is open when Xx = s. Therefore, one can write

τ
(s)
site(x, y) = 1(Xx ̸= s or Xy ̸= s).

Note that it stochastically dominates with τ ≤ τ
(s)
site P-a.s. The open edges are the new

edges of length zero. By Lemma 3.20, we can apply Theorem 3.1 to obtain that, P-a.s.,
there is no infinite open cluster in C(Γ, S) when ps <

1
|S|−1 .

Example 3.4 (Richardson’s Growth Model in a Translation Invariant Random Environment).
In this example, we define a variant of the Richardson’s Growth Model which is commonly
employed to describe the spread of infectious diseases. This version of the model involves
independent random variables that are not identically distributed (see [29,56] for similar
models). Specifically, we consider that the transmission rate of the disease between
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neighboring sites is randomly chosen. The distribution of this variable will vary depending
on the directions of the Cayley graph.

Consider that the infection rates between neighbors are determined by a random
environment taking values in Λ := (0,+∞)E . Let S′ := {{s, s−1} : s ∈ S} be the set of
directions of C(Γ, S). Consider {λs′}s′∈S′ a set of strictly positive random variables that
are independent over a probability measure ν. Set (λ(e))e∈E to be a collection of
independent random variables over ν such that

λ(x, sx) ∼ λs′ with s′ = {s±1}.

Let us regard λ ∈ Λ as a fixed realization of the random environment. The growth
process is defined by the family of independent random variables {τ(x, sx) : x ∈ Γ, s ∈ S}
such that

τ(x, sx) ∼ Exp(λ(x, sx)). (3.33)

Set Pλ to be the quenched probability law of (3.33). We write, for each path γ ∈ P(x, y)
with x, y ∈ Γ, its random length T (γ) := ∑

e∈γ τ(e).
The first-passage time is

c(x) := inf
γ∈P(e,x)

T (γ).

It is straightforward to see that c(x) is subadditive. However, the group action ϑ is not
ergodic over Pλ for a given λ ∈ Λ. Let P(·) =

∫
Λ Pγ(·)dν(λ) be the annealed probability.

It then follows that ϑ preserves the measure P and it is ergodic.
Note that c(x) defines a First-Passage Percolation (FPP) model, which we refer to as

Richardson’s Growth Model in a Translation Random Environment (RGTRE). In the
following, we establish that conditions (i), (ii), and (ii′) are met.

Lemma 3.21. Consider the RGTRE defined as above. Then there exist β, C, C′ > 0 such
that, for all x ∈ Γ,

P (c(x) ≥ t) ≤ C exp ( − C′t)

for all t ≥ β∥x∥S.

Proof. Let γ ∈ P(e, x) be a dS-geodesic with ∥x∥S= n. Then one has by Chernoff bound
and the independence of {τ(e)}e∈E that

Pλ (c(x) ≥ t) ≤ Pλ (T (γ) ≥ t) ≤
∏

e∈γ Eλ

[
eατ(e)

]
eαt

.
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where
Eλ

[
eατ(e)

]
=

+∞∑
m=0

(
α

λ(e)

)m

Let λmin := mins′∈S′ E[λs′ ] and set α = λmin/2. Thus, by the Dominated Convergence
Theorem,

Pλ (c(x) ≥ t) ≤ 2n

eλmint/2
.

Therefore, it suffices to choose β > 2 log(2)/λmin to complete the proof.

Lemma 3.22. Consider the RGTRE defined as above. The there exists a > 0 such that, for
all x ∈ Γ,

a∥x∥S≤ E[c(x)].

Proof. It is a well-known fact that, for all λ ∈ Λ and every e ∈ E, that Pλ (τ(e) = 0) = 0
and, therefore, P (τ(e) = 0) = 0. By the right continuity of the cumulative distribution
function, one can find δ > 0 and p ≥ 0 such that, for every e ∈ E,

P (τ(e) < δ) = p <
1

|S|−1 .

We use similar arguments as those employed in the proof of Lemma 3.20, we may consider
Y ∼ Binomial(n, 1 − p) over P . Then there exists α > 0 such that, for any γ ∈ Pn,

P (T (γ) ≤ αn) ≤ P (Y ≤ αn/δ) ≤ pn.

It follows that there exists C > 0 such that, for ∥x∥S= n,

P (c(x) ≤ α∥x∥S) ≤ |Pn| · P (Y ≤ αn/δ) ≤ C((|S|−1)p)n
.

Since (|S|−1)p < 1, we can complete the proof by following the same steps as in Lemma 3.20.

It follows from Lemmas 3.21 and 3.22 that conditions (i), (ii), and (ii′) are satisfied.
Observe that ϑ |N acts ergodically on the probability space (see Example 3.1).

Therefore, building upon the preceding results, the Limiting Shape Theorems 3.1 and 3.2
apply to the RGTRE with Γ = N nilpotent with a finite generating set S ⊆ N \ ([N,N ] ∪
torN) or in scenarios where Γ′ is abelian. Additionally, when Γ is virtually nilpotent and
conditions (i) and (ii) from Corollary 3.19 are satisfied, the existence of the limiting shape
is also assured.
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Example 3.5 (The Frog Model). The Frog Model, originally introduced by Alves et al. [2]
and previously featured as an example in [61], is a discrete-time interacting particle system
determined by the intersection of random walks on a graph. In this model, particles,
often representing individuals, are distributed across the vertices and they can be in either
active (awake) or inactive (sleeping) states. At discrete time steps, active particles perform
simple random walks, while inactive ones remain stationary. The activation of an inactive
particle occurs when its vertex is visited by an active counterpart, thereby characterizing
an awakening process. This straightforward yet potent model serves as a valuable tool
for analyzing diverse dynamic processes, such as the spread of information and disease
transmission.

In our previous study Coletti and de Lima [15], we investigated the Frog Model on
finitely generated groups. We can now extend our findings to virtually nilpotent groups as a
consequence of Theorem 3.2. Let us define the model in detail. The initial configuration of
the process at time zero begins with one particle at each vertex and the only active particle
lies on the origin e ∈ Γ.

Set Sx
n to be the simple random walk on C(Γ, S) of a particle originally placed at x ∈ Γ

and let t(x, y) be the first time the random walk Sx
n visits y ∈ Γ, i.e., it defined the random

variable t(x, y) = inf{n ∈ N0 : Sx
n = y}. Note that t(x, y) = +∞ with strictly positive

probability when D ≥ 3.
The activation time of the particle originally positioned at x is given by the random

variable
T (x) = inf

{
m∑

i=1
t(xi−1, xi):m ∈ N, {xi}m

i=1 ⊆ Γ, x0 = e

}
.

Observe that xi−1 and xi are not necessarily neighbours. We proved in [15] that c(x) = T (x)
is a subadditive cocycle with respect to the translation ϑ, which is p.m.p. and an ergodic
group action. Futhermore, τ (e)(x, sx) = |T (x) − T (sx)| is not identically distributes as in
the FPP models (see Section 2.5).

Due to the discrete time random walks, T (x) ≥ ∥x∥S and therefore (ii′) is immediately
satisfied. The at least linear growth in virtually nilpotent group was already investigated
in [15]. Hence, condition (i) is a consequence of the following result.
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Lemma 3.23 (Prop. 2.10 of [15]). Let Γ be a group of polynomial growth rate D ≥ 3 with
a symmetric finite generating set S ⊆ Γ \{e}. Then there exists C,κ > 0 and β > 1 such
that, for all x ∈ Γ and every t > β∥x∥S, one has

P (T (x) ≥ t) ≤ C exp(−tκ).

Consider now Γ as a group with polynomial growth rate D ≥ 3 generated by a symmetric
finite set S ⊆ Γ \{e}. According to Theorem 3.2 and the preceding results, it can be
inferred that the Frog Model on C(Γ, S) exhibits a limiting shape when ⟨JSK⟩ generates an
abelian group Γ′. This phenomenon can be exemplified by the generalized dihedral group
Γ = Dih(N) when N is a finitely generated abelian group with polynomial growth rate
D ≥ 3 (see Example 2.3).
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4 ON RANDOM GEOMETR IC GRAPHS

In the early 1960s, Gilbert [30] introduced a mathematical model for wireless networks,
laying the groundwork for continuum percolation theory and extending the concepts of
discrete percolation. This model, often referred to as the Gilbert disk model, is characterized
by the uniform distribution of points across the infinite plane R2 through a homogeneous
Poisson point process (PPP) with intensity λ > 0. The point process determines the
vertices of the graph and the edges are defined between any pair of vertices that are within
an Euclidean distance smaller than a fixed threshold r > 0. In this context, we define
the random graph in Rd with d ≥ 2, and following Penrose [50], we refer to it as random
geometric graph (RGG). This class of graphs is associated to the Poisson–Boolean model in
continuum percolation, and it can also be seen as a particular case of the random-connection
model (see for instance Meester and Roy [47]).

In this chapter, we present the definition and parameters for random geometric graphs
(RGGs) and the existence of the infinite connected component. We also show some results
about its geometry in order to study the asymptotic shape in the following chapters.
Throughout the text, we assume ∥·∥ to be the Euclidean norm on Rd, and let ∥·∥1 and
∥·∥∞ stand for the ℓ1 and ℓ∞ norms, respectively.

4.1 basic definitions and auxiliary results
Let Pλ be the random set of points determined by the homogeneous PPP on Rd with
intensity λ > 0. The RGG G = (V, E) on Rd is defined by

V = Pλ and E = {{u, v} ⊆ V : ∥u− v∥< r, u ̸= v}.
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Since λ− 1
d Pλ ∼ P1, we consider λ as a fixed parameter and allow r to vary due to the

homogeneity of the norm. Thus, unless specified otherwise, we set λ = 1 and denote P1 as
P. Let (Ξ,F , µ) denote the probability space induced by the construction of P. Let us
now introduce the group action ϑ : Rd ↷ Ξ which is determined by the spatial translation
as a shift operator. That is, P ◦ ϑz = {v − z : v ∈ P }. The following lemma is a classical
result on PPPs, which can be found for example in Meester and Roy [47, Prop. 2.6].

Lemma 4.1. The homogeneous PPP is mixing on (Ξ,F , µ, ϑ).

Remark 4.1. Let S : Rd → Rd be an isometry. Then, it is known that S induces a
µ-preserving ergodic function σ̃ : Ξ → Ξ where S[P ] = P ◦ σ̃.

We aim to investigate the spread of infection within an infinite connected component of
G. It is a well-known fact from continuum percolation theory (see Meester and Roy [47]
or Penrose [50, Chapter 10] for details) that, for all d ≥ 2, there exists a critical rc(λ) > 0
(or rc for λ = 1) such that G has an infinite component H µ-a.s. for all r > rc. Moreover,
H is µ-a.s. unique. As H is a subgraph of G, we denote by V (H) and E(H) its sets of
vertices and edges, respectively. To simplify notation, we often use H to represent the set
of vertices V (H).

For our purposes, it suffices to note that rc ≥ 1/υd
1/d where υd denotes the volume of

the unit ball in the d-dimensional Euclidean space. Indeed, more precise lower and upper
bounds can be found in Torquato and Jiao [63] and rc approximates to 1/υd

1/d from above
as d ↑ +∞.

Define B(t) as the hypercube [−t/2, t/2]d and consider the Euclidean ball denoted as
B(x, t) := {y ∈ Rd: ∥y − x∥< t}. Let us fix θr as µ(B(o, r) ∩ H ≠ ∅). The following
proposition presents a fundamental result concerning the volume of H, which is a weaker
version of Theorem 1 in Penrose and Pisztora [51].

Proposition 4.2. Let d ≥ 2, r > rc and ε ∈ (0, 1/2). Then, there exists c0 > 0 and t0 > 0
such that, for all t ≥ s0,

µ

(
(1 − ε)θr <

|H ∩B(t)|
td

< (1 + ε)θr

)
≥ 1 − exp(−c0t

d−1).

As a consequence of the last result, we present the following lemma without proof (see
Yao et al. [65, Lemma 3.3]).
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Lemma 4.3. Let r > rc. Then, there exists C,C ′ > 0 such that, for each x ∈ Rd and all
s > 0,

µ(B(x, s) ∩ H = ∅) ≤ C exp(−C ′sd−1).

Define P(x, y) as the set of self-avoiding paths from x to y in G. The simple length of a
path γ = (x = x0, x1, . . . , xm = y) ∈ P(x, y) is denoted by |γ|= m. Let q : Rd → G be a
function defined as follows:

q(x) := arg min
y∈V

{∥y − x∥} (4.1)

which determines the closest point to x in V . Note that from (4.1), q may have multiple
values for certain x ∈ Rd. In such cases, we presume that q(x) is uniquely defined by
arbitrarily selecting one outcome of (4.1).

Let D(x, y) stand for the G-distance between x, y ∈ Rd given by

D(x, y) = inf{|γ|: γ ∈ P(q(x), q(y))}.

Similarly to (4.1), we set q : Rd → H to be a function that determines the closest point
to x in H defined as

q(x) := arg min
y∈H

{∥y − x∥}.

Hence q induces a Voronoi partition of Rd with respect to H, see Figure 2 for an illustration.

Figure 2: A random geometric graph on R2 with the Voronoi partition generated by the infinite
connected component H (in blue). Fig. from [17].
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We restrict the domain of D to H by defining D(x, y) := D(q(x), q(y)) for every x, y ∈ Rd.
The proposition below can be immediately adapted from the proof of Yao et al. [65, Thm
2.2] by applying properties of Palm calculus and Lemma 4.3.

Proposition 4.4. (Adapted from Yao et al. [65, Thm. 2.2]). Let d ≥ 2 and r > rc. Then
there exists ϱr > 0 depending on r such that, µ-a.s., for all x ∈ Rd,

lim
∥y∥↑+∞

D(x, y)
∥y − x∥

= ϱr.

The constant ϱr is called stretch factor of H. Observe that ϱr ≥ 1/r. Due to the
subadditivity of the H-distance, one can easily see that Eµ[D(o, z)] with ∥z∥= 1 is an
upper-bound for ϱr.

Let u, v ∈ Rd, we define the Palm measure µv as the convolution of the measure µ with
the Dirac measure δv. Specifically, µv := µ ∗ δv. Similarly, µu,v stands for µ ∗ δu ∗ δv. Set
C (x) to be the connected component of q(x) in G. We have the following result about the
tail behaviour of D(o, z).

Lemma 4.5. Let d ≥ 2 and r > rc. Then, there exist C,C ′ > 0 and β† > 1 such that, for
all x ∈ Rd and every t > β†∥x∥,

µ(D(o, x) ≥ t) ≤ C exp(−C ′t).

