&

Universidade Federal do ABC

AQUERMAN YANES MARTINHO

Affinely Connected Spaces, Geodesic
Loops, Gp-Structures and Deformations

Santo André, 2020






&

Universidade Federal do ABC

Universidade Federal do ABC

Centro de Matematica, Computacao e Cognicao
Aquerman Yanes Martinho

Affinely Connected Spaces, Geodesic Loops,
G»-Structures and Deformations

Orientador: Prof. Dr. Rolddo da Rocha

Dissertagdo de mestrado apresentada ao Centro de
Matematica, Computacdo e Cognicdo para

obtencao do titulo de Mestre em Matematica

ESTE EXEMPLAR CORRESPONDE A VERSAO FINAL DA DISSERTAGAO
DEFENDIDA PELO ALUNO AQUERMAN YANES MARTINHO,

E ORIENTADA PELO PROF. DR. ROLDAO DA ROCHA.

Santo André, 2020



Sistema de Bibliotecas da Universidade Federal do ABC
Elaborada pelo Sistema de Geracao de Ficha Catalografica da UFABC
com os dados fornecidos pelo(a) autor(a).

Yanes Martinho, Aquerman
Affinely Connected Spaces, Geodesic Loops, G2-Structures and
Deformations / Aquerman Yanes Martinho. — 2020.

149 fls. :il.
Orientador: Rolddo da Rocha

Dissertagdo (Mestrado) — Universidade Federal do ABC, Programa
de Pos-Graduagdo em Matematica, Santo André, 2020.

1. conexdes afins. 2. loops geodésicos. 3. octdnions. 4. algebras
nao-associativas. 5. tor¢do. |. da Rocha, Rold&o. Il. Programa de Po6s
Graduagéo em Matematica, 2020. Ill. Titulo.




Este exemplar foi revisado e alterado em relagao a versao original,
de acordo com as observacoes levantadas pela banca no dia da
defesa, sob responsabilidade Gnica do(a) autor(a) e com a
anuéncia do(a) orientador(a).

Santo André/SP 29 de 09 de 2020

| \ I" A & \
Assinatura do(a) autor(a): ,-'\--k_ AW \{CW\,L AL \."u;\r:.
7 1 | 3

Assinatura do(a) orientador(a): I{M;\ L lw ‘“'.‘“







SIGAA - Sistema Integrado de Gestao de Atividades Académicas ()

UFABC - Fundacéao Universidade Federal do ABC
Programa de Pés-Graduacdo em Matematica ‘ A ’
CNPJ n° 07.722.779/0001-06
Av. dos Estados, 5001 - Bairro Santa Terezinha - Santo André - SP - Brasil U FA B C

ppg.matematica@ufabc.edu.br

FOLHA DE ASSINATURAS

Assinaturas dos membros da Banca Examinadora que avaliou e aprovou a Defesa de Dissertacdo de Mestrado
do candidato AQUERMAN YANES MARTINHO, realizada em 25 de Setembro de 2020:

s & o

Dr. ROLDAO DA ROCHA JUNIOR, UFABC

Presidente - Interno ao Programa

ka l(ll MU\ {\\}M\

Dr. LLOHANN DALLAGNOL SPERANCA, UNIFESP

Membro Titular - Examinador(a) Externo a Instituicdo

U & M o

Dra. ZHANNA GENNADYEVNA KUZNETSOVA, UFABC

Membro Titular - Examinador(a) Interno ao Programa

!(dk\ \(ll M\r\ {\\N\\n

Dr.ICARO GONCALVES, UFABC

Membro Titular - Examinador(a) Interno ao Programa

Dr. DMITRY VASILEVICH, UFABC

Membro Suplente - Examinador(a) Interno ao Programa

UFABC - Fundacao Universidade Federal do ABC






This study was financed by grant 2018/10367-2 - Sdo Paulo Research Foundation
(FAPESP) and in part by the Coordenagdo de Aperfeicoamento de Pessoal de Nivel
Superior - Brasil (CAPES) - Finance Code 001.

As opinides, hipoteses e conclusdes ou recomendagdes expressas neste material sdo de

responsabilidade do(s) autor(es) e ndo necessariamente refletem a visao da FAPESP.

vii






AGRADECIMENTOS

As forcas que impulsonaram a conclusdo deste trabalho vém de diversos lugares. Desta
forma, agredeco primeiramente a todos aqueles que passaram por minha vida durante
esses anos e os passados, implicando-se, assim, necessdrios ao resultado atual.

Ao guia: agradeco ao meu orientador Roldao, sem o qual esse trabalho nédo seria

possivel. Agradego-o imensuravelmente pela sua dedidagdo, foco e visdo, assim como

a disponibilidade, quase sempre imediata, para conversar sobre qualquer questao.

Estas diretrizes me acompanhardo em minha vida académica futura, com a maior das
certezas.

Aos amigos: Matheus Martins, por ser meu terceiro irmao para tudo que existe; ao
André Gomes, pelas conversas infinitas sobre matematica e tudo o mais, revelando
muitas incertezas e (portanto) muitas maravilhas; ao Filipe Marcal, pela suprema
humanidade, fraternidade e também pelas excelentes indicagdes musicais; a todo o
Squadex, pelas risadas e companhias de madrugadas, enfim, a todos meus amigos que
entenderam minha auséncia em certos eventos nesses tiltimos anos.

Ao amor: gostaria de agradecer a minha esposa Ariel pela absoluta paciéncia e
entendimento nos dias de reclusdo para que eu pudesse compor este trabalho. Sem sua
ajuda e carinho eu certamente ndo conseguiria realizd-lo do melhor modo. Agradego
pelas aventuras passadas (tanto ao vivo, quanto em Azeroth) e as que virdo. Sabra!

Por final, as raizes: agradeco aos meus pais, Vilma e Aquerman, pelo ambiente
extremamente livre que criaram em nossa casa, pelas conversas e por, nelas, ouvirem
nossas opinides e ideias. Aos meus irmaos, Raphael e Pedro, por serem as melhores
pessoas para conversar sobre absolutamente qualquer coisa. As minhas avés, Vilma e
Irene, por terem cuidado de nés; ao meu avo, Carlos, por ter me ensinado a tabuada,
que guardava num compartimento especial atrds da cabega e ao meu avo, Vicente, por

ter me demonstrado que sempre é uma boa hora para uma musica. Obrigado.

ix






"Nothing ever exists entirely alone;
everything is in relation to everything else."
— Bukkyo Dendo Kyonkai
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RESUMO

Investigaremos deformagdes do produto octonidnico advindas da tor¢ao paralelizavel
sobre a 7-esfera S7, obtendo uma familia de geometrias que surge como novas solugdes
de equagdes de movimento no formalismo Lagrangiano. Isso é feito ao se considerar
a compactificagdo espontanea My x S7, onde My denota uma variedade Lorentziana
4-dimensional. Além da geometria Riemanniana convencional e das duas geometrias
propostas por Cartan e Schouten, solugdes em geometrias com tor¢do e em espagos de
sete dimensdes mais gerais sdo obtidas. Tal formalismo serad ulteriormente também
derivado na 7-esfera S’ com torgdo paralelizdvel, dada localmente pelas constantes
de estruturas de um loop geodésico ndo-associativo. Estruturas G, em variedades de
sete dimensdes serdo ainda investigadas, com a introducdo dos produto e fibrado
octonidnicos OM. Neste cendrio, se¢des deste fibrado sobre tais espagos podem ser
interpretados como campos espinoriais sob uma identificagdo isometrica levando a
conexao espinorial a derivada covariante octonionica relacionada ao produto definido
sobre OM.