Proof. Let D be the simple G-distance. It is clear that D(v, w) = D(v, w) whenever
v, w ∈ H. By [65, Lemma 3.4], there exist C̃, C̃ ′ > 0 and β† > 1 such that

µv,w(v ∈ C (w), and D(v, w) ≥ t) ≤ C̃ exp(−C̃ ′t) (4.2)

for all t ≥ β†∥v −w∥/2. Consider now Br(z) := B(z, r) ∩ P. We apply Lemma 4.3, (4.2),
and Campbell’s theorem to obtain that there exist C,C ′ > 0 such that

µ(D(o, x) ≥ t) ≤ µ(∥q(o)∥≥ t/(2β′)) + µ(∥q(x) − x∥≥ t/(2β′))

+ µ

 ⋃
v∈Bt/(2β′)(o), w∈Bt/(2β′)(x)

{v ∈ C (w) and D(v, w) ≥ t}


≤ 2C exp (−C ′t/(2β′)) + C̃

υ2
d

22d
t2d exp(−C̃ ′t) (4.3)
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for all t ≥ β†∥x∥. Hence, we can conclude the proof of (4.3) by suitably choosing the
constants C,C ′ > 0.

Define Cover(t) := B(t) ∩ (
⋃

v∈H B(v, r)) as the coverage of H in B(t). A connected
region in B(t) \ Cover(t) is called a hole in B(t). Let v ∈ B(t) ∩ H. The Euclidean ball
B(v, t′) is an spherical hole when B(v, t) ∩ Cover(t) = ∅. The largest diameter of a spherical
hole in B(t) is denoted by

D(t) := sup
{
t′ ≥ 0: v ∈ B(t), B(v, t′/2) is a spherical hole in B(t)

}
.

The following proposition is an adapted version of Theorem 3.3 of Yao and Guo [66]:

Proposition 4.6. Let d ≥ 2 and r > rc. Then there exist c1, c2 > 0 such that

µ
(
c1 · log(t) < D(t) < c2 · log(t)

)
≥ 1 − 1

t2
.

The subsequent result appears as Lemma 4 in Yao [64] and as Lemma 3.4 in Yao, Chen,
and Guo [65].

Lemma 4.7. Let d ≥ 2 and r > rc. Then there exist C,C ′ > 0 such that, for each t > 0,

µv

(
v ̸∈ H, C (v) ̸⊆ B(v, t)

)
≤ C exp(−C ′t).

Furthermore, there exist c3, c4 > 0 and β′ > 1 such that, for all u, v ∈ Rd and every
t > β′∥u− v∥,

µu,v(D(u, v)1u∈C (v) > t) ≤ c3 exp(−c4t).



5 THE EX I S T ENCE OF THE L IM I T ING
SHAPE OF FPP MODEL S ON RGGS

First-Passage Percolation (FPP) was initially introduced to study the spread of fluids
through random medium (see Section 2.5 for details). Since then, several variations of
the percolation process have been extensively investigated (see Auffinger et al. [3] for an
overview of FPP models) due to their considerable amount of theoretical consequences and
applications. It determines a random metric space by assigning random weights to the
edges of a graph.

We consider the FPP model defined on a random geometric graph (RGG) in Rd with
d ≥ 2. Here, the RGG is defined as in Chapter 4. Recall that the infinite component H
is unique almost surely in the supercritical case. We define the FPP model on H with
independent and identically distributed random variables on a joint probability space
(Ω,A ,P).

The aim of this chapter is to investigate the P-a.s. existence of the limiting shape of the
above defined process. In fact, we show that, under some conditions, the random balls of H
converge P-a.s. to the deterministic shape of an Euclidean ball. The additional conditions
refer to the distribution of zero passage time on the edges and the at-least linear growth of
the process.

Let τ be a random variable which defines the common distribution of the i.i.d. passage
times τe along each edge e ∈ E . Recall that rc(λ) > 0 is the critical r for the existence of
the infinite connected component H of the RGG G. Let υd be volume of the unit ball in
d-dimensional Euclidean space. Denote by Ht the random subset of Rd of points for which
their closest point in H is reached by the FPP model up to time t > 0. We let H0 be the
set of points that have the same closest point in H as the origin. Here is our first main
theorem.

82
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Theorem 5.1 (Shape theorem for FPP on RGGs). Let d ≥ 2 and r > rc(λ). Consider
the FPP with i.i.d. random variables defined on the infinite connected component H of G.
Suppose that the following conditions are satisfied:

(A1) We have that
P(τ = 0) < 1

υdrdλ
.

(A2) There exists η > 2d+ 2 such that

E[τη] < +∞.

Then, there exists φ ∈ (0,+∞) such that, for all ε ∈ (0, 1), one has P-a.s. that

(1 − ε)B(o,φ) ⊆ 1
n
Hn ⊆ (1 + ε)B(o,φ) (5.1)

for sufficiently large n ∈ N.

The existence of the limiting shape is particularly interesting because the RGG is a
random graph which exhibits, P-a.s., unbounded degree and holes with unbounded diameter.
To avoid the possible extreme effects of such pathologies on the growth of the process, we
control the growth almost surely by combining the conditions above with properties of
the point process. Additionally, we note that the probability measure P is given by µ⊗ ν,
where µ represents the measure associated with the PPP and ν denotes the measure related
to the passage times. For further details, interested readers can refer to the construction of
the probability space outlined in the proof of Lemma 6.15.

The interest of applications for this class of models has already been pointed out by Jahnel
and König [38]. In particular, they suggested the theorem for the Richardson model on
telecommunication networks. The example is naturally associated with the contact process
by stochastic domination as studied by Ménard and Singh [48], and Riblet [55]. Another
interesting application is a lower bound for the critical probability of bond percolation
on the RGG. The same lower bound can be obtained by other methods (e.g. branching
processes), however it shows in comparison how good and suitable condition (A1) is.

It is worth pointing out that one can find in the literature a bigger class of random
geometric graphs studied by Hirsch et al. [36] where the graph distance was interpreted as
a FPP model. It suggests that the class of RGGs could also be expanded in our case. We
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chose to focus our attention on the standard definition in this work due to the usage of
intermediate results presented in the next section.

5.1 intermediate results
Let us proceed with defining the first-passage percolation model on G = (V, E) and i.i.d.
passage times {τe : e ∈ E}. Recall properties of the RGG G presented in Section 4.1 and
fix λ = 1. We introduce T as a random variable called first-passage time such that, for all
x, y ∈ Rd, we have

T (x, y) := inf
∑

e∈γ

τe : γ ∈ P(q(x), q(y))
 .

The first-passage time on H is defined as

T (u, v) := T (q(u), q(v))

For brevity, we denote T (x) = T (q(o), q(x)). To streamline our focus on the shape theorem
itself and on the techniques employed in Chapter 6, we have omitted the proofs of Lemmas 5.2
to 5.4 from this text. Interested readers can find these proofs in detail in our published
paper [17].

Lemma 5.2 ([17, Lm. 3.1]). Let d ≥ 2, r > rc, and P(τ = 0) < 1/(υdr
d). Then, there exists

a > 0 depending on r such that, for all x ∈ Rd,

a∥x∥≤ E[T (x)].

Remark 5.1. Observe that E[T (x)] ≤ E[D(o, x)] E[τ ] due to the subadditivity and Fubini’s
Theorem. Moreover, condition (A2) implies that E[τ ] < +∞. One can easily see from
Proposition 4.4 and L1 convergence given by Kingman’s Subadditive Ergodic Theorem
(Theorem 2.1) applied to the H-distance, that, for all x ∈ Rd \{o},

b := ϱr E[τ ] ≥ lim
n↑+∞

E[T (nx)]/∥nx∥.
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Let Ξ′ stand for the event where H exists. Denote by Pξ the quenched probability of the
propagation model given a realization ξ ∈ Ξ′. The lemma below ensures the at least linear
growth of the passage times.

Lemma 5.3 ([17, Lm. 3.2]). Let d ≥ 2, r > rc, and assume that (A2) holds. Then, there
exist deterministic β > 0 and κ > 1 such that, for every x, y ∈ Rd, and for each ξ ∈ Ξ′,

Pξ (T (x, y) ≥ t) ≤ t−(d+κ)

for all t ≥ βD(x, y).

Before proving our first main theorem of Part II, we state and prove the following result.
It is an annealed version of the at least linear growth from lemma above in all directions.

Lemma 5.4 ([17, Lm. 3.3]). Let d ≥ 2, r > rc. Consider the i.i.d. FPP on the RGG
satisfying (A2). Then, there exist constants δ, C > 0, and κ > 1 such that for all t > 0 and
all x ∈ Rd, one has

P

 sup
y∈B(x,δt)

T (x, y) ≥ t

 ≤ Ct−κ.

The forthcoming results will be utilized in Chapter 6, where we enhance (A2) with a
stronger assumption, subsequently denoted as (A′

2). Let’s recall the definition of the Palm
measures µu,v and consider Pu,v := µu,v ⊗ ν.

Lemma 5.5. Let d ≥ 2 and r > rc, and suppose that E[eητ ] < +∞ for some η > 0. Then,
there exist c5, c6 > 0 and β > 1 such that, for all u, v ∈ Rd and every t > β∥u− v∥,

Pu,v (T (u, v)1u∈C (v) ≥ t) ≤ c5 exp(−c6t).

Proof. Fix β′′ > log (E[eητ ]1/η) with η > 0 satisfying (A2), then

E[eητ ]
eηβ′′ < 1. (5.2)

Consider u, v ∈ Rd to be fixed and define the event

E(t) := {D(u, v) ≤ t}.
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Let γ ∈ P(u, v) be a geodesic given by the T -distance on E(t). We apply the Chernoff
bound to verify that

Pu,v ({T (u, v) ≥ t} ∩E(t)) ≤ Pu,v (T (γ) ≥ t)

≤ E[eητ ]D(x,y)

eηt
≤
(

E[eητ ]
eηβ′′

)t/β′′

(5.3)

with t ≥ β′′D(o, x). Hence the result follows from Lemma 4.7, (5.2), and (5.3) since

Pu,v ({T (u, v)1u∈C (v) ≥ t}) ≤ (E[eητ ]e−ηβ′′
)t/β′′

+ c3 exp(−c4t/β
′′)

for t ≥ β∥u− v∥ with β = β′β′′.

Lemma 5.6. Let d ≥ 2, r > rc. Consider that E[eητ ] < +∞ for some η > 0. Then there
exist c7, c8 > 0 and β > 1 such that, for all x ∈ Rd and every t > β∥x∥,

P(T (x) ≥ t) ≤ c7 exp(−c8t),

Proof. The proof of the lemma mirrors that of Lemma 5.5. Here, we replace E(t) with
E(t) := {D(o, x) < t} and β with β := β†β′′. The result follows as a consequence of
applying Lemma 4.5.

Lemma 5.7. Let d ≥ 2, r > rc, and β, β > 0 be as defined in Lemmas 5.5 and 5.6. If
E[eητ ] < +∞ for some η > 0, then there exist c, c′ > 0 such that, for all t′ > 1 and any
t > βt′,

P

 sup
∥w∥<t′

T (w) > t

 ≤ c exp(−c′t′) + c(t′)d exp(−c′t). (5.4)

Moreover, there exist C,C ′ > 0 such that, for all t, t′ > 1,

P

 sup
z∈H ∩B(o,t′)
y∈H ∩B(z,t)

T (z, y) > βt

 ≤ exp(−C ′t′) +C(t′t)d exp(−C ′t). (5.5)

Proof. Consider the constants random variables from Proposition 4.2 to define the event

E =
{
∥q(o)∥≤ t′/2 and |H ∩B(o, 2t′)|< 2dθr · (t′)d

}
.



5.2 proof of the standard shape theorem 87

Hence, by Proposition 4.2 and Lemma 5.6,

P

 sup
∥w∥<t′

T (w) > t

 ≤ P(Ec) + P

 ⋃
z∈H ∩B(o,2t′)

{T (z) > t}

∩E


≤ 2e− c0

4 t′
+ 2dθrc7(t′)de−c8t,

which proves (5.4). Let us now define

E′
1 =

{
θr(t′)d/2 < |H ∩B(o, t′)|< 3θr · (t′)d/2

}
, and

E′
2 =

{
for all z ∈ H ∩B(o, t′), we have |H ∩B(z, t)|≤ θr · td

}
.

Observe that, by Mecke’s formula, Proposition 4.2 and Lemma 5.5,

P

 sup
z∈H ∩B(o,t′)
y∈H ∩B(z,t)

T (z, y) > βt



≤ P ((E′
1)c) + P ((E′

2)c ∩E1) + E


∑

z∈H ∩B(o,t′)
y∈H ∩B(z,t)

Pz,y

(
T (z, y) > βt

)
1E′

1∩E′
2


≤ e− c0

2 t′
+ θr(t′)de− c0

2 t + θ2
r(t′t)dc5e

−c6βt.

This inequality establishes (5.5) as asserted.

5.2 proof of the standard shape theorem
After this preparatory work, we now proceed to prove Theorem 5.1. The methods are
closely related to standard techniques for shape theorems which can be found in [39], for
instance.

Proof of Theorem 5.1. We begin by verifying properties of T (nx). Note that for every
x ∈ Rd one has that E[T (x)] < +∞ by Lemmas 4.5 and 5.3. Recall that the process is
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mixing on (Ω,A ,P, ϑ) by Lemma 4.1. Then, by the subadditivity of T , we apply Kingman’s
subadditive ergodic theorem to obtain that, P-a.s., for all x ∈ Rd,

lim
n↑+∞

T (nx)
n

= ϕ(x), (5.6)

where ϕ : Rd → [0,+∞) is a homogeneous and subadditive function given by

ϕ(x) = inf
n≥1

E[T (nx)]
n

= lim
n↑+∞

E[T (nx)]
n

.

Since the process is rotation invariant, there exists a constant φ (the time constant) such
that ϕ(x) = φ−1∥x∥ for all x ∈ Rd. In fact, one has from Lemma 5.2 and Remark 5.1 that

0 < a ≤ φ−1 ≤ b = ϱr E[τ ] < ∞.

Let us now prove the P-a.s. asymptotic equivalence

lim
∥y∥↑+∞

T (y)
∥y∥

= 1
φ
. (5.7)

For the approach from below, we prove the equivalent statement that for every ϵ ∈ (0, 1),

lim sup
s↑+∞

sup
∥y∥≤(1−ϵ)s

T (y)
s

= lim sup
m∈N,m↑+∞

sup
∥y∥≤(1−ϵ)m

T (y)
m

≤ 1
φ

P −a.s.,

where the first equation holds as ⌊s⌋/s converges to 1. Fix ϵ ∈ (0, 1) and let δ be given
by Lemma 5.4. Due to compactness, there exists a finite cover of open balls with centers
(yi)i∈{1,...,n} ⊆ Rd with ∥yi∥≤ 1 − ϵ such that

B(o, 1 − ϵ) ⊆
⋃

i∈{1,...,n}
B(yi, δϵ/(2φ)).

Furthermore B(o,m(1 − ϵ)) ⊆ ⋃
i∈{1,...,n}B(myi,mδϵ/(2φ)) for every m ∈ N. Applying

Lemma 5.4 we obtain

∑
m∈N

P

 sup
∥y−myi∥≤mδϵ/(2φ)

T (myi, y) > mϵ/(2φ)
 < ∞.
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Therefore, by the Borel–Cantelli lemma,

lim sup
m∈N,m↑+∞

sup
∥myi−y∥≤mδϵ/(2φ)

T (myi, y)
m

<
ϵ

2φ P -a.s.

Applying (5.6) and subadditivity, we obtain

lim sup
m↑+∞;∥y∥≤(1−ϵ)m

T (y)
m

≤ lim sup
m↑+∞

(
max

i∈{1,...n}

T (o,myi)
m

+ sup
∥myi−y∥≤mδϵ/(2φ)

T (myi, y)
m

)
≤ max

i∈{1,...,n}
∥yi∥/φ+ ϵ/(2φ) < 1/φ P -a.s.,

where we used that ∥yi∥< 1 − ϵ.
For the approach from above, define At := B(o, t(1 + 2ϵ)) \B(o, t(1 + ϵ)) and observe

that it suffices to prove

lim inf
m∈N,m↑+∞

inf
y∈At

T (y)
m

≥ 1
φ

P -a.s.

for arbitrary but fixed ϵ > 0, as for (for t > ϵ) any x with ∥x∥> t(1 + 2ϵ) there exists an
x̃ ∈ At with T (x̃) ≤ T (x).

Similar as in the approach from below, fix ϵ > 0 and δ > 0 small enough that Lemma 5.4
holds. There exists a set of centers (yi)i∈{1,...,n} ⊆ Rd with ∥yi∥≥ 1 + ϵ such that

At ⊆
⋃

i∈{1,...,n}
B(yi, δϵ/(2φ))

and hence

lim inf
m∈N,m↑+∞

inf
y∈Am

T (y)
m

≥ lim inf
m∈N,m↑+∞

(
min

i∈{1,...n}

T (o,myi)
m

− sup
∥myi−y∥≤mδϵ/(2φ)

T (myi, y)
m

)
≥ min

i∈{1,...n}
∥yi∥/φ− ϵ/(2φ) > 1/φ,

which concludes the proof of the asymptotic equivalence (5.7). The proof of the theorem is
now complete by standard arguments of the P-a.s. uniform convergence given by (5.7).
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5.3 illustrative examples
In this section, we delve into specific applications of the Shape Theorem established in
previous chapters.

Example 5.1 (Bond percolation). We define the bond percolation by considering the clusters
of the Bernoulli FPP only at time zero (see Figure 3). For this, let us call e ∈ E(H) an
open edge when τe = 0. Set τe ∼ Ber(1 − p) independently for every e ∈ E(H) and observe
that (A2) is immediately satisfied.

Then, the open clusters are maximally connected components defined by sites with
passage time zero between them. Let us define the critical probability pc for the bond
percolation on the d-dimensional RGG by

pc := inf{p ∈ [0, 1] : P(∃ an infinite open cluster in H) > 0, τe ∼ Ber(1 − p)}.

Note that by Theorem 5.1 the case p < 1/(υdr
dλ) implies the existence of the limiting

Figure 3: Simulation of the open clusters for a bond percolation model on a 2-dimensional RGG
with p < 1/(υdrdλ). Fig. from [17].

shape. Thus, an immediate consequence of the theorem is the following lower bound for
the critical probability

pc ≥ 1/(υdr
dλ),
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and for p = 0 we recover H. We observe that the same lower bound can also be obtained
by exploration methods.

Example 5.2 (Richardson’s growth model). Consider the interacting particle system known
as the Richardson model defined on the infinite connected component H of the RGG
with parameter λI > 0. It is a random growth process based on a model introduced by
Richardson [56] and illustrated in Figure 4. It is commonly referred to as a model for the
spread of an infection or for the growth of a population.

At each time t ≥ 0, a site of H is in either of two states, healthy (vacant) or infected
(occupied). Let ζt : H → {0, 1} indicate the state of the sites at time t assigning the values
0 and 1 for the healthy and infected states, respectively. The process evolves as follows:

• A healthy particle becomes infected at rate λI
∑

y∼x ζt(y) and

• An infected particle remains infected forever.

It is easily seen that the process is determined by FPP with edge passage times
τe ∼ Exp(λI) independently for each e ∈ E(H). In particular, this version of the
Richardson model conventionally stochastically dominates the basic contact process.

Figure 4: Simulation of the spread of an infection given by the Richardson model on a bidimensional
RGG. Fig. from [17].
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Conditions (A1) and (A2) are straightforward since P(τ = 0) = 0 < 1/(υdr
dλ) and since

E[exp(ατ)] < +∞ for α ∈ (0, λI). Hence, Theorem 5.1 is valid for the Richardson model
on H for any supercritical r > rc(λ).

Futhermore, it is immediate to see that Theorem 5.1 still holds for any initial configuration
Z ⊆ Rd of infected particles whenever Z ⊆ B(o, s′) for some s′ > 0. In that case, we simply
replace Ht by HZ

t := ⋃
z∈Z H

z
t .



6 MODERATE DEV IAT ION FOR FPP
MODEL S ON RGGS AND I T S
IMPL ICAT IONS

In this chapter, we extend the research initiated in Chapter 5 and [17] by conducting further
analysis of first-passage percolation on random geometric graphs. Our primary focus is
to examine the properties of geodesic paths and moderate deviations, which enhance our
understanding of the convergence behavior of FPP models towards their limiting shape

—commonly referred to as the quantitative shape theorem.
Kesten [40] established the groundwork for understanding the speed of convergence

in FPP models on the hypercubic lattice Zd using martingales. Recent advancements
by Tessera [62] have further refined these results through the application of Talagrand’s
concentration inequality. Additionally, similar investigations have been pursued for FPP on
random structures. For example, Pimentel [53] explored FPP on two-dimensional Delaunay
graphs, and Howard and Newman [37] studied Euclidean FPP.

Here, we establish a more informative version of the shape theorem under a slightly
modified set of assumptions. Specifically, we assume that

(A′
1) P(τ = 0) = 0;

(A′
2) E[eητ ] < +∞ for some η > 0.

Our first main result is the following.

Theorem 6.1 (Quantitative Shape Theorem for FPP on RGGs). Let d ≥ 2, λ > 0 and
r > rc(λ), and consider first-passage percolation on the random geometric graph on Rd with
parameters λ and r, with passage times satisfying (A′

1) and (A′
2) above. Then, there exists

c′ > 0 and φ > 0 such that almost surely, for t large enough we have
(

1 − c′
log(t)√

t

)
B(o,φ) ⊆ 1

t
Ht ⊆

(
1 + c′

log(t)√
t

)
B(o,φ). (6.1)

93



moderate deviation for fpp models on rggs and its implications 94

We derive this theorem as a consequence of two results of independent interest, which we
now present.

Theorem 6.2 (Moderate Deviations of First-Passage Times). Consider first-passage
percolation as in Theorem 6.1, under the same assumptions as in that theorem. There
exist C,C ′, c > 0 such that for any x ∈ Rd with ∥x∥ large enough, we have

P

 |T (x) − E[T (x)]|√
∥x∥

> ℓ

 ≤ Ce−cℓ for any ℓ ∈
[
C ′ log (∥x∥),

√
∥x∥

]
.

Theorem 6.3 (Asymptotic Expectation and Variance of First-Passage Times). Consider
first-passage percolation as in Theorem 6.1, under the same assumptions as in that theorem.
There exist φ > 0 and C > 0 such that, for x ∈ Rd with ∥x∥ large enough,

∥x∥
φ

≤ E [T (x)] ≤ ∥x∥
φ

+C
√

∥x∥ log (∥x∥) (6.2)

and
VarT (x) ≤ C∥x∥log (∥x∥). (6.3)

Building upon the well-established understanding that the limiting shape is an Euclidean
ball, we aim gaining valuable insights into the fluctuations of geodesic paths as a consequence
of the moderated deviation of the passage times. Our approach is influenced by the seminal
work of Howard and Newman [37], from which we adapt their techniques to our model of
FPP on random geometric graphs. This enables the investigation and quantification of
fluctuations of the geodesic paths within our specific framework.

Let us define, for all x, y ∈ Rd, the T -geodesics γx(y) to be chosen as follows. The
path γx(y) = (q(x) = q0, q1, . . . , qn′ = q(y)) is a T -geodesic from q(x) to q(y) constructed
inductively so that, for each i ∈ {0, 1, . . . , n′}, γx(y) is the concatenation of γx(qi) and
(qi, qi+1, . . . , qn′).

In what follows, xy stands for the straight line segment from x to y. Recall the definition
of the Hausdorff distance, denoted as dH , as introduced in Section 2.4.1. Subsequently, we
present a theorem that provides bounds for the fluctuations of the geodesics γx(−).
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Figure 5: A geodesic path with its fluctuations in a cylindrical region of space given by Theorem 6.4.

Theorem 6.4 (Fluctuations of the geodesics). Let d ≥ 2, r > rc(λ), and fix ϵ ∈ (0, 1/4).
Consider the FPP with i.i.d. random variables defined on H of G satisfying (A′

1) and (A′
2).

Then there exist č1, č2 > 0 such that, for all x, y ∈ Rd,

P

(
dH(γx(y), xy) ≥ ∥y − x∥

3
4 +ϵ

)
≤ č1 exp(−č2∥y − x∥2ϵ). (6.4)

In what follows, we present a fundamental result concerning the properties of the spanning
trees Tx of H rooted at q(x), where the edges of Tx are induced by the union of geodesic
paths γx(y) for all y ∈ Rd. To characterize this spanning tree, we introduce several key
concepts.

Let θ(x, y) denote the angle between the vectors x⃗ and y⃗. Define Cone(x, s) as the set of
points y ∈ Rd such that θ(x, y) ≤ s where s varies in the interval [0, π].

Figure 6: Section of a spanning tree Tx (left) and the subtree given by Tout
x (v) (right).

We now introduce a subset of H which determines a subtree of Tx

Tout
x (v) := {u ∈ H: v ∈ γx(u)} .
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Additionally, we define for a real function f

Vx,f :=
{
v ∈ H : Tout

x (v) ̸⊆ x+ Cone (v − x, f(∥v − x∥))
}
.

A tree Tx is called f -straight at x when Vx,f is finite. The next theorem establishes
conditions under which Tx if f -straight.

Figure 7: The subtree associated with Tout
x (v) approaching the fϵ-straight property (see

Theorem 6.5).

Theorem 6.5 (Asymptotic behaviour of the spanning trees Tx). Let d ≥ 2 and r > rc(λ).
Consider the FPP defined on H with i.i.d. random variables satisfying (A′

1) and (A′
2). Fix

x ∈ Rd and ϵ ∈ (0, 1/4). Then there exists, P-a.s., a finite Fx,fϵ ⊆ Rd with fϵ(s) = sϵ−1/4

such that Vx,fϵ ⊆ Fx,fϵ for any choice of Tx.
Hence, all spanning trees of the type Tx are P-a.s. fϵ-straight at x.

Now that we have established certain properties of the spanning trees, we will now delve
into the properties of the asymptotic behavior of their semi-infinite paths. Let Sx be the
set of semi-infinite paths in Tx starting from q(x), i.e.,

Sx :=
{
(q(x), q1, q2, . . . ) ∈ (Rd)N0 : ∀n ∈ N (γx(qn) = (q(x), q1, . . . , qn))

}
.

Now, let’s consider σ ∈ Sx, where σ = (q(x), q1, q2, . . . ). We define ð as the asymptotic
direction for the semi-infinite paths, which is given by

ð(σ) := lim
n↑+∞

qn

∥qn∥
.

It is readily apparent that if the asymptotic direction ð(σ) exists, then ð(σ) ∈ ∂B(o, 1).
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Corollary 6.6. Consider d ≥ 2 and r > rc(λ). Let the FPP be defined on H of Gλ,r such
that (A′

1) and (A′
2) hold true. Then one has P-a.s. that, for all x ∈ Rd:

(a) Every semi-infinite path σ ∈ Sx has an asymptotic direction ð(σ) ∈ ∂B(o, 1).

(b) For all directions x̂ ∈ ∂B(o, 1), there exist at least one semi-infinite path σ ∈ Sx with
ð(σ) = x̂.

(c) The set of asymptotic directions with non-unique associated semi-infinite paths

Dx = {x̂ ∈ ∂B(o, 1): ∃σ1,σ1 ∈ Sx with σ1 ̸= σ2 s.t. ð(σ1) = ð(σ2) = x̂}

is dense in ∂B(o, 1)

6.1 approximation scheme for first-passage
times

To study the first-passage times on H, we introduce a new random variable T t and a
random graph Gt, which builds upon G by incorporating additional vertices and edges.
Subsequently, the first-passage times will be approximated by T t for a given t > 0. We
define Gt = (V t, E t) with t > 0 as follows:

V t := V ∪ (tZd) and E t := E ∪ E ′(t).

where

E ′(t) :=

{u, v} : u ∈ tZd and
v ∈

(
u+ [t/2, t/2)d

)
∩ V

or
v ∈ tZd with ∥u− v∥= t

 .
The vertices corresponding to tZd are referred to as extra vertices, while E ′(t) represents

the set of extra edges. Since V ∩ (tZd) = ∅ with probability one, the unions determining
V t and E t are P-a.s. disjoint. Analogous to q(x) and q(x), we define, for all x ∈ Rd,
qt(x) := arg miny∈V t {∥y − x∥} and note that qt(o) = o.
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Figure 8: The image depicts the same region of a standard RGG, denoted as G (left), alongside
an RGG with extra vertices and extra edges Gt (right).

The passage times along the extra edges are considered deterministically determined. Let
K > 4d(β ∨ β) be a fixed constant, and define the passage times for the edges of Gt as

τ t
e :=

 τe, if e ∈ E ,
K t, if e ∈ E ′(t).

Let γ be a (self-avoiding) path in Gt. The passage time along γ is given by

T t(γ) :=
∑
e∈γ

τ t
e.

We define the modified first-passage time T t(x, y) between vertices x and y by T t(x, y) :=
infγ T

t(γ), where the infimum is taken over all paths γ from qt(x) to qt(y) in Gt. Henceforth,
we assume that (A′

1) and (A′
2) hold true.

Now, we present the first results on the passage times on Gt.

Lemma 6.7. There exists δ > 0 such that for any n ∈ N, any ℓ > 0, and any t ≥ 1,

P

 there is a path γ in Gt starting in B(o, ℓ)

with |γ|= n and ∑
e∈γ τ

t
e ≤ δn

 ≤ max{ℓd, 1}
2n

.

Proof. Throughout this proof, we write, for k ∈ N and s ∈ R,

Fk(s) := P(Z1 + · · · +Zk ≤ s), where Z1, . . . , Zk are i.i.d. ∼ τ,
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that is, Fk is the cumulative distribution function of the k-fold convolution of the passage
time through one (non-extra) edge.