Palavras-chave: conexdes afins, loops geodésicos, octonions, estruturas G2, dlgebras

nao-associativas, tor¢do
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ABSTRACT

We investigate octonion product deformations coming from the parallelizable torsion
of the 7-sphere S7, obtaining a family of geometries from solutions of the Lagrangian
formalism movement equations. This can be achieved by analyzing the spontaneous
compactification My X S7, where My is a Lorentzian 4-dimensional manifold. Besides
the usual Riemannian geometry and two others proposed by Cartan and Schouten,
solutions in geometries with torsion and more general seven-dimensional spaces are
obtained. Such formalism may by subsequently derived over the 7-sphere S’, locally
given by the structure constants of a nonassociative geodesic loop. Furthermore, G-
structures are investigated, giving rise to the octonion product and bundle OM over a
seven-dimensional manifold M. Then, sections of this bundle over such space can be
perceived as spinor fields in an isometric identification mapping the spin connection to

an octonion covariant derivative preserving the octonion product defined over OM.

Keywords: affine connections, geodesic loops, octonions, G2-structures, non-associative

algebras, torsion
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INTRODUCTION

The emergence of modern physics in the last century with the foundations of general
relativity and quantum mechanics has enabled the coming of an unprecedented alliance
between the search of physical descriptions of nature and the development of mathe-
matical theories. The problem of unification between the two aforementioned theories
is of great relevance nowadays and has been tackled from several different points of

view over the last decades.

In the above-mentioned celebrated theory of gravity, the tools of Riemannian man-
ifolds are employed in order to describe the interactions between matter and the
underlying geometry, yielding then novel unexpected phenomena. Besides, the devel-
opment of more general connections over manifolds introduced by Elie Cartan [1] has
enabled the emergence of broader theories of gravity. This can be perceived by relaxing
the torsionless connection requirement which is usually present in Riemannian geome-
try, accommodating more geometric interpretation to such theories. For instance, the
non-vanishing of torsion when analyzing geometries over the 7-sphere S is well-known
to be related to the nonassociative normed division algebra of the octonions O and its
properties. Accordingly, such algebra has been prominently studied and its physical
interpretation is considered [2-11].

On these grounds, the aforementioned relations between the geometry of a more
general affinely connected manifold and related algebraic structures are examined and
connections between their respective properties are scrutinized in this work. Further-
more, the so-called G-structures are considered in 7-dimensional manifolds and their
properties studied and related to the geometric information they extend to. In this
configuration, octonion fields can be defined upon the space and be seen to intrinsically
relate to spinor fields and its covariant derivative, a notion which extends to a vast
literature in mathematical-physics [12—27].

Chapter 1 is devoted to establishing preliminaries and notation, mainly on the theory

of vector bundles. In this context, affinely connected spaces are defined, yielding
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the notions of geodesics, torsion and curvature, which are seen to characterize the
underlying geometry of such spaces.

In Chapter 2 Riemannian metrics are introduced and their relations with connections
may be tackled. The inclusion of a metric in this discussion has as main goal the
emergence of normal coordinates around a point, which will be proven to be a robust
tool in what follows. The Levi-Civita connection is also considered and its relation with
a more general connection in the presence of a metric is discussed in the light of the
contorsion tensor.

Chapter 3 is devoted to developing the theory of geodesic loops. The formal defini-
tions of local loops as originally presented by Kikkawa [28] are given and the geodesic
loop construction over an affinely connected manifold can be perceived. Their funda-
mental tensors and W-algebras are also discussed and their relation with the underlying
geometry defined by the connection is given, as proved by Akivis [29].

In Chapter 4 the Kaluza-Klein mechanism of spontaneous compactification in d =
11 dimensions may be considered and geodesic loops may be employed to yield
information about the geometry of the base space in such theory [30,31]. Besides,
solutions in the 7-sphere S” with torsion as the Englert solution [32] may be considered
in the light of the so-called Cartan-Schouten geometries, which combined with the
aforementioned techniques yield an one-parameter family of geometries over S’.

In Chapter 5 normed division algebras are exposed so that the octonion algebra O
may be considered. Then, a brief discussion on the exceptional Lie group G, takes
place, leading to the final section in which the linear configuration of Gp-structures are
discussed.

Finally, in Chapter 6 the Gy-structures over 7-dimensional manifolds are fully con-
sidered and are seen to yield an associated Riemannian metric. With the aid of such
structures an octonion product can be defined upon the 7-dimensional manifold [33].
The relation between this octonion product and the Levi-Civita connection of the associ-
ated metric is then seen to relate to the G,-structure notion of torsion. Ultimately, an
one-to-one correspondence between octonions and spinor fields in such space can be
made, prospecting the possibility of generalizing these structures in physical applica-

tions, such as the ones in [34].
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VECTOR BUNDLES

This chapter is devoted to setting the preliminary results and structures that shall be
used throughout this composition. In order to establish some notation, smooth manifold
theory is first presented. Then, one may investigate the notion of vector bundles, which
can be perceived as a generalization of the more usual tangent bundles. Following up,
rudiments on affinely connected spaces and Riemannian manifolds are developed, all
of which shall be extensively used subsequently. The following results have been taken

from refs. [35-39] and omitted proofs can be also found therein.

1.1 SMOOTH MANIFOLDS

Let M be an n-dimensional manifold’. The ring of smooth real valued functions over
M shall be denoted by C*(M), and its elements will be simply called functions over
M. The tangent space at p € M shall be denoted T,M, and X, € T,M will be called
a tangent vector, or just vector. One may then perceive the tangent space T,M as the
space of derivations of functions over M and its elements will be said to differentiate or
derive a function f € C*(M) over their direction.

The functions 7' : R" — R fori € {1,...,n} are called the standard coordinates on
R" and are defined by

r(ay, ..., a,) = aj. (1.1)

A local neighborhood (U, ¢) around p € M shall be commonly denoted by (U; x', ..., x"),
where x' = 7' o ¢ : U — R are called the local coordinates over U. These coordinates
define a vector (derivation) 9/9x € TyM, which for f € C* is given by
0
p

(f) = = (fop ) ER, (1.2)
p

¢(p)

In this text, every manifold considered is, in fact, a smooth manifold. One also writes dim M = n whenever

9
ox!