Fix n ∈ N. Let ε > 0 be a small constant to be chosen later. Using the assumption
that lims→0 F1(s) = 0 and elementary large deviations considerations, it is easy to see that
we can choose δ = δ(ε) such that

Fk(δk) < εk for all k ∈ N . (6.5)

For now, we condition on a realization of the graph Gt = (V t, E t), so that the only
randomness left is that of the passage times. Let γ be a (self-avoiding) path in Gt

with |γ|= n and let m denote the number of extra edges traversed by γ. The probability
that T t(γ) ≤ δn is Fn−m(δn− K tm). This is zero in case m ≥ δ

K tn; otherwise, we bound:

Fn−m(δn− K tm) ≤ Fn−m(δ(n−m)) ≤ εn−m ≤ εn/2,

where the first inequality follows from K t ≥ δ, the second inequality follows from (6.5), and
the third inequality follows from m < δ

K tn ≤ n/2 (if δ < 1/2, since K t ≥ 1).
This shows that in all cases, the probability that a path of graph length n has passage

time (with respect to T t) smaller than δn is smaller than εn/2.
Now including also the randomness in the choice of the graph, a union bound over paths

shows that the probability in the statement of the lemma is smaller than

εn/2 · E
∣∣∣{paths γ in Gt starting in B(o, ℓ) with |γ|= n

}∣∣∣ . (6.6)

Defining
vt(s) := sup

x∈Rd

E[|V t ∩B(x, s)|], s > 0,

by Mecke’s formula, the expression in (6.6) is smaller than

εn/2 · vt(ℓ) · (vt(r))n. (6.7)
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Recalling that υd denotes the volume of the unit ball in Rd, we bound, for any t ≥ 1
and s > 0:

vt(s) ≤ υds
d + ⌈s/t⌉d ≤ υds

d + ⌈s⌉d

≤ υds
d + ⌈s⌉d · 1{s>1} + 1{s≤1} ≤ (υd + 2d)sd + 1.

Hence, the expression in (6.7) is smaller than

εn/2 · ((υd + 2d)ℓd + 1) · ((υd + 2d)rd + 1)n.

It is now easy to see that taking ε small enough (depending on r and d, but not on ℓ or n),
the right-hand side is smaller max{1, ℓd}/2n.

For any u, v ∈ V t, let γt
u↔v denote the shortest path in Gt from u to v that only uses

extra edges. Writing u = (u1, . . . , ud) and v = (v1, . . . , vd), we can bound

|γt
u↔v|≤

d∑
i=1

⌈
ui − vi

t

⌉
≤ ∥u− v∥1

t
+ d ≤

√
d

t
∥u− v∥+d. (6.8)

This gives
T t(u, v) ≤ K t|γt

u↔v|≤ K
√
d∥u− v∥+ K td. (6.9)

Concerning the special case of u = o and v = qt(x) for x ∈ Rd, we will need the following.

Claim 1. For any x ∈ Rd with ∥x∥≥ 1 and any t ∈ [1, ∥x∥], we have

|γt
o↔qt(x)|≤

3d
t

∥x∥. (6.10)

Proof. We bound

∥qt(x)∥≤ ∥x∥+∥qt(x) − x∥≤ ∥x∥+
√
d∥qt(x) − x∥∞≤ ∥x∥+

√
dt

2 , (6.11)

and combining this with (6.8) and the assumptions ∥x∥≥ 1 and t ∈ [1, ∥x∥] gives

|γt
o↔qt(x)|≤

√
d

t
∥qt(x)∥+d ≤

√
d

t
∥x∥+3d

2

≤ d

t
∥x∥+3d

2 · ∥x∥
t

≤ 3d
t

∥x∥.
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Letting δ be the constant given in Lemma 6.7, we define

K′ := 3d K
δ
, (6.12)

and

Yt,x := inf
∑

e∈γ

τ t
e : γ is a path in Gt from o to qt(x) with |γ|≤ K′∥x∥

 ,
for x ∈ Rd with ∥x∥≥ 1, t ∈ [1, ∥x∥].

Since 3d
t ≤ 3d K

δ , it follows from the above claim that γt
o↔qt(x) belongs to the set of paths

whose infimum is taken in the definition of Yt,x. In particular,

Yt,x ≤ K t|γt
o↔qt(x)|

(6.10)
≤ 3d K∥x∥. (6.13)

We now compare the truncated passage time Yt,x with T t(o, qt(x)).

Lemma 6.8. If x ∈ Rd with ∥x∥≥ 1 and t ∈ [1, ∥x∥], then

P(Yt,x ̸= T t(o, qt(x))) ≤ 2− K′∥x∥.

Proof. In the event {Yt,x ̸= T t(o, qt(x))}, there exists a path γ in Gt from o to qt(x) which
has |γ|> K′∥x∥ and

∑
e∈γ

τ t
e = T t(o, qt(x)) < Yt,x

(6.13)
≤ 3d K∥x∥.

We then have ∑
e∈γ τ

t
e

|γ|
≤ 3d K∥x∥

|γ|
<

3d K∥x∥
K′∥x∥

= δ.

By Lemma 6.7 (with ℓ = 1), the existence of such a path has probability smaller
than 2−|γ| < 2− K′∥x∥.

The following result is a comparison of the T t-distance between vertices provided by q
and qt.
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Lemma 6.9. There exist C ≥ 1, c > 0 such that for any x ∈ Rd and any t ≥ 1,

P(|T t(o, qt(x)) − T t(q(o), q(x))|≥ Ct) < e−ct.

Proof. Recall that qt(o) = o. For any s > 0, by the triangle inequality,

P(|T t(o, qt(x)) − T t(q(o), q(x))|≥ s)

≤ P(T t(o, q(o)) ≥ s/2) + P(T t(qt(x), q(x)) ≥ s/2). (6.14)

Let us deal with the second term on the right-hand side. By (6.9), it is smaller than

P

∥qt(x) − q(x)∥≥

s

2 − K td

K
√
d

 . (6.15)

Since V ⊆ V t, we have ∥qt(x) − x∥≤ ∥q(x) − x∥, so the triangle inequality
gives ∥qt(x) − q(x)∥≤ 2∥q(x) − x∥. Using this, the probability in (6.15) is at most

P

∥q(x) − x∥≥

s

2 − K td

2 K
√
d

 = P

∥q(o)∥≥

s

2 − K td

2 K
√
d

 . (6.16)

A similar argument shows that the first term in (6.14) is bounded by the same value. We
have thus proved that

P (|T t(o, qt(x)) − T t(q(o), q(x))|≥ s) ≤ 2 P

∥q(o)∥≥

s

2 − K td

2 K
√
d

 . (6.17)

Now, using Proposition 4.2, there exists s̄ (not depending on x) such that, for any s′ ≥ s̄,

P (∥q(o)∥≥ s′) <
1
2e

−cs′
. (6.18)

By taking s = Ct with C := 2(d+ 2
√
d · s̄) K, the right-hand side of (6.17) equals 2 P(∥q(o)∥≥

s̄ · t). Since t ≥ 1, we have s̄ · t ≥ s̄, so by (6.18), we can bound

P(∥q(o)∥≥ s̄ · t) < 1
2e

−cs̄t,

so we set c := cs̄ to complete the proof.
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The lemma below analyses the first-passage time T and the modified random variable T t.
The proof is somewhat involved, and we postpone it to Appendix A.1.

Lemma 6.10. There exists c1 > 0 such that, for x ∈ Rd with ∥x∥ large enough and t large
enough (not depending on x) with t ≤ ∥x∥, we have

P (T t(q(o), q(x)) ̸= T (x)) < ∥x∥4de−c1t.

We derive the following corollaries from the results above.

Corollary 6.11. For x and t as in Lemma 6.10, we have

P(|T (x) − Yt,x|≥ Ct) ≤ 2− K′∥x∥ + e−ct + ∥x∥4de−c1t, (6.19)

where K′ is defined in (6.12), C and c are the constants of Lemma 6.9, and c1 is the constant
of Lemma 6.10.

Proof. This follows from putting together Lemma 6.8, Lemma 6.9 and Lemma 6.10.

Corollary 6.12. There exists C1 > 0 such that the following holds. Let x ∈ Rd be such
that ∥x∥ is large enough (as required in Lemma 6.10), and let t ∈ [C1 log (∥x∥), ∥x∥]. Then,

E[(T (x) − Yt,x)2] ≤ 2(Ct)2. (6.20)

Proof. Let β∗ := max (3d K, β), where β is the constant of Lemma 5.6. We bound

E[(T (x) − Yt,x)2]

≤ (Ct)2 + E[(T (x) − Yt,x)2 · 1{|T (x) − Yt,x|≥ Ct}]

≤ (Ct)2 + E[(T (x) + β∗∥x∥)2 · 1{|T (x) − Yt,x|≥ Ct}], (6.21)

where the second inequality follows from

|T (x) − Yt,x|≤ T (x) + Yt,x

(6.13)
≤ T (x) + β∗∥x∥.
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We will now bound the expectation in (6.21) by breaking into the cases where T (x) ≤ β∗∥x∥
and T (x) > β∗∥x∥. First,

E[(T (x) + β∗∥x∥)2 · 1{|T (x) − Yt,x|≥ Ct, T (x) ≤ β∗∥x∥}]

≤ 4(β∗)2∥x∥2· P(|T (x) − Yt,x|≥ Ct)
(6.19)

≤ 4(β∗)2∥x∥2·(2− K′∥x∥ + e−ct + ∥x∥4de−c1t).

Second,

E[(T (x) + β∗∥x∥)2 · 1{|T (x) − Yt,x|≥ Ct, T (x) > β∗∥x∥}]

≤ E[(2T (x))2 · 1{T (x) > β∗∥x∥}

≤ 4
(
E[(T (x))2]

)1/2
· (P(T (x) > β∗∥x∥))1/2

≤ 4
(
E[(T (x))2]

)1/2
· (c7 exp(−c8β

∗∥x∥))1/2
,

where the second inequality is Cauchy-Schwarz, and the third inequality is given in
Lemma 5.6. Next, we bound

E[(T (x))2] = 2
∫ ∞

0
s · P(T (x) > s) ds

≤ 2β∥x∥+2
∫ ∞

β∥x∥
s · c7 exp(−c8s) ds.

Putting things together, we have shown that E[(T (x) − Yt,x)2] is bounded from above by

(Ct)2 + 4(β∗)2∥x∥2·(2− K′∥x∥ + e−ct + ∥x∥4de−c1t)

+ 4
(

2β∥x∥+2
∫ ∞

β∥x∥
s · c7 exp(−c8s) ds

)1/2
· (c7 exp(−c8β

∗∥x∥))1/2
.

It is now easy to see that if C1 is large and t ≥ C1 log (∥x∥) with ∥x∥ large enough, the
expression above is smaller than 2(Ct)2.
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6.2 intermediate results for the approximation
of first-passage times

This section presents preparatory results for the approximation of first-passage times. Let B

denote the collection of all boxes of the form z + [−t/2, t/2)d, with z ∈ tZd. The following
lemma offers a bound for the boxes crossed by the truncated passage time.

Lemma 6.13. Let x ∈ Rd with ∥x∥≥ 1 and t ∈ [1, ∥x∥]. Let γ be a path in Gt from o to qt(x)
with |γ|≤ K′∥x∥ and such that Yt,x = ∑

e∈γ τ
t
e. Then, the number of boxes of B intersected

by γ is at most (3d + 1)
(

(3d+K′ r)∥x∥
t + 1

)
.

Proof. We write γ = (γ0, . . . , γn), where n = |γ|, γ0 = o, and γn = qt(x). We will now
define an increasing sequence J0, . . . , Jm of indices in the path. We first let J0 := 0. Next,
assuming Ji has been defined and is smaller than n, we define (with the convention that
the minimum of an empty set is infinity):

Ji+1 := n∧ min{j > Ji : {γj−1, γj} is an extra edge}

∧ min{j > Ji : ∥γj − γJi
∥∞> t}.

We let m be the index such that Jm = n (which is the last one). For cleanliness of notation,
we write

ai := Ji+1 − Ji, i ∈ {0, . . . ,m− 1},

and
y(i, k) := γJi+k, i ∈ {0, . . . ,m− 1}, k ∈ {0, . . . , ai},

so that
(y(i, 0), . . . , y(i, ai)) = (γJi

, . . . , γJi+1).

By construction, for any i, the set {y(i, 0), . . . , y(i, ai)} intersects at most 3d + 1 boxes of B

(that is: at most the box containing y(i, 0), the boxes that are adjacent to it in ℓ∞-norm,
and the box containing y(i, ai)). Hence,

|{boxes of B intersected by γ}|

≤
m−1∑
i=0

|{boxes of B intersected by {y(i, 0), . . . , y(i, ai)}}|≤ (3d + 1)m.
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We now want to give an upper bound for m. For this, we write

m = mbasic +mextra + 1,

where mextra is the number of i < m − 1 such that the last step in the
sub-path (y(i, 0), . . . , y(i, ai)) is an extra edge, and mbasic is the number of other i < m− 1
(that is, for which the sub-path (y(i, 0), . . . , y(i, ai)) does not traverse any extra edge).
Noting that

3d K∥x∥
(6.13)

≥ Yt,x =
∑
e∈γ

τ t
e ≥ K t|{e ∈ γ : e is extra}|,

we have mextra ≤ 3d K∥x∥
K t = 3d∥x∥

t . Next, if i is an index that contributes to mbasic, then

t ≤ ∥y(i, ai) − y(i, 0)∥∞≤
ai−1∑
k=0

∥y(i, k+ 1) − y(i, k)∥≤ rai,

so ai ≥ t/r, and then,

K′∥x∥≥ |γ|=
m−1∑
i=0

ai ≥ mbasic · t
r
,

so mbasic ≤ K′ r∥x∥
t . This gives m ≤ (3d+K′ r)∥x∥

t + 1.

The proposition below is based on the results established in Boucheron, Lugosi, and
Massart [10]. It sets the stage for obtaining a concentration inequality for our truncated
random variable Yt,x, which will be derived later.

Proposition 6.14. Let (S,S) be a measurable space and n ∈ N. Let σ be a probability
measure on (S,S) and P be the probability on (Sn,Sn) given by the n-fold product measure
of σ. Set X1, . . . , Xn to be independent random elements taking values in S and let X ′

i be
an independent copy of Xi. Set h : Sn → R to be a measurable function on (Sn,Sn,P) and
fix

Z := h(X1, . . . , Xn), and Z(i) := h(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn).

Consider that there exist κ > 0 and measurable sets E1, . . . , En ∈ Sn such that, P-a.s.,
for each i ∈ {1, . . . , n},

Z(i) −Z ≤ κ · 1Ei
. (6.22)

Then,

VarZ ≤ κ2
n∑

i=1
P(Ei). (6.23)
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Furthermore, for any α > 0 such that E[eαZ ] < +∞, one has

E [exp {α(E[Z] −Z)}] ≤ E

[
exp

{
2α2κ2

n∑
i=1

1Ei

}]
(6.24)

and, for all α > 0 in an open interval such that E[eαZ ] < +∞, one has

E [exp {λ(Z − E[Z])}] ≤ E

[
exp

{
2λ2κ2eακ

n∑
i=1

1Ei

}]
. (6.25)

Proof. The bounds for (6.23) and (6.24) are directly obtained by applying (6.22) in the
Steele-Efron-Stein inequality (see [10, p. 1585]) and in Theorem 2 of Boucheron et al. [10]
with λ = α and θ = 1/(2α). Additionally, item (6.25) is a specific case addressed in Lemma
3.2 of Garet and Marchand [28]. Below, we demonstrate how it can be attained from
Theorem 2 of [10].

Let us set ψ(s) = s(es − 1) and note that ψ(−s) ≤ s2 for s ≥ 0. Hence, by Lemma 8 of
Massart [46],

αE[eαZ ] − E[eαZ ] log
(
E[eαZ ]

)
≤

n∑
i=1

E
[
eαZψ( − α(Z −Z(i)))1Z−Z(i)≥0

]

≤ α2
n∑

i=1
E
[
eαZ(Z −Z(i))2

+
]

= α2
n∑

i=1
E

[
eαZ(i)

(Z(i) −Z)2
+

]

≤ α2κ2
n∑

i=1
E

[
eαZeα(Z(i)−Z)

1Ei

]

≤ E

[
eαZ

(
α2κ2eακ

n∑
i=1

1Ei

)]

and the remaining steps of the proof follow the same methodology as outlined in Theorem
2 of Boucheron et al. [10].

We use the inequalities obtained in the proposition above for the truncated random
variable resulting in the following lemma.

Lemma 6.15. There exists Cdev ≥ 1 such that the following holds. Let x ∈ Rd with ∥x∥≥ 1
and t ∈ [1, ∥x∥]. Then,

E [exp {α · |E[Yt,x] − Yt,x|}] ≤ exp
{
Cdevα

2t ∥x∥
}

for any α ∈
(

0, 1
4 K t

)
.
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Proof. In order to apply Proposition 6.14 to Yt,x, we need to define this random variable in
a probability space with a suitable product measure. We achieve this by constructing G
(and consequently also Gt) in a probability space where the randomness is given in blocks,
each block corresponding to a box of B. This has to be done with some care, because we
need to describe how to encode the randomness corresponding to the passage times of all
edges, including those that touch distinct boxes.

We take a probability space with probability measure P where we have defined a family
of independent random elements

Xi := (Vi, (Ti(x, y) : x ∈ [−t/2, t/2)d, y ∈ Rd)), i ∈ N,

where Vi is a Poisson point process on [−t/2, t/2)d with intensity 1, and independently
for each pair (x, y) ∈ [−t/2, t/2)d × Rd (and independently of Vi), Ti(x, y) is a random
variable with the law of the passage time τ .

Now, fix an arbitrary enumeration {z1, z2, . . .} of Zd. We use the above random elements
to construct G = (V, E) and the passage times T (·, ·) as follows. First construct the set of
vertices as

V = {tzi + u : i ∈ N, u ∈ Vi}.

Next, construct the set of edges as prescribed for a random geometric graph with range
parameter r: an edge is included between any two vertices within Euclidean distance r of
each other.

For the definition of the passage times, fix two vertices of V , written as

u = tzi + x and v = tzj + y.

First assume that i = j, that is, u and v are in the same box, and without loss of generality,
also assume that x is smaller than y in the lexicographic order in [−t/2, t/2)d. Then,
set T (x, y) = Ti(x, y− x). Now assume that i < j (without loss of generality); in that case,
set T (u, v) = Ti(x, v − u) = Ti(x, tzj + y − tzi − x). This completes the construction of G,
and then Gt is obtained from it as before (by adding extra vertices and edges).

We have exhibited an infinite product space, but in fact, by the definition of Yt,x, there
exists a deterministic constant Nt,x such that we can write

Yt,x = h(X1, . . . , XNt,x)
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for some function h.
The next step is to exhibit a constant κ and events Ei for (6.22). Let γ be a path in Gt

from o to qt(x) such that |γ|≤ K′∥x∥ and such that Yt,x = ∑
e∈γ τ

t
e (in case there are multiple

paths with this property, we choose one using some arbitrary procedure). Then, let Ei be
the event that γ intersects zi + [−t/2, t/2)d, for i ∈ {1, . . . , Nt,x}. Set

X := (X1, . . . , XNt,x), X(i) := (X1, . . . , Xi−1, X
′
i, Xi+1, . . . , XNt,x),

and recall that Y (i)
t,x = h(X(i)) for any independent copy X ′

i of Xi. It is easy to check that,
if X and X(i) are two elements of our probability space that agree in all entries except
possibly the i-th, then

Y
(i)

t,x − Yt,x ≤ 4 K t · 1Ei
. (6.26)

Moreover,

Nt,x∑
i=1

1Ei
≤ 3d+1(3d+ K′ r)∥x∥

t
+ 3d+1 ≤ 2 · 3d+1(3d+ K′ r)∥x∥

t
, (6.27)

where the first inequality follows from Lemma 6.13, and the second from the choice of t.
Now, Proposition 6.14 states that, for any α ∈ (0, 1/(4 K t)), and

E[exp{α · |Yt,x − E[Yt,x]|}] ≤ exp
{
32 · 3d+1 K2 e (3d+ K′ r)α2 · t ∥x∥

}
Hence, given the conditions on ∥x∥ and t, our assertion holds for Cdev sufficiently large,
uniformly across all x and t, thereby establishing the lemma.

By combining the above lemma with Jensen’s and Markov’s inequality, we have

P (|Yt,x − E[Yt,x]|> s) ≤ 2 inf
α∈(0, 1/(4 K t))

exp
{
Cdevα

2t ∥x∥−sα
}

(6.28)

for any x with ∥x∥≥ 1, t ∈ [1, ∥x∥] and s > 0.

6.3 moderate deviations of first-passage times
In this section, we present the proof of our theorem regarding the moderate deviations of
first-passage times, utilizing the preparatory results established earlier.
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Proof of Theorem 6.2. Using Jensen’s inequality and (6.20), for x with ∥x∥ large enough
and any t ∈ [C1 log(∥x∥), ∥x∥] we have

|E[T (x)] − E[Yt,x]|≤ E[|T (x) − Yt,x|] ≤ (E[(T (x) − Yt,x)2])1/2 ≤ C
√

2t.

In particular, if C
√

2t ≤ s/2, then |E[T (x)] − E[Yt,x]|≤ s/2 and

P(|T (x) − E[T (x)]|> s) ≤ P(|T (x) − E[Yt,x]|> s/2).

Next, in case Ct ≤ s/4 we can bound

P (|T (x) − E[Yt,x]|> s/2)

≤ P (|T (x) − Yt,x|> Ct) + P (|Yt,x − E[Yt,x]|> s/4)

≤ 2− K′∥x∥ + e−ct + ∥x∥4de−c1t + 2 inf
α∈(0,1/(4 K t))

exp{Cdevα
2t ∥x∥−sα/4},

by (6.19) and (6.28). Therefore, we have proved that

P (|T (x) − E[T (x)]|> s)

≤ 2− K′∥x∥ + e−ct + ∥x∥4de−c1t + 2 inf
α∈(0,1/(4 K t))

exp{Cdevα
2t ∥x∥−sα/4},

(6.29)

under the restrictions

∥x∥ large, s > 0, C1 log (∥x∥) ≤ t ≤ min
{

∥x∥, s4C

}
. (6.30)

Let us now fix t = s/
√

∥x∥, then, for sufficiently large ∥x∥,

C1 log (∥x∥)
√

∥x∥ ≤ s ≤ ∥x∥.

We also set α = 1
4 K Cdev

√
∥x∥

and note that α < 1
4 K t

. With these choices for t and α, the
right-hand side of (6.29) becomes

2− K′∥x∥ + e−cs/
√

∥x∥ + e−c1s/
√

∥x∥ + 2 exp
− K −1

16 K2Cdev
· s√

∥x∥

 .
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Clearly, there exist C, c > 0 such that the expression above is smaller than Ce−cs/
√

∥x∥,
uniformly over s ∈ [C1 log (∥x∥)

√
∥x∥, ∥x∥].

6.4 expectation and variance bounds
In this section, we prove Theorem 6.3. We start with the proof of the variance bound.

Proof of Theorem 6.3, item (6.3). First, observe that, by Corollary 6.12 for all t > 0 and
sufficiently large ∥x∥,

VarT (x) ≤ 2 VarYt,x + 2 Var (Yt,x − T (x))

≤ 2 VarYt,x + 4(Ct)2.

By (6.23), (6.26), and (6.27), one has

VarYt,x ≤ 16 K2 t2 · E

Nt,x∑
i=1

1Ei

 ≤
(
16 K2 3d+1(3d+ K′ r)

)
· t ∥x∥.

Let us fix t = C1 log (∥x∥) for sufficiently large ∥x∥ and it completes the proof.

We now turn to the proof of the expectation bound (6.2). For this, we follow Howard
and Newman [37] and Yao [64]. We will need the following preliminary result.

Lemma 6.16. There exists C̄ > 0 such that for all sufficiently large t > 0 and all
x ∈ ∂B(o, 1),

2 E[T (t · x)] ≤ E[T (2t · x)] + C̄
√
t log(t).

Proof. Since the distribution of T is rotation invariant, it suffices to verify the result for
T (t · e1) with e1 ∈ ∂B(o, 1) an element of the canonical basis of Rd. We take t ≥ 0 which
will be assumed large throughout the proof.

It is straightforward to see that, if t is large, there exist nt ≤ td and (deterministic)
points x1, . . . , xnt ∈ ∂B(o, t) such that

B(o, t)\B(o, t− r) ⊆
nt⋃

i=1
B(xi, t

1/4). (6.31)
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We set yi := 2te1 + xi ∈ ∂B(2te1, t), so that

B(2te1, t)\B(2te1, t− r) ⊆
nt⋃

i=1
B(yi, t

1/4). (6.32)

Define Ft as the event that all of the following happen:

• q(o) ∈ B(o, t),

• q(2te1) ∈ B(2te1, t),

• for every z ∈ {x1, . . . , xnt , y1, . . . , ynt} and all w ∈ B(z, t1/4), we have T (z, w) ≤ t1/2.

Now, fix a realization of the random graph and the passage times, and let γ be a
path from q(o) to q(2te1) that minimizes the passage time between these two vertices.
On Ft, this path starts in B(o, t) and ends in B(2te1, t). Traversing γ from q(o) to q(2te1),
let u∗ be the first vertex in the annulus B(o, t)\B(o, t− r), and let v∗ be the first vertex
in the annulus B(2te1, t)\B(2te1, t− r). Then, by (6.31) and (6.32), there exist i∗ such
that u∗ ∈ B(xi∗ ,

√
t) and v∗ ∈ B(yj∗ ,

√
t). We then have

T (2te1) · 1Ft ≥ (T (u∗) + T (v∗, 2te1)) · 1Ft

≥ (T (xi∗) + T (yj∗ , 2te1) − 2
√
t) · 1Ft .

Taking the expectation and using symmetry, this gives

E[T (2te1)] ≥ 2 E

[
1Ft · min

1≤i≤nt

T (xi)
]

− 2
√
t

= 2 E

[
min

1≤i≤nt

T (xi)
]

− 2 E

[
1Fc

t
· min

1≤i≤nt

T (xi)
]

− 2
√
t.

(6.33)

We will deal with the two expectations on the right-hand side above separately.
Define E[T (xi)] = E[T (te1)] =: νt for every i. We will need the fact that there exists
some C > 0 such that, for t large enough,

νt ≤ Ct. (6.34)

This can be easily obtained from Proposition 4.2.
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Let us give a lower bound for the first expectation on the right-hand side of (6.33). Using
Theorem 6.2, we can choose C > 0 such that, for t large enough, we have P(T (te1) ≤
νt −C

√
t log(t)) < e−t. We then bound

E

[
min

1≤i≤nt

T (xi)
]

≥ (νt −C
√
t log(t)) · P(T (xi) > νt −C

√
t log(t) for all i)

≥ (νt −C
√
t log(t)) · (1 − nt · P(T (te1) ≤ νt −C

√
t log(t))

≥ (νt −C
√
t log(t)) · (1 − td · e−t).

Using (6.34), we see that the right-hand side above is larger than νt −C ′√t log(t) for some
constant C ′ > 0 and t large enough.

To give an upper bound for the second expectation on the right-hand side of (6.33), we
first bound

E

[
1Fc

t
· min

1≤i≤nt

T (xi)
]

≤ P(Fc
t)1/2 · E[T (te1)2]1/2

using Cauchy-Schwarz. Next, we have

P(Fc
t) ≤ 2 P(H ∩B(o, t) = ∅) + nt · P

(
max

w∈B(o,t1/4)
T (o, w) >

√
t

)

≤ 2Ce−ct + td ·Ce−ct1/4

for some C, c > 0, by Proposition 4.2 and Lemma 5.7. We also bound

E[T (te1)2] = Var(T (te1)) + E[T (te1)]2 ≤ Ct2

for some C > 0, by (6.3) and (6.34).
Putting things together, we have proved that the right-hand side of (6.33) is larger than

2(νt −C ′√t) − 2 · (2Ce−ct + td ·Ce−ct1/4
)1/2 · (Ct2)1/2 − 2

√
t

≥ 2νt −C ′′√t log(t)

for some C̄ > 0 and t large enough.

We can now conclude the proof of Theorem 6.3 by applying the lemmas above.
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Proof of Theorem 6.3, item (6.2). Recall the isotropic properties and subadditivity of T (x).
By Kingman’s subadditive ergodic theorem

lim
n↑+∞

T (nx)
n

= lim
n↑+∞

E [T (nx)]
n

= inf
n∈N

E [T (nx)]
n

= ϕ(x)

where ϕ(x) = ∥x∥/φ with φ > 0 (see [17, Eq. (3.6)] for details).
Since E [T (x)] = E [T (te1)] for t = ∥x∥, it suffices to prove the result for E [T (te1)] with

large t > 0. Let C̄ > 0 be the constant of Lemma 6.16. One can obtain the result by
applying Lemma 4.2 of Howard and Newman [37]. To be self-contained and more precise,
let us define

f(t) := E [T (te1)] and f̃(t) := f(t) − 10C̄
√
t log(t), t > 0.

We have

f̃(2t) = f(2t) − 10C̄
√

2t log(2t) ≥ 2f(t) − C̄
√
t log(t) − 10C̄

√
2t log(2t),

where the inequality holds for t large enough, by Lemma 6.16. When t is large we
have 10

√
2t log(2t) ≤ 19

√
t log(t) (since 10

√
2 < 19 and log(2t)/log(t) → 1 as t ↑ +∞), so

we obtain

f̃(2t) ≥ 2f(t) − C̄
√
t log(t) − 19C̄

√
t log(t) = 2f(t) − 20C̄

√
t log(t) = 2f̃(t).