M is n-dimensional.
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and is called a coordinate vector with respect to (U, ¢). The point p may sometimes be
omitted and therefore d/dx’ may be written whenever it is clear which point is being
considered. The abbreviation

0; =9/ox' (1.3)
shall be extensively used as well and it can then be seen that the set {d4,...,0,} is a
basis for T, M, called a coordinate basis. Also, if M is an 1-dimensional manifold, then
its local coordinates shall be denoted by (U, t) with
4 € Ty, M (1.4)
dt to 4

fo
its coordinate vector at fy € U.
Example 1.1. The Euclidean n-dimensional space M = R" is a manifold and its tangent

space at each p € M may be naturally perceived as itself T,M ~ M = R"

Example 1.2. The circle S! = {(x,y) € R?> : x?+y? = 1}, which may also be perceived
as the subset of the complex numbers C given by S' = {e¥™ . ¢ € [0,1]} is a
manifold. More generally, one may consider the n-sphere 5" = {(x!,...,x"*) € R" :
()2 4+ ()2 = 1),

Example 1.3. Given two manifolds M and N, respectively n- and k-dimensional, then
the direct product M @& N = M x N is also a manifold of dimension m + n. Using the
last example, one has the n-torus T" = S! x - - - x S! which is a product of n copies of
St circles.

Example 1.4. Denote by M(n, R) the space of n x n real matrices. The (real) general
linear group GL(11,R) of invertible n X n matrices is an n2-dimensional manifold. If
det : M(n, R) — R denotes the usual determinant function, it follows by continuity
that GL(n, R) = R\det ({0} is open in M(n, R) =~ R™. Since every subset U C M of
a manifold M is a manifold itself of same dimension if and only if it is open, then it

follows that GL(11, R) is an n?-dimensional manifold.

1.2 TANGENT BUNDLE

The tangent bundle associated to M is denoted by TM and is defined by

™ = | ({p} x T,M). (1.5)
peEM



1.2 TANGENT BUNDLE

A general element of the tangent bundle is usually written as v € TM and one can
endow TM with a natural projection 77 : TM — M given by 71(v) = p if v € T,M. One
may write v = (p,v) € TM to explicitly show that 77(v) = p.

For every open set U C M one can define TU = U,cy TpU = Upey TyM. Since
{01,...,9} is a basis for TyM, a vector v € TU is locally given by

n .
U:Zala—xi , (1.6)

where a' : TU — R are smooth functions.
Let now ¥ = x' o 77, and define the map ¢ : TU — ¢(U) x R" by the relation

$) = (F @), ..., ¥"(@),d'@),...,a"@), (1.7)
which has as an inverse given by

n
. ; 0
A CONNOE WS (1.8)
=1 9,
Hence, ¢ is a bijection and one may transfer the topology from ¢(U) x R" C R?" to
TU = 7t~ }(U) by saying that a set A C TU is open in TM whenever ¢(A) is open in
p(U) x R™.
Now, suppose that (V,¢) = (V;y!,...,y") are other local coordinates of M with
UNV #@. Then a vector v € T(U N V) has

, (1.9)

in such a way that

no n no .k
ak = (Za]aax]. )xk= (Zblaal )xk=2blgxl , (1.10)
j=1 » =1 Y, i=1 p
and analogously there holds
bk i jayk
=) a—>. (1.11)
p= dx/

Then, the map
Pod lipUNV)xR" - pUNV) x R" (1.12)
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for i and ¢ as defined before is given by

o l(x,al,...a") =@pogp  (p)b,..., 1", (1.13)
with
n nod(rt o 1
Y- <L A9 i), (119)
j=1 =1
Since 1 o ¢! is smooth, so is o p~ L. Therefore, the atlas {T(U,), Pu} = {(m 1 (UL), u)},
inherited from the smooth atlas {(U,, ¢, } from M is indeed smooth and it follows that

TM is a 2n-dimensional manifold itself.

Definition 1.5. An application X : M — TM is called a vector field if X is smooth and
to X =1d, that is

X(p) € T,M, (1.15)
for each p € M.

Sometimes one writes X(p) = X, or just X = X, whenever there is no ambiguity about
the point p. If (U; x1,...,x") are local coordinates, then there are n smooth functions
Xi:U — R, withi e {1,...,n}, such that®

X = fxfai = X'9;, (1.16)

i=1
and the smoothness condition for X is equivalent to each X' being smooth for every
i € {1,...,n}. It follows that the derivation of a function f in the direction of X is

locally given by
X(p) = Y X' 2L, (1.17)
i=1

for each p € U.
If F: N — M is a smooth map between two manifolds, then for each p € N one
can define a linear map induced by F which generalizes for manifolds the notion of

derivative of an application.

Definition 1.6. Let F : N — M be a smooth map between the manifolds M and N. Then, the
differential of F at p € N is a linear map

Fop: TN = Trp)M, (1.18)

The Einstein summation convention is considered throughout the text, in which one suppresses the
summation symbol and sum over identical indices in different positions, where the indices can be on the

upper (X') or bottom (9;) of the terms.



1.2 TANGENT BUNDLE

which is given by

Fop(Xp)(f) = Xp(f o F) €R, (1.19)
For each X, € TyN and f € C*(M). The image of a vector X, € T,N under the differential
F.p is called the push-forward of the vector X, by F.

Let p € N and consider local coordinates (U; xi, ..., xk) around p and (V, yl, oy
around F(p) € M. Since {9\dx!,...,9\9x"} is a basis for T,N and {9\dy!,...,0\dy"}
is a basis for TrpyM there are, for each j € {1,...,k}, n real numbers a;'. € R with
i€{l,...,n} such that

0 ;0
Fip (a—x]> = aja—yl. (1.20)
One can see that 5
a}a—yl(yi) = a}éf = a;-. (1.21)
On the other hand, writing F! = v/ o F there holds
0 n_ 9 B oF!
Fop(55)0) = 550/ 0 P = 5. (1.22)

Therefore, in relation to a choice of local coordinates, the matrix (a;-) looks like the
Jacobian matrix for F, showing that the presented differential is a generalization of the

differential of applications in R". One may then write
F.p=dF,. (1.23)
A parameterized smooth curve in M is a smooth application v : I — M, where I is
a real open interval. For simplicity, here they are just called curves.

Definition 1.7. Let 7y : [ — M be a curve in M. Then, its velocity vector ' (tg) at ty € I is
defined as

d
7' (to) == Y to <a) € Ty M. (1.24)
Let (U, x',...,x™) be local coordinates around 7(f) in M. One can then define the
components of 7, namely
’yi=xioy:lﬁ]l?. (1.25)
Then, the expression 7(fg) may be used in order to denote the usual (calculus) real

derivative of ' at t,. It then follows that
n .
Y=Y 7" (1.26)
i=1

for every t € I with (t) € U.
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Proposition 1.8. Let M be a manifold, p € M and X, € TyM. Then, there is a curve
v : (—¢,€) = M such that y(0) = p and +/(0) = X;,. Moreover, if f € C*(M) then

4

Xp(f) = T

(for). (1.27)

t=0
More generally, if F : N — M is a smooth map, p € N and X, € T,N, then taking a curve
v : (—¢,€) = N with ¢(0) = p and +/'(0) = X, it follows that

d

(Foo)t). (1.28)
£=0

1.3 VECTOR BUNDLES

One may now define the more general concept of vector bundles, which is a generaliza-
tion of the tangent bundle over a manifold M, allowing more general vector spaces in

the fibers. From now on, fix the manifold dimension as dim M = n.