Iterating f̃(2t) ≥ 2f̃(t), we get

f̃(2nt)
2nt

≥ f̃(t)
t

for all large t and all n ∈ N .

Taking a limit of the left-hand side as n ↑ +∞ we obtain that, for all large t,

1
φ

≥ f̃(t)
t

= E [T (t · e1)] − 10C̄
√
t log(t)

t
,

which yields the desired conclusion.
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6.5 quantitative shape theorem
Building upon the results established in Theorems 6.2 and 6.3, this section focuses on the
speed of convergence of the asymptotic shape presented in Theorem 6.1.

Proof of Theorem 6.1. By putting together Theorem 6.2 and (6.2), we can obtain C∗ > 0
such that P-almost surely, for x with ∥x∥ large enough we have

∣∣∣∣∣T (x) − ∥x∥
φ

∣∣∣∣∣ ≤ C∗
√

∥x∥ log (∥x∥). (6.35)

Writing

g+(a) := a

φ
+C∗√

a log(a), g−(a) := a

φ
−C∗√

a log(a), a > 0,

the above inequality can be written as

g−(∥x∥) ≤ T (x) ≤ g+(∥x∥). (6.36)

Fix a realization of the random graph and passage times, and let R be large enough
that (6.36) holds for all x with ∥x∥≥ R. We can take R′ ≥ R such that g− is increasing
on [R′,∞). Now fix t large enough that

t ≥ max
{

max
x∈B(o,R′)

T (x), R
′

φ

}
.

We will now prove that, letting b := 4φ
√
φC∗, we have, P-almost surely,

B(o,φt− b
√
t log(t)) ⊆ Ht ⊆ B(o,φt+ b

√
t log(t)). (6.37)

To prove the first inclusion, we fix

x ∈ B(o,φt− b
√
t log(t)) (6.38)
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and show that T (x) ≤ t. This inequality is automatic from the choice of t if x ∈ B(o,R′),
so assume that ∥x∥> R′. Then, since g+ is increasing,

T (x)
(6.36)

≤ g+(∥x∥)
(6.38)

≤ g+(φt− b
√
t log(t))

= t− b

φ

√
t log(t) +C∗

√
φt− b

√
t log(t) · log(φt− b

√
t log(t)).

Increasing t if necessary, we have
√
φt− b

√
t log(t) · log(φt− b

√
t log(t)) ≤ 2

√
φ ·

√
t log(t),

so we get
T (x) ≤ t− b

φ

√
t log(t) + 2C∗√

φ ·
√
t log(t) ≤ t

by the choice of b.
To prove the second inclusion in (6.37), fix x /∈ B(o,φt+ b

√
t log(t)), and let us show

that T (x) > t. We start with
T (x) ≥ g−(∥x∥).

Since ∥x∥≥ φt+ b
√
t log(t) ≥ R′, and g− is non-increasing in [R′,∞), we have

g−(∥x∥) ≥ g−(φt+ b
√
t log(t))

= t+ b

φ

√
t log(t) −C∗

√
φt+ b

√
t log(t) · log(φt+ b

√
t log(t)).

Increasing t if necessary, we have
√
φt+ b

√
t log(t) · log(φt+ b

√
t log(t)) ≤ 2

√
φ ·

√
t log(t),

so
T (x) ≥ t+ b

φ

√
t log(t) − 2C∗√

φ
√
t log(t) ≥ t

again by the choice of b, completing the proof.
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6.6 fluctuations of the geodesics and spanning
trees

Having established the framework of moderated deviations, we now investigate the
probabilistic behavior of the geodesic paths. Specifically, we leverage the derived properties
to characterize the probabilities of geodesics residing in specific regions of the space.
Additionally, we gain insights regarding the spanning trees generated by the passage times.

Proof of Theorem 6.4. Let us fix s := ∥y − x∥ for given x, y ∈ Rd. Recall the notation
defined previously [U ]ε for the ε-neighbourhood of U ⊆ Rd. To obtain an upper bound for
the probability in first part of the theorem, consider the events

Aϵ
x,y :=

{
v ∈ V (H) \ [xy]s3/4+ϵ : dH(v, [xy]s3/4+ϵ) < r

}
and

Eϵ
x,y := {∃v ∈ Aϵ

x,y:T (x, y) = T (x, v) + T (v, y)},

then P
(
dH(γx(y), xy) ≥ s

3
4 +ϵ

)
≤ P (Eϵ

x,y).
Set ∆v

x,y := (∥v − x∥+∥y − v∥−s) /φ with φ > 0 the constant determining the
asymptotic shape in Theorem 6.1. Observe that, if T (x, y) = T (x, v) + T (v, y), then

T (x, y) − s/φ− T (x, v) + ∥v − x∥/φ− T (v, y) + ∥y − v∥/φ = ∆v
x,y.

Thence,

|T (x, y) − s/φ|+|T (x, v) − ∥v − y∥/φ|+|T (v, y) − ∥y − v∥/φ|≥ ∆v
x,y.

It thus follows that

P (Eϵ
x,y) ≤ P ( |T (x, y) − s/φ| ≥ ∆v

x,y/3)

+ P (∃v ∈ Aϵ
x,y: |T (x, v) − ∥v − x∥/φ| ≥ ∆v

x,y/3)

+ P (∃v ∈ Aϵ
x,y: |T (v, y) − ∥y − v∥/φ| ≥ ∆v

x,y/3)

≤ P ( |T (x, y) − s/φ| ≥ ∆v
x,y/3)

+ 2 P

 ⋃
v∈Aϵ

x,y

{
|T (x, v) − ∥v − x∥/φ| ≥ ∆v

x,y/3
} .
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By the Pythagorean Theorem, there exist c̃0, c̃1 > 0 such that, if s > r, then

c̃0s
1
2 +2ϵ ≤ ∆v

x,y ≤ c̃1s
3
4 +ϵ.

Therefore (6.4) is verified as a direct consequence of Proposition 4.2, Theorems 6.2 and 6.3,
and the translation invariance of T .

Before proving Theorem 6.5, we state below Lemma 3.7 of [37].

Lemma 6.17. Consider d ≥ 2, ψ ∈ (0, 1/4), and {qi}i∈N such that ∥qj∥↑ +∞ as j → +∞.
Suppose that, for all large j ∈ N,

∥qj − qj+1∥≤ ∥qj∥3/4 and inf {∥y − qk∥: y ∈ oqj} ≤ ∥qj∥1−ψ for k < j. (6.39)

Then there exist cψ, k̃ > 0 such that, for all k ∈ {k̃, k̃+ 1, . . . , j − 1}, one has

θ(qk, qj) ≤ cψ ∥qk∥−ψ. (6.40)

Proof of Theorem 6.5. First, let A(x, r1, r2) stand for an annulus B(x, r2) \ B(x, r1).
Consider now, for n ∈ N,

Xϵ
x,n :=

{
y ∈ A(x, n− 1, n) ∩ V (H): dH(γx(y), xy) ≥ ∥y − x∥

3
4 + ϵ

2

}
,

and Xϵ
x :=

⋃̇
n∈N

Xϵ
x,n.

Observe that, by Lemma 6.17 with ψ = 1/4 − ϵ/2, it suffices to define

Fx,fϵ = Xϵ
x ∪

(
B(x, r4/3 ∨ c2/ϵ

ψ ) ∩ V (H)
)

to obtain Vx,fϵ ⊆ Fx,fϵ for any choice of Tx. One can easily see from Proposition 4.2 that,
P-a.s., any finite region of Rd contains a finite number of v ∈ V (H). Therefore, it remains
to verify that |Xϵ

x| is P-a.s. finite.
It follows from Theorem 6.4, Proposition 4.2, and Lebesgue’s Dominated Convergence

Theorem that there exists c̃ > 0 such that

E [|Xϵ
x|] =

∑
n∈N

E [|Xϵ
x,n|] ≤

∑
n∈N

c̃ · nd

exp(nϵ) < +∞
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Hence, by Markov inequality, there exists c̄ > 0, for all x ∈ Rd, and s ≥ 0,

P (|Xϵ
x|≥ s2) ≤ c̄

s2 , (6.41)

which completes the proof by an application of Borel-Cantelli Lemma.

The corollary naturally arises as a straightforward consequence of the results above, with
the application of a proposition found in Howard and Newman [37].

Proof of Corollary 6.6. It follows from Proposition 4.2 that any spanning tree Tx of H is
locally finite. By Proposition 4.6, the spherical holes D(s) ∈ O( log(s)) P-a.s. as s ↑ +∞.
Thus V (H) is asymptotic omnidirectional, i.e., for all n ∈ N,

{
v

∥v∥
: v ∈ V (H) \B(o, n)

}
is dense in ∂B(o, 1).

Since Theorem 6.5 implies that Tx is P-a.s. fϵ-straight for all ϵ ∈ (0, 1/4) with
fϵ(s) = sϵ− 1

4 , Corollary 6.6 is a straightforward application of Proposition 2.8 of Howard
and Newman [37].

6.7 a two-species competition model on rggs
Using the theorems above, we investigate a two-species competition model originally
formulated by Kordzakhia and Lalley [43] for the hypercubic lattice Zd.

Designating the two competing species as red and blue, each establishes territories
within the spatial domain H. The occupancy of sites by the red species at any given time
t ∈ [0,+∞) is symbolized by ξ(t), while ζ(t) represents the analogous territory held by the
blue species.

At the outset, χ(t) := ξ(t)∪̇ζ(t) ⊆ H is defined as the combined inhabited territory. The
dynamics governing growth and competition are determined by Richardson’s and voter’s
models. Within this framework, the competition unfolds as follows:

• Unoccupied sites at time t, denoted as x ̸∈ χ(t), are subject to occupation by either
species. The rate of occupation by the red or blue species is determined by the
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presence of neighboring sites already occupied by each species. More specifically, the
rates are ∑

y∼x
1ξ(t)(y) and

∑
y∼x

1ζ(t)(y).

• Occupied sites at time t, specifically x ∈ χ(t), witness potential invasion. Here, the
transition to a different species occurs at rates contingent upon neighboring sites’
current occupants.

– If x ∈ ξ(t), it undergoes a color shift to blue at rate ∑y∼x 1ζ(t)(y).

– Likewise, if x ∈ ζ(t), the site is becomes inhabited by the red species at rate∑
y∼x 1ξ(t)(y).

Figure 9: Two simulations of the competition model on a RGG.

The initial conditions for ξ(0) and ζ(0) are established by two given sets in the d-
dimensional space. The two-species competition model is considered to have a finite initial
configuration if there exist two non-empty disjoint sets W and W ′ in a finite region of Rd

such that
ξ(0) ⊆ q(W ), ζ(0) ⊆ q(W ′), and χ(0) = q(W ∪W ′).

The configuration of the set q(W ) ∩ q(W ′) can be chosen arbitrarily. Our primary objective
with this model is to determine whether both species coexist with positive probability. To
this end, we introduce the event

Coex(ξ, ζ) := {for all t ≥ 0, ξ(t) ̸= ∅ and ζ(t) ̸= ∅} .
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We then present the following result:

Theorem 6.18. Let d ≥ 2 and r > rc(λ), and consider the two-species competition model
defined above. Then, for any finite initial configuration, one has

P (Coex(ξ, ζ)) > 0.

6.7.1 The Intermediate Condition

To investigate the coexistence of two species within this competition model over time, we
will demonstrate that for a given sequence tn of time instances, it is possible to observe
both species inhabiting specific regions of the space. This phenomenon is ensured by what
we refer to as the intermediate condition.

Let a, b ∈
(

3
4 , 1

)
be such that b < 2a − 1, and fix d ∈ (0, 1). Consider {tn}n∈N0 and

{rn}n∈N0 to be sequences of times and angles, respectively, taking values in (0,+∞) such
that, for all n ∈ N0,

tn+1 − tn = dtn and rn − rn+1 = (tn)a−1

with t0 > 0 to be determined by (I0). Then, tn is given by tn := t0(1 + d)n and we set

rn := 1 + (1 + d)(a−1)·n

1 − (1 + d)(a−1) (t0)a−1.

Observe that rn decreases to r0/2 > 0 as n ↑ +∞.

Fix s̄ :=
(2(1+d)

d

) 1
1−a . Recall the definition of the annulus A given in the proof of

Theorem 6.5. For z ∈ ∂B(o, 1) and t0 > s̄, define Φn(z) as the random set of vertices in a
region given by

Φn(z) := φ · A
(
o,

1
1 + d

tn, tn − (tn)b
)

∩ Cone(z, rn) ∩ H .

Let Θw,w′ be the event that guarantees the existence of vertices in regions of interest, defined
as follows:

Θw,w′ :=
⋂

n∈N0

{Φn(w) ̸= ∅ and Φn(w′) ̸= ∅}.
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Consider Ĥ to be the set q−1(H) for H ⊆ H. Define Γn as the event associated with
convergence to the limiting shape, adjusted for χ(0):

Γn :=
{
B
(
o,φ(tn − (tn)b)

)
⊆ χ̂n ⊆ B

(
o,φ(tn + (tn)b)

)}
.

Before stating the intermediate condition, we will restrict our attention to a specific part
of the occupied sites χ. Note that, since t0 > s̄, it follows that rn ∈ (0, π/2) for n ∈ N0.
Let us write, for all n ∈ N0,

χz,n := χ(tn) ∩
(

Cone(z, rn)
∖
B
(
o,

φ

1 + d
tn

))
.

Figure 10: The regions χw,n, χw′,n, Φn(w), Φn(w′) on the event Γn.

Now, we define Ψw,w′ by combining the events above, focusing on the occupation of
selected regions of space by a unique species in each region. Specifically,

Ψw,w′ :=
{
χw,0 ⊆ ξ(t0) and χw′,0 ⊆ ζ(t0)

}
∩Θw,w′ ∩ Γ0.

Let the constant s0 > s̄ be determined later (see Lemma 6.19 and the Proof of
Theorem 6.18 for details). Recall that θ(u, v) denotes the angle between o⃗u and o⃗v. We
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can now state the intermediate condition for the competition model as follows: There exist
w,w′ ∈ ∂B(o, 1) and t0 ≥ s0 such that θ(w,w′) > 2r0 and

P (Ψw,w′) > 0. (I0)

From now on, we consider the event inside the probability in (I0) to denote the conditional
probability of Ψw,w′ as

P (·) := P( · | Ψw,w′).

We will show that we can control the coexistence of both species within suitable regions
of space on this event. Additionally, observe that Φn(w) ⊆ χw,n and Φn(w′) ⊆ χw′,n (see
Fig. 10).

The following lemma ensures that the intermediate condition is reasonable for finite
initial configurations of the competition model.

Lemma 6.19. Let W,W ′ be two non-empty disjoint sets of Rd determining a finite initial
configuration of the competition model. Then,for all ε ∈ (0, 1), there exists s0 > s̄ such that

P (item (I0) holds true for t0 ≥ s0 | ξ(0) ̸= ∅ and ζ(0) ̸= ∅) > 1 − ε.

Proof. First, we verify that p0 := P (ξ(0) ̸= ∅ and ζ(0) ̸= ∅) > 0 by fixing any x ∈ W

and y ∈ W ′, then the event q(x) ̸= q(y) has strictly positive probability.
Let us fix, without loss of generality, an arbitrary w ∈ ∂B(o, 1) and let w′ = −w. Define

Γ to be the event ⋂n∈N Γn. Since W and W ′ are in a finite region of Rd, Theorems 6.1
and 6.2 and Proposition 4.2 ensure that we can approximate P(Γ ∩Θw,w′) to 1 as closely
as we want as s0 ↑ +∞. Let s0 be large so that P(Γc ∪Θc

w,w′) < p0 · ε/2.
It remains to verify that χw,0 ⊆ ξ(t0) and χw′,0 ⊆ ζ(t0) occur with positive probability.

Set
Φ+

n (z) := φ · A
(
o,

1
1 + d

tn, tn + (tn)b
)

∩ Cone(z, rn) ∩ H .

Note that Φn(z) ⊆ χz,n ⊆ Φ+
n (z) on Γn. Consider ξ(0) and ζ(0) to be non-empty. Let

Wξ,w to be a connected subgraph of H that connects ξ(0) to Φ+
0 (w) with T -geodesics.

Similarly, define
mathcalWζ,w′ to be a subgraph connecting ζ(0) to Φ+

0 (w′).
If Wξ,w and Wζ,w′ do not intersect, then χw,0 ⊆ ξ(t0) and χw′,0 ⊆ ζ(t0) happens with

positive probability by forbidding the invasion dynamics from occurring with the elements
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of Wξ,w and Wζ,w′ before time t0. Let W be the graph union of Wξ,w and Wζ,w′ . Consider
now that case where W is connected.

The worst case scenario is when W is a line graph that can prevent a invasion/occupation
path from ξ(0) and ζ(0) to χw,0 and χw′,0, respectively (see Fig. 11). The referred paths can
be obtained using, Harris’ graphical construction with the invasion and occupation being
determined by arrows that appear with distribution Exp(1). We can restrict or impose the
arrows that paint χw,0 red and χw′,0 blue when there exists at least one vertex in W with
degree greater than 2.

Figure 11: Schematics for worst case of the invasion/occupation dynamics in W.

To verify the claim above, consider that there exists x ∈ W with degree greater than 2.
Fix xa, xb, and xc to be three distinct neighbours of x. Choose one of xa and xb to be painted
red and the other blue. If we remove the edges {x, xa} and {x, xb}, W is decomposed
into at most three connected components Ka, Kb, and Kc (see Fig. 12) containing xa, xb,
and xc, respectively. In the case with three distinct connected components, there is an
invasion/occupation path from xa and xb to any configuration Kc. Observe that the vertices
x, xa, xb, and xc can assume any configuration. Consider xc red or blue to obtain any
configuration of Ka and Kb. This entire process can occur up to the given time t0. The
probability of such event may be particularly small, but it guarantees the strictly positive
probability of χw,0 ⊆ ξ(t0) and χw′,0 ⊆ ζ(t0).

Figure 12: An example of W with x having a degree greater than 2.

In the case with less than three connected components, consider a spanning tree in the
component that contains more than one site among {xa, xb, xc}. Suppose that Kc is equal
to Ka (or Kb), if when we cut the branches at xa (and/or at xb) the vertices x and xc are
not in the branch cut, proceed just as in the case with three distinct connected components
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with the branches cut and a disjoint connected subgraph of Kc of the remaining vertices of
W . Otherwise, if x or xc is removed of the spanning tree with a branch cut, we simply take
cut the branch at x and/or xc and keep the edge x, xc, then the rest of the sites in Kc will
be reached through xa (or xb). Similar arguments apply in the case where Ka = Kb ̸= Kc.

Let Ew,w′ be the event that every site in Φ0(w) ∪Φ0(w′) has degree at most 2. Due to
the properties of the homogeneous Poisson point process, one can choose s0 > s̄ such that,
for t0 ≥ s0, P(Ew,w′) < p0 · ε/2. Therefore,

P (item (I0) does not hold true for a t0 ≥ s0 | ξ(0) ̸= ∅ and ζ(0) ̸= ∅)

≤ P(Γc ∪Θw,w′)/p0 + P(Ew,w′)/p0 < ε,

which yields the desired conclusion.

6.7.2 Control of invasion times

One of the key aspects of the competition model is controlling the invasion dynamics within
the graph. We will utilize its correspondence to random walks to derive the necessary
bounds that enable effective control of the invasion.

Consider Su
t to be a continuous-time simple random walk on a graph G′ = (V ′, E ′) with .

Let degmax(G′) be the maximum vertex degree of G′ and denote by D′(u, v) the graph metric
between u, v ∈ V ′. The following lemma is a straightforward consequence of Corollary 11
of Davies [22] by using heat kernel techniques (see [6] for details).

Lemma 6.20. Let G′ be a graph with bounded vertex degree, then

P(Su
t = v) ≤ degmax(G′) · exp

(
−D′(u, v)2

2t

(
1 − D′(u, v)2

10t2

))
.

We apply this result in the proof of the lemma below. First, we define the random ball
B̄D(x, s) := {y ∈ H:D(x, y) ≤ s}. The following result bounds the probability that a
region occupied by one species will be invaded within a given time, in relation to its volume.

Lemma 6.21. Let x ∈ Rd and ρ > 0 with B(x, ρb) ∩ H ⊆ ξ(0) . Then there exist constants
C,C ′ > 0 such that, for all t ∈ [0, ρ],

P (q(x) ∈ ζ(t)) ≤ C exp
(
−C ′ ρ2b−3/2

)
. (6.42)
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Proof. It suffices to consider by stochastic domination that ξ(0) = B(x, ρb) ∩ H and
ζ(0) = H \ξ(0). Recall that the dual process of the voter model is the coalescent random
walk. Therefore, one can prove the lemma verifying properties of random walks on the
infinite component. Let us denote by Sx′

t a continuous-time simple random walk on H
starting at q(x′). Set

τx
s := inf{t > 0 : Sx

t ̸∈ B(x, sb)}.

We will verify (6.42) applying the following claim.

Claim 2. There exist c′1, c′2 > 0 such that

P
(
τx

ρ < t
)

≤ c′1 exp
(
−c′2 ρ2b−1

)
. (6.43)

Proof. Consider w.l.o.g. that ρ ≥ 1, we will treat the case ρ < 1 will separately. In order to
verify (6.43), we will first study Sx

t on events with suitable properties for H. The strategy is
to control the distribution of points and vertex degrees within a given region of the graph.

By Theorem 2.2 of [65] and Palm calculus, there exist c′0 > 1 and c′′1, c
′′
2 > 0 such that,

for all s ≥ 1,
P (B(x, s) ∩ H ̸⊆ B̄D(x, c′0s)) ≤ c′′1 exp(−c′′2s). (6.44)

Set
E1 :=

{
∥q(x) − x∥< ρb/2, B(x, ρb) ∩ H ⊆ B̄D(x, c′0 ρb)

}
.

Let c′′ := 2e+1
2 c′0r and set B̃(x, ρ) := x+ c′′ρ2[−1, 1]d and denote by deg(u) the vertex

degree of u ∈ H. Write Hx,ρ for the subgraph of H restricted to the vertices B̃(x, ρ) ∩ H.
Define

E2 := { degmax(Hx,ρ) ≤ √
ρ }.

Note that B̃(x, ρ) can be embedded in a partition with
⌈

2e+1
4 c′0ρ

2
⌉d

hypercubes whose side
has length 2r. We obtain an upper bound for P(Ec

2) by considering the event in which the
PPP assigns more than √

ρ/3d points to at least one of the above-referred hypercubes. By
Chernoff bound, if X ∼ Poi(λ′) with respect to P , then P (X ≥ s) ≤ exp

(
λ′(es′ − 1) − s′s

)
.

Let s′ = log(s/λ′) > 0 in the previous inequality, then P (X ≥ s) < (e · λ′/s)s for all s > 0.
Hence,

P (Ec
2) ≤ (3c′0)dρ2d

(
e · 6drd

√
ρ

)√
ρ

. (6.45)
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It is a well known fact that degmax(H) is P-a.s. unbounded. Let Sx,ρ
t stand for Sx

t

restricted to Hx,ρ. Denote by Nx
ρ the number of jumps performed by Sx,ρ

t up to time ρ. Let
N(ρ) be the counting of the homogeneous PPP on [0, ρ] with rate √

ρ such that Nx
ρ ≤ N(ρ)

on E2.
Define E3 := {N(ρ) < ρ2 · e} and let E := E1 ∩E2 ∩E3. Then, by the same inequality

used above for the Poisson distributions, one has that

P(Ec
3) ≤ ρ−ρ2/2. (6.46)

Observe that, since B(x, ρb/2 + r · e · c′0ρ2 + r) ⊆ B̃(x, ρ), it follows that Sx
t = Sx,ρ

t on E

for all t ∈ [0, ρ]. We will estimate

P

(
Sx

t ̸∈ B

(
x,
ρb

2

))
≤ P

({
Sx,ρ

t ̸∈ B̄D

(
x,
c′0
2 ρ

b

)}
∩E1 ∩E2

)
+ P(Ec). (6.47)

By Lemma 6.20, one has that, for all u, v ∈ Hx,ρ,

P(Su,ρ
t = v | E1 ∩E2) ≤ degmax(Hx,ρ)qt(q(x), v)

with

qt(q(x), v) ≤ 2
√

10c′0ρb · exp
−D(q(x), v)2

4t


Let us write S(x, ρ) :=

{
Sx,ρ

t ̸∈ B̄D

(
x, c′

0
2 ρ

b
)}

∩E1 ∩E2 and set Vx,ρ := Hx,ρ \B̄D(x, c′
0
2 ρ

b).
Then

P (S(x, ρ)) ≤ E

[
#(Vx,ρ) · √

ρ · sup
v∈Vx,ρ

{qt(x, v)} · 1(E1∩E2)

]

≤ 2
√

10(e+ 1)dρ2d+b+1/2 · exp
(

−c′0
8 ρ2b−1

)
.

We combine the result above with Proposition 4.2, (6.44), (6.45), (6.46), and (6.47) to
verify the existence of c′1, c′2 > 0 such that, for all x ∈ Rd and ρ ≥ 1 fixed,

P

(
Sx

t ̸∈ B

(
x,
ρb

2

))
≤ c′1

2 exp
(
−c′2ρ2b−1

)
=: pρ.
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We now turn to the proof of (6.43). Let Sτ := Sx
τx

ρ
. Note that, since Sτ is in the boundary

of the subgraph H ∩B(x, ρb),

P
(
τx

ρ < t
)

= P (τx
ρ < t, Sx

t ̸∈ B(x, ρb/2)) + P (τx
ρ < t, Sx

t ∈ B(x, ρb/2))

≤ pρ + E
[
1(τx

ρ<t) P (SSτ
t−τx

ρ
∈ B(x, ρb/2))

]
≤ pρ + E

1(τx
ρ<t) max

y∈∂B(x,ρb)∩H
sup

s∈[0,ρ]
P (Sy

s ̸∈ B(y, ρb/2))


≤ pρ + pρ · P
(
τx

ρ < t
)
.

It then follows that P
(
τx

ρ < t
)

≤ 2pρ which proves (6.43) for ρ ≥ 1. The case ρ < 1 is
covered by adjusting c′1 and the proof is complete. ■

Consider now the coalescent random walks dominating the invasion dynamics by duality.
Our aim is to determine if the blue species invades q(x) up to time t ≤ ρ. Observe that any
admissible path of invasion is stochastically dominated by the existence of a time-reversed
random walk Sx

t′ with t′ ∈ [0, t] reaching ζ.
Regard q(x) as a source of random walks {Sx,(i)

t′ : t′ ∈ [0, t], i ∈ N}. Set n(x) to be the
set of neighbouring sites of q(x). Write N[t]

x,y for the number of points of the PPP with
respect to the edge {q(x), y} on [0, t]. The number of offspring of random walks starting at
q(x) is ∑y∈n(x) N[t]

x,y. Define the events

E′
1 := { deg (q(x)) < √

ρ}, and E′
2 :=

{
∀y ∈ n(q(x))

(
N[t]

x,y < e · ρ3/2
)}

By applying the same upper-bounds for Poisson distributions used in the proof of Claim 2,

P
(
(E′

1)c
)

≤
(

2drd

√
ρ
e

)√
ρ

, P
(
(E′

2)c ∩E1
)

≤ ρ−ρ3/2
.

Let E′ := E′
1 ∩E′

2. then one has by Claim 2 that

P
(
{x ∈ ζ(t)} ∩E′

)
≤ e · ρ2 · c′1 exp

(
−c′2ρ2b−1

)
.

We complete the proof of (6.42) by choosing suitable C,C ′ > 0.

The established lemma above provides a method to control the invasion times in a region
occupied by another species. The next result offers a more refined approach to studying the
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competition dynamics of the model. First, let us introduce some notation. Let ξ̄, ζ̄ ⊆ Rd

be two disjoint sets and denote

Pξ̄,ζ̄(·) := P
(

· |
{
ξ(0) = ξ̄∩ H, ζ(0) = ζ̄∩ H

}
∩Θw,w′

)

Figure 13: The regions Rn, Rn+1, Bn, and B′
n before intersecting H.

Furthermore, let us consider the following regions of H:

Rn := Φn(w)

Bn :=
(
φ ·B

(
o,

1
1 + d

tn

)
∪
(
φ ·B

(
o, tn + (tn)b

)∖
Cone(w, rn)

))
∩ H , and

B′
n :=

(
φ ·B(o, tn) ∪ (Cone(w, rn+1))c

)
∩ H .

Now, we can obtain the following property regarding the competition model.

Lemma 6.22. There exist constants C,C ′ > 0 such that the following holds for all t0 > s̄.
If Rn ⊆ ξ̄ and ζ̄ ⊆ Bn, then

Pξ̄,ζ̄(ζ(dtn) ̸⊆ B′
n) ≤ Ct3d

n exp ( −C ′(tn)2b−3/2). (6.48)

Proof. The demonstration closely follows the proof of Lemma 3 in [43], with an emphasis
on the key differences and necessary adjustments for our model with random structures.
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The sets Rn, Rn+1, Bn, B′
n correspond to Rn

0 , Rn
1 , Bn

0 , Bn
1 , from [43], respectively,

scaled by φ and intersected with H. Similarly, the constants a, b, and d represent α, β,
and δ in the same lemma.