Definition 1.9. A (real) rank k vector bundle over a manifold M is a triple (E, 7t, M) such
that

(1) The set E is a manifold, called the total space;

(2) The application 7w : E — M is a smooth surjective map: for each p € M, the set
=Y ({p}) = E, is denoted the fiber at p and is endowed with a vector space structure;

(3) There are local trivializations: for every pg € M there is an open neighborhood U C M
of po and a diffeomorphism

®: E|,; =7 }U) — U xR, (1.29)

called the local trivialization, with the property that 71y o ® = 7, where 7ty : U x RF — U
is the natural projection in U. Moreover, for each p € U the restriction ®| E, is an

isomorphism (of vectors spaces) from Ep, to {p} x RF ~ R,

In an intuitive way, a vector bundle is a collection of vector spaces {Ep } ,cp, smoothly
parameterized over M. The manifold M is called the base space and 7 is called the
projection. Instead of using the triple notation, one shall sometimes just say that
7. E — M is a vector bundle or that E is a vector bundle over M, whenever it is clear

or unnecessary to depict the projection 7.
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Example 1.10. For each natural number k the product M x R* endowed with the first projection
7y : M x R — M and the usual vector space structure on the fibers {x} x R¥ is a vector
bundle, called the product bundle of rank k over M.

If there is a local trivialization of E defined all over M, then such trivialization is
called a global trivialization and E is called a trivial bundle. It follows that E is
diffeomorphic to the product bundle M x R¥. Notice that if U is an arbitrary open set
in M, then E|;; := 7t~ }(U) gives rise to a vector bundle 71, : E|; — U over U which is

trivial by definition.

Proposition 1.11. Let M be an n-dimensional manifold and let TM be its tangent bundle.
Then, endowed with its natural projection 7t : TM — M and the vector space structure of Ty M

on each fiber, TM is a rank n vector bundle.

Proof. Let (U, ¢) = (U; x!,...,x") be local coordinates on M and 77 : TM — M the
natural projection. Then, define the map @ : 7= }(U) — U x R" by

®<via?ci > = (p, (vl,...,v”)> , (1.30)

which is clearly linear on each fiber 7 1({p}) = T, M and satisfies 711 o ® = 71. Moreover,

p

notice that

¢ = (¢ x Idgn) o @, (1.31)
and since ¢ and (¢ x Idg«) are diffeomorphisms, so is ®. Therefore, TM is a vector
bundle of rank 7. O

One may investigate what happens in the overlap of two trivializations on a vector

bundle E over M. In fact, this is given by the very useful

Lemma 1.12. Let 71 : E — M be rank k vector bundle and let ® : 7= Y(U) — U x R¥ and
¥ : 1 1(V) = V x R¥ be two local trivializations with U NV # @. Then, there is a smooth
map T: UNV — GL(k, R) such that

Do¥ ! (p,0)=(p,T(p)o). (1.32)

The application T depicted in Lemma 1.12 is called the transition map between the
local trivializations ® and Y. In the example of the tangent bundle TM over M, the
transition map associated with two charts is the Jacobian matrix of the coordinate

transition map.

11
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It is possible to construct examples of vector bundles from the gluing of a collection
of vector spaces indexed by points in M. In the following results, the properties that
such indexation must satisfy so that such gluing should indeed be a vector bundle are

presented.

Definition 1.13. A rank k discrete vector bundle E over M is a collection of (k-dimensional)

vector spaces Ey, indexed by p € M, endowed with a projection 7t : E — M. Namely

E={Ep}yem=1{(p,vp) : pEM, vy, € Ep}, (1.33)
for which 7t(p,vp) = p.

Lemma 1.14 (Vector Bundle Chart Lemma). Let E = {E, } ,em be a rank k discrete vector
bundle over M and assume there is an open cover {Uy }ye 4 of M for which there holds:

(1) For each o € A there is a bijective map ®, : t(Uy) — Uy X R¥ which restricts to each

Ep, as a vector space isomorphism into {p} x RF ~ Rk,

(2) For each o, p € A such that U, N Ug # @ there is a smooth map Tup : Ue NUg —

GL(k, R) for which the map ®, o CIDg1 has the form

0@y (p,0) = (p, g (p) 0) - (1.34)

Then, E has an unique topology and smooth structure for which it is a manifold and a rank k

vector bundle over M, with 7t as projection and {(Uy, Oy } its atlas.

Lemma 1.14 guarantees that operations with vector bundles such as the ones that
can be done with respect to vector spaces produce new vector bundles, as long as
overlaps of local descriptions are smooth. Since vector bundles are gluing of vector
spaces together, this proposition formalizes the process under which one must proceed
in order to uniquely define a smooth structure over it. Namely, for E and F vector

bundles over M one may define the following vector bundles:

Example 1.15 (Direct sums). Suppose 7’ : E — M and 7"’ : F — M are ranks k' and k"
vector bundles, respectively. Then, one can construct the direct sum bundle between E and
F with fibers at p € M equal to E, ® F. The total space is E® F = U,ep({p} X (Ep © Fp))
endowed with the obvious projection 7t : E — M. Consider a neighborhood U of p € M and
the local trivializations (U, ®') for E and (U, ®") for F and define the map ® : 7= 1(U) —
U x RE+ py

D', ") = (' (2), (e © D' (V"), i 0 D" (")) (1.35)
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If (U, ®') and (U, d") are two other local trivializations for E and F, respectively, then one
can similarly define the map ® using them. By Lemma 1.12, there are two transition maps
v : UNU — GL(K', R) between ¢' and ¢’ and v : UN U — GL(k”,R) between ¢" and §".
Then, the transition map for E & F between ® and ® is given by

Dod (p, (@, 0") = (p, (), V")), (1.36)

where T(p) = T'(p) ® T’ (p) € GL(k + k", R), which in matrix form is given by

() O
( 0 T,,(p)>. (1.37)

Since this expression depends smoothly on p, by the Chart Lemma it follows that E @ F is indeed

a vector bundle over M.

Example 1.16. [Dual space] Now, suppose 7t : E — M is a rank k vector bundle over M. One
may define its dual bundle given by E* = U,cp({p} X (Ep)*) with 7* 1 E* — M being the
obvious projection. For each p € M one may choose an isomorphism T, : (Ep)* — E, and let
(U, ®) be a local trivialization around the point. Define ®* : *(U) — U X Rk, by

O*(w) = (m* (W), (7rRk © P © Trp () (W)) - (1.38)

Such mapping clearly satisfies the second condition from the Chart lemma, so that one needs
only to verify condition 3. Indeed, if (Uy, Py) and (Ug, Og) are local trivializations with

Uy NUp # @ then respectively define the applications ®y and CD/’E as done before. Now, if

Tup : T(Ux N Up) — GL(k, R) is the transition map with respect to o and ¢p then one can see
that

P, o (@E)_l(p, v) = P, (Tp_l o q)lgl(p, v)>
= <p, TRk © Py 0 Ty 0 Tp_1 ) CIDlgl(p, v))
= (p (@ 0 O (p,0)))

= (P, szﬁ(p)v) ’

(1.39)

so that T,g is the transition map between ¢, and ¢g as well, which completes the construction.

Definition 1.17. Let 7t : E — M be a vector bundle. A (smooth) map S : M — E such that

to S =1d is called a (smooth) section in E.

13
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Remark 1.18. The requirement that 77 o S = Id can be more easily seen as S(p) € Ey, for
every p € M, that is, for each evaluation on p, the vector S(p) lies precisely on the fiber

over p, this of course just a generalization of the notion of vector fields in Definition 1.5.

From now on, smooth sections shall simply be called sections. If E is a vector bundle

over a manifold M, then one may set
I['(E)={S: M — E : Sis asection over E}, (1.40)

whose elements can be point-wisely added and multiplied by scalars making use of the
vector space structure in each fiber. With that said, I'(E) is endowed with a vector space
structure. Moreover, if f € C*(M) then

(fS)(p) = f(p)S(p) (1.41)

defines a section fS in such a way that the previous definition turns I'(E) into a module

over the algebra of smooth function C*(M).

Remark 1.19. Taking E = TM in Example 1.16 yields the cotangent bundle T*M. Then,
for each p € M the fiber is given by T, M, the vector space dual to T, M. In addition,
sections of this space are given by smooth applications w : M — T*M which for each
p € M define a linear functional w, : T,M — R. Such elements are called the 1-forms

over the manifold M and one may denote
I(T*M) = QY(M). (1.42)

Definition 1.20. A local section on E is a smooth application S : U — E defined over some
open subset U C M such that to S = Id. In order to emphasize the difference, sometimes

sections (defined over all of M) shall be denoted global sections.

Example 1.21. As said before, vector fields are section from the tangent bundle TM over M. A

special symbol is commonly given to the space I'(T M) of such sections, namely
[(TM) = X(M). (1.43)
Example 1.22. The zero section of E is a global section Z : M — E with

Z(p) =0 € Ep, for every p € M. (1.44)
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Example 1.23. Let E = M x R be the product bundle of rank k over M. Then, there is a
bijective correspondence between smooth applications S : M — RF and section S : M —

M x R¥, given by
S(x) = (x, S(x))- (1.45)

Such relation produces a natural identification between C*(M) and the trivial line bundle
M xR.

Definition 1.24. Let (E, 7r, M) be a rank k vector bundle. A frame for E over M is a collection
{S1,...,Sk} of sections S; : M — E such that for each p € M the set {S1(p),...,Sx(p)} is a

basis for the vector space E,,.

Remark 1.25. A local frame for E over an open set U is a collection {Sy,..., Sk} of

sections S; : U — E for which {S1(p),...,Sk(p)} is a basis for E,, whenever p € U.

Analogously, one may say that a frame as given in Definition 1.24 is called a global

frame so that it is clear that its domain is the whole space M.

Example 1.26. Let E = M x R* be a product bundle. The canonical basis {ey, ..., ey} for R
produces a global frame {&;, ..., ¢} denoted the canonical frame for the product space, which
is defined by

ei(p) = (p, ei)- (1.46)
Definition 1.27. Let 7t : E — M be a rank k vector bundle over M and {S1, ..., S} a local
frame for E over U. If there is a local trivialization ® : w=(U) — U x RF such that

Si(p)=® og(p), (1.47)
then one says the local frame {S1, ..., Sy} is associated with .

Proposition 1.28. Let 71 : E — M be a rank k vector bundle. Then, given a local trivialization
@ : 71 (U) — U x R* there is a local frame {0y, ..., 01} for E over U which is associated
with ®. On the other hand, for every local frame for E over U there exists a local trivialization

® associated.

Proof. Let ® : w~1(U) — U x R¥ be a local trivialization over U. Then, consider the

canonical basis {ej, ..., e;} for R¥ and define

oi(p) = (p,e). (1.48)

15
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One may proceed to show that {c7q,..., 0%} is a frame. Indeed, since ®~! is a diffeomor-

phism, the maps o; are smooth for every i € {1,...,k}. Besides,

moo(p)=mo® Y(p,e)=m(pe)=p, (1.49)

and it follows that each o; is a section for E over U. Now, notice that ® restricted to
E, is an isomorphism onto {p} x R* ~ R¥ and it maps the canonical basis of R to
{o1,...,0} since

D(oi(p)) = (p, e:) (1.50)

It then follows that {ci(p),...,0x(p)} is indeed a basis for E,. Therefore, ¢ is a local
frame associated with ®.

Conversely, suppose ¢ = {01, ...,0;} is a smooth local frame for E over U and let
¥ : U x RF — 7~1(U) be defined by

¥(p, (0., 0) = voi(p). (1.51)

Notice that since {o1(p), . .., 0x(p)} is a basis for each p € M, it follows that ¥ is bijective.
Also,

Yoéi(p) =Y(p,e) = oi(p). (1.52)
Therefore, if it is proven that ¥ is a diffeomorphism then ¥~! will precisely be the
trivialization associated to the local frame o. It suffices to show that ¥ is a local
diffeomorphism, since it is already bijective. For that end, let g € U and consider a
trivialization & : nfl(V) — V x R¥. One can consider V C U, otherwise just take
V! =V N U and use such open set instead of V. Notice that if one shows that the map

doV¥ Rk is a diffeomorphism, then since ® is one itself then it must follow that ¥

xR
restricts to a diffeomorphism from V' x RF to 7= 1(V).

Now, for each i € {1,...,k} the composite map

doo;| V- VxR (1.53)

%4

is smooth, so there are k smooth functions cfil, el O’Zk : V — R such that

®oai(p) = (p, (1), okP)) ). (1.54)

Therefore, on V x RF there holds

doV¥ (p, 0, ... ,vk)) = (p, (vioil(p), ... ,v%f‘(p))) , (1.55)
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which is also smooth.
To show smoothness of (® o ¥)~!, just notice that the matrix (O'ZJ (p)) is invertible

for every p € V, since {01(p),...,0k(p)} is a basis for E,. If (Tij ) is its inverse, then
]

since inversion is a smooth map from GL(k, R) to itself, the functions Ti' are all smooth.

Finally,
(P o)t (p, (wl,...,wk)> = (p, (wiril(p), .. .,wiTZ-k)>) , (1.56)

and therefore ® o ¥ is a diffeomorphism from V X R* to itself, which concludes the

proof. O

By the last proposition, it is possible to see that the local trivializability property of a
vector bundle E over M is equivalent to the existence, for each p € M, of local frames

around a neighborhood U for p. This implies the

Corollary 1.29. A vector bundle E over M is diffeomorphic to the trivial one if and only if there
is a global frame for E.