Their proof consists of five claims. Since the limiting shape is a Euclidean ball, which
is uniformly curved, Claim 1 is immediately satisfied. The remaining four claims depend
on the polynomial growth of H, estimated by Proposition 4.2, and the moderate deviation
given by Theorem 6.2. Noting that 0 < 2b− 3

2 < b− 1
2 ensures that the upper bounds for

the probabilities in Claims 2 and 3 hold true. In Claim 4, we replace the application of
Lemma 1 in [43] with Lemma 6.21, resulting in (6.48).

6.7.3 The coexistence of the species

In this subsection, we address the proof of the theorem on the coexistence of species in the
competition model. This result follows from the intermediate condition, along with the
lemmas obtained in the previous subsection, moderate deviations, and the shape being a
Euclidean ball.

Proof of Theorem 6.18. First, since the sets W and W ′ that determine the initial
configuration are non-empty and disjoint, ξ(0) and ζ(0) are non-empty with strictly
positive probability. Moreover, Lemma 6.19 ensures that the intermediate condition (I0)
holds true. We begin by finding a lower bound for the probability
P (Coex(ξ, ζ)) = P (Coex(ξ, ζ)) · P(Ψw,w′). Suppose, w.l.o.g., that

P (red dies out) ≥ P (blue dies out),

where ‘red dies out’ is the event when there exists a time t > 0 with ξ(t) = ∅ (similar for
‘blue dies out’). Note that Boole’s inequality yields

P (Coex(ξ, ζ)) ≥ 1 − P (∃t ≥ 0 s.t. ξ(t) = ∅ or ζ(t) = ∅)

≥ 1 − 2P (∃t ≥ 0 s.t. ξ(t) = ∅) . (6.49)

Let us prove that, for a ε ∈ (0, 1/4),

P (red dies out) = P (∃t ≥ 0 s.t. ξ(t) = ∅) < 2ε
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to establish the theorem. Let Γ := ⋂
n∈N0 Γn and repeat the arguments in the proof of

Lemma 6.19 to select a large s0 > s̄ such that, for all t0 ≥ s0,

P (Γc) ≤
∑

n∈N

P (Γc
n) < ε. (6.50)

Next, by applying Lemma 6.22, we find a possibly larger s0 so that, for all t0 ≥ s0,

∑
n∈N0

PRn,Bn(ζ(dtn) ̸⊆ B′
n) < ε. (6.51)

By stochastic domination, (6.50) and (6.51) imply

P (red dies out) ≤ P (Γc) +
∑

n∈N0

P ({ζ(tn+1) ̸⊆ B′
n} ∩ Γ | ζ(tn) ⊆ Bn) < 2ε.

The inequality above leads to P (Coex(ξ, ζ)) > (1 − 4ε) P(Ψw,w′) > 0, which is the
statement of the theorem.
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CONCLUD ING REMARKS AND COMPARAT IVE
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7 CONCLUS ION

In this concluding chapter, we reflect on the exploration undertaken in this doctoral thesis,
focusing on limiting shape theorems across diverse mathematical structures. Throughout our
research, we have derived significant theorems that providing insights into different aspects
of subadditive processes, virtually nilpotent groups, and First-Passage Percolation (FPP)
models. As we delve into the main results and discussions presented in the preceding chapters,
we gain a deeper understanding of the behavior of these mathematical phenomena and their
implications. Furthermore, we consider the avenues for future research, contemplating the
potential advancements and challenges that lie ahead in this area of study.

7.1 limiting shape of subadditive cocycles on
groups

In Part I, we have successfully established the Asymptotic Shape Theorem for random
subadditive processes on both nilpotent and virtually nilpotent groups (see Theorems 3.1
and 3.2). By extending existing results in the literature, we have achieved a comprehensive
understanding of the behavior of these processes under more relaxed growth conditions—both
at least and at most linear growth. This broadening of applicability enhances the utility of
our results in diverse mathematical contexts.

A noteworthy contribution of our work lies in the exploration of FPP models, a crucial
class of processes meeting the considered conditions, especially the innerness property.
Leveraging this, we were able to derive Corollary 3.19 for the limiting shape in FPP models,
thereby extending the reach of our results to encompass this important and widely studied
class of random processes.

Moreover, our presentation of examples generalizes previously known results in shape
theorems. These examples illustrate scenarios where the strong restriction of L∞ cocycles
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is alleviated, emphasizing the versatility of our established theorems in capturing a broader
range of applications.

Looking forward, possible future research may involve the exploration of other types of
random variables exhibiting almost subadditive behavior. Additionally, considering point
processes on nilpotent Lie groups to define random graphs opens up intriguing possibilities
for further investigation. An interesting direction for future works could involve refining
our theorems based on the generating set, recognizing the crucial role it plays in certain
key aspects. Such refinements could leverage quasi-isometric properties, offering a more
nuanced understanding of the interplay between the generating set and the behavior of
random subadditive processes.

7.2 asymptotic behaviour of fpp models on
rggs

In this thesis, we have made significant strides in understanding First Passage Percolation
models on Random Geometric Graphs (RGGs). Our research has revealed several key
findings that describe the behavior of random growth in these graph structures.

First, we established the existence of the limiting shape of FPP models on RGGs using
standard techniques derived from the subadditive ergodic theorem. Building upon this
foundation, we advanced our understanding by obtaining an improvement in the form of
a quantitative shape theorem, or speed of convergence. This approach utilizes moderate
deviations estimates, eschewing reliance on ergodic techniques. This methodology not only
provided deeper insights into the convergence behavior but also paved the way for the study
of geodesics within this context.

Moreover, our investigation into the fluctuations of geodesic paths and their spanning
trees, inspired by the work of Howard and Newman [37]. The application of these results
in the study of the competition model highlights the relevance of the obtained theorems
and their potential implications. For instance, we applied these results to study a two-
species competition model, determining the positive probability of both species coexisting
indefinitely.

Looking ahead, our research suggests several avenues for future exploration. It would be
particularly intriguing to explore the possibility of weakening the hypotheses governing our
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models, perhaps by leveraging subadditive cocycles or relaxing assumptions regarding the
common distribution or independence of random variables.

In the broader context of mathematics, our findings underscore the significance of
randomness in the study of RGGs. These graph structures find applications across various
areas, from network analysis to spatial statistics. The techniques developed in this thesis
derive as natural extensions of the study of infinite connected components, akin to bond
percolation in Zd, to RGGs, contributing to our understanding of random growth.

7.3 final remarks and discussion
Comparing the two main themes explored in this thesis, we observe intriguing parallels
and distinctions. Both investigations contribute to our understanding of random growth
processes, albeit in different mathematical contexts. The study of subadditive cocycles on
groups offers insights into the behavior of random processes in algebraic structures. On
the other hand, the analysis of FPP models on RGGs delves into the behavior of random
growth within the framework of random graphs.

The avenues for future research outlined present exciting opportunities for further
exploration and advancement. Whether it be the refinement of theorems based on
generating sets in the context of subadditive cocycles on groups or the exploration of
alternative growth models and hypotheses in FPP models on RGGs, there remains ample
room for innovation and discovery.

For instance, one can follow the studies of Coletti, Miranda, and Mussini [19] and Coletti,
Miranda, and Grynberg [18] to investigate RGGs on a Carnot group G∞ and verify if
similar techniques are applicable in this context. Furthermore, Tessera [62] utilized the
main approach employed in [7] for nilpotent groups to study an improved version for the
speed of convergence in Zd. This highlights the continued potential for further exploration
and refinement of results in these distinguished structures.

In conclusion, this thesis contributes to the broader landscape of mathematical research
by elucidating fundamental principles underlying random growth processes. By bridging
the gap between algebraic structures and random graph-theoretic frameworks, we aim to
facilitate interdisciplinary collaborations and foster the development of novel methodologies
in the study of stochastic systems.



A APPEND IX

a.1 proof of the approximation bounds of fpp
models on rggs

This section is dedicated to proving Lemma 6.10. We assume the conditions specified in the
lemma. To commence, we focus on the event where the T t-geodesics are confined within a
given ball.

Lemma A.1. There exists c > 0 such that, for any x ∈ Rd with ∥x∥ large enough and t

large enough (not depending on x) with t ≤ ∥x∥, we have

P

 any path in Gt from q(o) to q(x) that minimizes
the T t-passage time is contained in B(o, ∥x∥3)

 > 1 − e−ct.

Proof. Recall that γt
u↔v is the shortest path from u to v in Gt that only uses extra edges.

We bound

T t(q(o), q(x)) ≤ K t|γt
q(o)↔q(x)|

(6.8)
≤ K t

(√
d

t
∥q(o) − q(x)∥+d

)
.

Define the event

E1 := {∥q(o)∥≤ t/2, ∥q(x) − x∥≤ t/2}.

On E1, we have ∥q(o) − q(x)∥≤ ∥q(o)∥+∥x∥+∥q(x) − x∥≤ ∥x∥+t, so

T t(q(o), q(x)) ≤ K t
(√

d

t
(∥x∥+t) + d

)
≤ 3 K d∥x∥, (A.1)

where we used
√
d ≤ d and t ≤ ∥x∥.
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Next, let

E2 :=


there is no path γ in Gt starting in B(o, t)

with |γ|=
⌈
3 K d∥x∥/δ

⌉
and

∑
e∈γ

τ t
e ≤ 3 K d∥x∥

 ,

where δ is the constant of Lemma 6.7.
Assume that E1 ∩E2 occurs and let γ∗ be a path in Gt from q(o) = x0 to q(x) = xm

minimizing the T t-passage time, that is, such that T t(q(o), q(x)) = ∑
e∈γ∗ τ t

e. Then,

∑
e∈γ∗

τ t
e ≤ K t|γt

q(o)↔q(x)|
(A.1)

≤ 3 K d∥x∥,

so by the definition of E2, we have that |γ∗|≤ ⌈3 K d∥x∥/δ⌉. Then, writing γ∗ = (x0, . . . , xm)
(so that x0 = q(o), xm = q(x) and m = |γ∗|), for any i ∈ {0, . . . ,m} we have

∥xi∥ ≤ ∥x0∥+∥xi − x0∥

≤ t

2 +
i−1∑
j=0

∥xj+1 − xj∥

≤ t

2 + i · max(r, t) ≤ t

2 +m · max(r, t) ≤ t

2 + ⌈3 K d∥x∥/δ⌉ · max(r, t).

Using t ≤ ∥x∥, the right-hand side is smaller than ∥x∥3 if ∥x∥ is large enough. We have
thus proved that on E1 ∩E2, γ∗ is entirely contained in B(o, ∥x∥3).

To conclude, we note that

P(E1) = P(H ∩Bt/2(o) ̸= ∅, H ∩Bt/2(x) ̸= ∅) > 1 − e−ct

for some c > 0 and t large enough, by Proposition 4.2), and

P(E2) > 1 − td

2⌈3 K d∥x∥/δ⌉ > 1 − e−c∥x∥

for some c > 0 if ∥x∥ is large enough, by Lemma 6.7.
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Lemma A.2. Let γ = (x0, . . . , xn) be a path in Gt. Assume that x0 and xn belong to H (the
infinite cluster of G), and x1, . . . , xn−1 do not belong to H (so that each of them is either
in tZd or in some finite cluster of G). Let

b := max
∥y − x∥∞:

x, y ∈ V, x and y are in the same finite
cluster of G, and this cluster is visited by γ

 ,
that is, b is the maximum ℓ∞-diameter of all finite clusters of G intersected by γ. Then,

∑
e∈γ

τ t
e ≥ K t

2t+ b
· ∥xn − x0∥∞.

Proof. Let X be the set containing x0, xn, and all points of tZd among {x1, . . . , xn−1}.
Take indices 0 = i0 < i1 < · · · < im = n such that X = {xi0 , xi1 , . . . , xim}. It is easy to
check that the number of extra edges traversed by γ is at least m, so

∑
e∈γ

τ t
e ≥ K t ·m. (A.2)

Moreover, for any j ∈ {0, . . . ,m− 1}, we have ∥xij+1 − xij ∥∞≤ 2t+ b. This is because the
portion of γ from xij to xij+1 stays inside a single finite cluster of G, apart from possibly
traversing an extra edge when departing from xij , and another extra edge when arriving
at xij+1 . Hence,

∥xn − x0∥∞≤
m−1∑
j=0

∥xij+1 − xij ∥1≤ (2t+ b)m. (A.3)

Combining (A.2) and (A.3), we obtain the desired inequality.

We will now proceed to the proof of the lemma employed to establish the approximation
bounds:
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Proof of Lemma 6.10. Fix x and t large enough, as required by Lemma A.1. Define the
events

E1 :=
 any path in Gt from q(o) to q(x) that minimizes

the T t-passage time is contained in B(o, ∥x∥3)

 ,

E2 :=
 for any z ∈ H ∩B(o, ∥x∥3) and y ∈ H ∩B(z, t),

we have T (z, y) ≤ β · t

 ,

E3 :=
 any finite cluster of G that intersects B(o, ∥x∥3)

has diameter (in ℓ∞ norm) smaller than t

 .
We claim that if E1, E2, E3 all occur, then any path in Gt from q(o) to q(x) that minimizes
the T t-passage time does not traverse any extra edge, so that

E1 ∩E2 ∩E3 ⊆ {T t(q(o), q(x)) = T (x)}.

Let us prove this. Assume that the three events occur, and fix a path γ∗ = (x0, . . . , xm)
with the properties stated in the claim. Assume for a contradiction that γ∗ traverses some
extra edge, and let

I := min{i : xi+1 /∈ H}, J := min{j > I : xj ∈ H}.

Note that these are well defined with 0 ≤ I < J ≤ m, since x0 = q(o) ∈ H and xm =
q(x) ∈ H. Define the sub-path γ := (xI , xI+1, . . . , xJ ). Now there are two cases. First,
if ∥xJ − xI∥≤ t, then (since γ traverses at least one extra edge) we have

T t(xI , xJ ) =
∑
e∈γ

τ t
e ≥ K t > βt = β · max(∥xI , xJ ∥, t),

contradicting the assumption that E2 occurs. Second, if ∥xI − xJ ∥> t, then we apply
Lemma A.2 (with b ≤ t) to obtain

T t(xI , xJ ) =
∑
e∈γ

τ t
e ≥ K t

3t · ∥xI − xJ ∥> β∥xI − xJ ∥,

again contradicting the occurrence of E3. This completes the proof of the claim.
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It remains to show that the three events occur with high probability. First, by Lemma A.1,

P(E1) > 1 − e−ct.

Second, by Lemma 5.7,
P(E2) > 1 −C∥x∥4d·e−C′t

if ∥x∥ is large enough. Third, by Lemma 4.7 and Mecke’s formula,

P(E3) > 1 − (2∥x∥3)d · e−ct > 1 − ∥x∥4d·e−ct

when ∥x∥ is large enough.
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