One can trace a result equivalent to Lemma 1.14 with respect to local frames using the
last proposition. Suppose E = {E, } ,cm is a discrete vector bundle over M and consider
for an open set U C M the application S : U — E. Then, if 70 S = Id one says that S
is a discrete section over E. One may also define discrete global and local frames the
same way, but since E is not necessarily endowed with a smooth structure, one may not
evoke the smoothness condition.

If F={Sy,...,S} and F = {Sy,..., 5} are both local frames for a vector bundle E
over U and U respectively then there are functions a;- :UNU — R such that

k .
Si(p) = )_a;Si(p), (1.57)
i=1

for every p € UNU. One says that the frames F and F are smoothly compatible if each

function u; is smooth over U N U.

Proposition 1.30. Let E = {E, } yem be a discrete rank k vector bundle over M. If there is an
open cover {Uy }yea of M such that

(1) for every o € A there is a discrete local frame F* = {Sf,...,Si} for E over Uy;

(2) for each a, B € A the local frames F* and FP are smoothly compatible,

17
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then E is a vector bundle over M with the unique topology and smooth structure given in Lemma

1.14.

Corollary 1.31. Let E and F be vector bundles over M. The following spaces are vector bundles

over a manifold M:
(1) The tensor bundle of E and F denoted by E & F, with fibers (E ® F), = E, ® Fp.

(2) The rank k symmetric bundle over E denoted by Symk(E), with fibers (Symk(E))p =
Sym*(E).

(3) The rank k anti-symmetric bundle over E denoted by AX(E), with fibers (Ak(E))p =
AK(Ep).
(4) The Hom-bundle of E and F, denoted Hom(E, F), with fibers (Hom(E, F)), = Hom(E,, F,).?

These constructions can obviously be made over the tangent bundle as well. One
may consider the (ll‘)—tensor bundle over TM denoted by le(M), for which each fiber
at p € M is given by (le(M))p = le(TpM)‘*. Its sections are called tensor fields over M,

which are C*-multilinear maps

F:O'(M) x - x QYM) x (M) x -+ x X(M) = C®(M), (1.58)

k times [ times

and one writes
F € TXM) = I(TF(M)). (1.59)

Besides, if (U;x,...,x") are local coordinates around p € M then there are nk+l

functions szllz],k € C*(U) with indices taking values in {1, ...,n} such that
F=F'lo @ 00, @dd' @ @ dx' (1.60)

is the local description of the tensor field F.
Moreover, the rank k symmetric bundle over TM is denoted by Sym*(T*M) with fibers
Symk(T*M)p = Symk(T};k M). Its sections are the symmetric k-multilinear applications

S :\%(M) X ... X X(M) — C®(M). (1.61)

k times

3 If V.and W are vector spaces, Hom(V, W) is the vector space of all linear applications from V to W. Since
Hom(V, W) ~ V* ® W, this example follows directly from the ones before.
4 If V is a vector space, then TF(V) = Ve g (Ve
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The space of section for this bundle is denoted by
S € SK(M) = T(Sym*(T* M)). (1.62)

In addition, in order to consider more general differential forms one has the rank k
anti-symmetric bundle AK(T*M). Then, its sections are called k-forms over M and their
space is denoted by

T(AR(T* M) = QF(M), (1.63)

such that for each w € OF(M) one has the C®°(M)-linear alternating mapping

W X(M) % ... x X(M) — C®(M), (1.64)

k times

and introducing p € M yields

wp: TyMx - xT,M— R, (1.65)

k times
an alternating k-multilinear application. Moreover, one can define the total space
QM) = P ' (M) (1.66)
peN

of differential forms over M. Such space is also an algebra with respect to the wedge
product. If w € OF(M) and € Y1(M) then their wedge product w A € QP*(M) is
given by

Lq!
P ] Z £(U)W(XU(1)/ ceey Xa(p))W(Xa(pH)/ ceey Xa(p+q))/
P+a) s,
(1.67)

where Sy, is the set of permutations (bijections) of the set {1,...,p +q} to itself and

(AKX, Xprg) =

€:Sprg — {—1,1} is the sign of 0 € S,4y. If (U;xq,...,xy) are local coordinates, then

taking the dual coordinate basis {dx!,...,dx"} one has

w= Y wil,m,ipdxil A Adxlr, (1.68)

where wj,

......

Definition 1.32. Let E be a vector bundle over M. The space of the E-valued p-differential
forms over M is defined as the set of smooth sections of the vector bundle AP(T*M) ® E.
Namely,

OF(M,E) =T(AP(TM) ® E). (1.69)
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Remark 1.33. If E and F are vector bundles over M, and k > 0 is an integer, then one can
see that there is a bijection between I'(A¥(E) ® F) and the set X = {f : T(E) x ... x I(E) —
['(F)}, where each f is C*°(M)-multilinear alternating and with domain equal to k copies
of T(E). Indeed, let S € T(AK(E)® F), p € M and S(p) = w ® f, with w € AX(E) and

f € F. Then, one can define a map S, with
(S*(Xll SRR Xk))p = Wp(Xl(P)/ RV Xk(p))fp/ (1'70)
and analogously for the converse.

By the last Remark, it follows that an element w € QP(M, E) can be written as a

C*®(M)-multilinear alternating application defined in terms of

w:X(M)x...X %(MZ — I'(E). (1.71)

k times

Locally, with respect to the same local coordinates (U;xy,...,x;) and local frame

{e1,..., e}, there are smooth functions f}l , over U such that

w= ) ﬁl,...,ipdxil A ANdx @ e;. (1.72)

i1

1.4 CONNECTIONS

As previously seen, smooth functions can be perceived as sections of the product bundle
M xR, so that a choice of vector field X € X¥(M) and smooth section f € I'(M X R) =
C*®(M) yields a derivation X(f) with respect to the direction of X. Now, let E be a more
general vector bundle over M. One may wonder which properties must an operator
have so that it would be possible to make sense of the usual derivation for the sections
of such bundle along the direction of vector fields X € X(M). As usual, if f,g € C*(M)

then since X, is a derivation for each p € M there holds

X(f9)(p) = Xp(H)g(p) + f(p)Xp(9), (1.73)

which is the well known Leibniz rule for derivations. It turns out that this property is

fundamental for understanding derivatives of more general sections.
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Definition 1.34. A connection on a vector bundle E over a manifold M is a map
V:X(M)xI(E) = I'(E)
(X/ S) = VXS,

(1.74)

such that

VixeyS=fVxS+VyS,  Vx(fS) = fVxS+X(f)S, (1.75)
for every f € C®(M), vector fields X,Y € X(M) and S € I'(E). The section V x(S) is denoted
the covariant derivative of S in the direction X.
Example 1.35. Let E = M x R¥ be the trivial vector bundle of rank k. As seen before, a
section S : M — E is given by

S(p) = (p. S(p)), (1.76)

where S : M — RF has S(p) = (SX(p), ..., S¥(p)) with each S' € C®(M). Then, one may
define a connection V for X € X(M) by setting

V3@ = (b, (XSHP), - XSHP) ), (1.77)

where X(S7) is the usual derivative in the direction of X. Such connection called the

trivial connection over E.

Remark 1.36. More generally, there is an one-to-one correspondence between connec-
tions over E and 1-forms k x k matrices of the form (w;) In that manner, taking a local

frame {ey, ..., e} for E over U one has
k .
Vxej = Zw}-(X)ei. (1.78)
i=1

If a section is locally given by S = S/ ej for functions S/ : M — R, then using the Leibniz

rule comes
VxS = Vx(Sle;) = SV xej + X(S)e;
= Slwi(X)e; + X(S')e; (1.79)
= (Swi(X) + X(S"))e;.
Notice the trivial connection locally appears whenever (w;) =0.

Example 1.37. If E and E’ are vector bundles over M respectively endowed with connec-
tions V and V’, then it is possible to consider a new connection over E & E’. Namely,

one can define the connection V & V' by setting

(Ve VHx(S,S) = (VxS, VS). (1.80)
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One could ask if it is always possible to define a connection over a vector bundle E. It
turns out that the connection is actually a local operator, which can be glued together

by the partition of unity usual construction in order to globally define it.

Proposition 1.38. If V is a connection on a vector bundle E over M and X € X(M), S € T(E)
and p € M, then V xS(p) depends only on the values of S on an arbitrarily small neighborhood
of p and of X,. In other words, if X, = X, and S = S in a neighborhood of p then

VxS(p) = VS(p). (1.81)

Proof. First, notice that by replacing S for S — S it suffices to shows that VxS(p) = 0
whenever S vanishes in a neighbourhood U of p. In that case take a (bump) function
f € C*(M) with support inside U such that f(p) = 1. It follows that fS = 0 identically
on U and therefore

Vx(fS) =0. (1.82)

Now, using the Leibniz rule there holds

VX(FS) = fVXS + X()S =0, (1.83)
and by hypothesis the second term in the this equation is zero. Then, evaluating at p
yields

(fVxS)(p) = f(p)VxS(p) = VxS(p) =0, (1.84)
as wanted.

Now, by the same reasoning one must only show that VxS(p) = 0 whenever X, = 0.
Since VxS depends only locally on S, take local coordinates (U; x!, ..., x") and write
X = X'9; around U. It follows that

VxS(p) = Vxin,S(p) = X'(p)Va,S(p) = 0 (1.85)
since X'(p) = 0 for eachi € {1,...,n}. O

The case of most interest in this work is when E = T'M, so that it may be valuable to

explicitly name it:

Definition 1.39 (Affinely connected spaces). Let M be a manifold and consider its tangent
bundle TM. A connection
V:X(M) x X(M) — X(M) (1.86)

over the tangent bundle it is called an affine connection and the pair (M, V) is said to be an

affinely connected space.
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One may consider its local description: take a coordinate basis {01,...,9,} for
some neighborhood U of p € M. Then, there are n® functions F;k : M — R, with
i,j,k € {1,...,n} such that

Va,@k) = Tiyd;. (1.87)

These functions are called the Christoffel symbols with respect to these local coordi-

nates. From Remark 1.36 one has that w]i(aj) = F;'k' which gives

Proposition 1.40. Let (M, V) be an affinely connected space and let X,Y € X(M). If in
coordinate basis one has X = X'0; and Y =Y/ d; then

Vx(Y) = (X(Y5 + X Yfrﬁ.fj)ak. (1.88)

Remark 1.41. A connection V over the tangent bundle TM is the trivial one if and
only if its Christoffel symbols vanish. In the context of affine connections, the affinely

connected space (M, V) is called a flat space.

Given an affinely connected space (M, V), one is able to extend the connection to the

space of tensor fields over M in such a way that some useful properties come in hand.

Proposition 1.42. Let V be an affine connection over M. Then, V can be uniquely extended to
the (k, 1)-tensor bundle le(M) over M in such a way that

(1) In T°(M) = C®°(M) one has Vx f = X(f), the usual differentiation for functions.

(2) There holds
Vx(T®8S)=(VxT)®S+T® (VxS). (1.89)

(3) IfF € le(M), Y; € X(M), w! € QY (M), where 1 <i <kand 1 < j <1, there holds

(VxE) W', ..., o' Yy, ..., Y) = X(F(w?, ..., Y, ..., Y))

l .
- Y F'....,Vxd/,...,d 1, Y)
=i (1.90)

k
—ZF(wl,...,wl,Yl,...,VXYi,...,Yk).
i=1
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In particular, take a 1-form w € Ol(M) and X € X(M). Considering local coordinate
(U;x',...,x") one may write
Vxw (@) = Vg (widx!)(9)
= X'(Va,(w/dx)(9y))

Z. . . (1.9
= X'(0;(w;jdx! (9y)) — (w;dx!(V5,0r)))
= X'(9i(wi) — wiTh),
which shows that in local coordinates
Vxw = (X9i(wy) — X'w; F]k)dx (1.92)

Since VxF is C®(M)-linear over X, one can construct another tensor field, namely

Definition 1.43. Let (M, V) be an affinely connected space and let F € le(M). The (k}rl)—tensor
VF: QY M) x -+ x QY (M) x £(M) x - - - X X(M) — C®(M), given by

VFEw!, ..., Yy, ..., Y, X) = VxFW!', ..., ' Y1, ..., V) (1.93)
is called the total covariant derivative for F.

Let (U;x!,...,x") be local coordinates around p € M and take a tensor field F €

le(M) which around U as seen have the local description

F=F') @ - ® 9j, ®dx" @ - @ dx'. (1.94)

i1+ ]1

Then, the m-direction derivative of the coordinate functions of F shall be denoted by

1:]1 ]k _am(F]l ]k) (1.95)

11+ 11 m 111
Moreover, the components of the total covariant field VF may be written as
VE=VuEl [0, © 00, @da' @ @dx' @ dx". (1.96)

One can then consider a formula for the components of the total covariant derivative of

arbitrary tensor fields, which is given by direct computation:

Proposition 1.44. Let (M, V) be an affinely connected space. Then, the components of a
(]l‘)-tensor field F with respect to a coordinate system (U;x%,...,x") is given by

iq---1k iq---Ig,m iq---Ig iy mz

Vo F]l g F]l i ZF]l“'P"']Zr]S ZF]I Ji (197)
S=
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1.5 PARALLEL TRANSPORT

Since a connection on a vector bundle E over a manifold M is a way of differentiating
vector fields and may even be extended to more general tensor fields, as seen before,
one may be tempted to see if it is possible to describe it in any similar way to what is
already known from derivatives of functions

In differential calculus one analyzes real functions f : | C R — R defined in an
interval I. A special class of functions emerges when the so-called difference quotient

of f is considered: if t, ty € I, then the derivative of f at t( is given by

m [ — f(t)

Hto t—to

f(to) = , (1.98)

whenever the right-handed side exists. In that case, the real function f is called
differentiable. Notice that to make sense of this expression, the difference between the
real numbers f(t) and f(tp) must be defined. Since there is a natural way to take one
(namely the difference induced by the field structure of the real numbers), one gets eqn
(1.98).

However, if one was to do the same with sections S € I'(E) of a vector bundle E,
then this would be impossible at first. Indeed, take two points p, pgp € M both in an

arbitrarily small open set. Even so, the expression

S(p) — S(po) (1.99)

makes no sense, since S(p) € E, and S(po) € Ep,, which are intrinsically different vector
spaces. In order to connect them, a new structure is then required. This structure is
called the parallel transport and one may see that there is an one-to-one correspondence
between such structures and connections as follows.

Fix a vector bundle E over M from now on and let v : I — M be a curve over M. The

velocity of 7y at a point ty € I is given by the push-forward

), (1.100)

to

d
v%m)='m(a;

which acts as a derivation on a function f : M — R as

dUOw

(1.101)

0 = 7. (5

) (f) =

fo
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Also, given local coordinates (U; x!, ..., x") one may write the coordinate representation

of v as
1) = (B, D), (1.102)

or even sometimes 7y (f) = (7/(t)). Its velocity in the coordinate basis {91, ...,9,} attg € I
is then given by
v'(to) = 7' (£0)2;. (1.103)

Definition 1.45. Let v : [ — M be a curve over M. Then, a curve V : I — E on a vector
bundle E over M is said to be a section along <y if there holds

V(t) € Eyp, VEE L (1.104)
Moreover, the set of all such section is denoted by I'(E, 7y).

Remark 1.46. In general, given a section S € I'(E) and a curve 7y : I — M, one can

produce such sections by composition, namely
Soy:I—E. (1.105)

Definition 1.47. Let 7y : I — M be a curve over M and suppose V : I — E is a section along
v. Then, if there is S € T'(E) such that

V() = 5(v(1)), (1.106)
then V is said to be extendible over E and S is called an extension of V.

Remark 1.48. Notice that not every section V along y needs to be extendible: if 7y has
to, t1 € I with (tg) = y(t1) but such that V(ty) # V(t1), then V is not extendible.

Lemma 1.49. Let E be a vector bundle over M and consider a connection NV over E. Then, for

each curve 7y : I — M there is an unique operator
D; : I(E,v) — I(E, ), (1.107)
with the property that if V, W € T'(E, y) then:
(1) Dy is linear over R, that is

DAV + uW) = AD;V + uDiW, VA, u € R. (1.108)
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(2) Let f € C®(I). Then, a Leibniz rule holds:

Di(fV) = fDiV + fV (1.100)

(3) If V is extendible then, for every extension S: I — E of V,

DV =V..S. (1.110)

The operator DV is called the covariant derivative of V along «y.

Proof. To show uniqueness, suppose there is such operator D; and fix ty € I. Proposition
1.38 shows that the value of D;V depends only on a neighbourhood near tj. Therefore,
one may proceed locally: let (U; x!,...,x™) be local coordinates around (to) and let
{01, ...,0,} be the coordinate basis around this system. Then,

V()= Vit | (1.111)
(t)

which shows that V is extendible around U. Then,

DtV(to) = Vk(to)ak + Vj(to)v,yl(to)aj

" o B (1.112)
= (Vi (to) + V/(to) ' (to)w; (9:))0k,

where w}‘ € QY(M) are the connection 1-forms. Therefore, D; is locally unique. Since
(I) is a compact subset of M, one may realize the same procedure to a finite number
of neighborhoods, and since these relations must agree on overlaps, it follows that Dy is,
in fact, unique all over v, if it exists. Now, just take eqn (1.112) as the definition of D;V

and it follows that it automatically satisfies all wanted relations. [

Definition 1.50. Let E be a vector bundle over M and ¥V a connection on E. If V: 1 — Eisa
section along a curve 7y : I — M such that

DV =0, (1.113)
then V is said to be parallel with respect to .

Lemma 1.51. Let E be a vector bundle over M and ¥V a connection on E. Consider a curve
v:1 — Mandty € I. Then, for any fixed Vo € E,, there is an unique parallel path
V : I — E above 7y such that V(tg) = V.
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Proof. As discussed before, one may proceed locally: aiming to find a section V : I — E

along vy satisfying the definition of parallel path and eqn (1.112), there follows

. k . .
Vi) = =) Viwi(v' (1), V(to) = Vo. (1.114)
j=1
Defining the matrix A(t) = —w(7/(t)), where now w = (w]l:) is the connection 1-form

matrix, then the last equation can be translated to
V()= AV (L), V(o) =V, (1.115)
and its existence and uniqueness is a direct result of ODE> theory. O

Definition 1.52. Let E be a vector bundle over M, V a connection over E, v : I — M a curve
and to,ty € 1. Then, the parallel transport along <y (with respect to V) from tq to ty is the
map

T Engey) = Eqtr)s (1.116)

which sends Vo € E. ) to the unique vector V(t1) € E. ) such that V(t) is the parallel curve
above v with V(ty) = V).

Remark 1.53. From the uniqueness property, and the linear dependence of the ODE
on its initial condition, it is straightforward to see that Tfy"’tl is a well-defined linear

transformation. Moreover, it follows from uniqueness that
b1t to,f1 _ rlo,t2
Ty 2o Ty =T,7, (1.117)

and taking to = t, it follows that T is an isomorphism of vector spaces. It so happens
that the parallel transport completely defines the connection and vice-versa, as one
can see in the following result. The parallel transport manages to connect the different
fibers around a neighborhood of a point p € M, so that the usual (calculus) notion of

derivatives can be perceived, as previously stated.

Theorem 1.54. Let v : I — M be a smooth curve over M with «y(tg) = p and 7' (tp) = Xo €
Ty M. Then, it follows that for every section S € I'(E) there holds

() (S ()~ Sttt
Vx,S(p) = th_{rtB = P— . (1.118)

5 Ordinary Differential Equations.
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Proof. Let {ey,...,ex} be a basis for E, and define e;(t) = Tfyo’t(ei). Since T;O’t is an
isomorphism, the set {e;(t),...,ex(t)} is a basis for E, ;. Therefore, there are smooth
functions a' : U — R in some neighborhood of p such that S(7(t)) = a'(t)e;(t). Since the

parallel transport is linear, it follows that

to,t) 1 i
(TVO' ) (S (v(D)) = a'(t)e;. (1.119)
Then,
(107 (S () SOt e - de
lim = = lim V% = 4i(to)e;. (1.120)
t—sto t—tp t—stg t—to

On the other hand, the definition of parallel transport yields V. (e;(t)) = 0. Since
79(to) = Xo, one may calculate the expression V.S = D;V and then set t = ty. It
follows that

Vo(S) = ' (Be; + (Vo ex(t)) = d' (D, (1.121)

as wanted. m
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RIEMANNIAN MANIFOLDS

In this chapter some elementary results on Riemannian manifolds are presented. A
vector bundle E over a manifold M may be endowed with a smooth parameterized
choice of metrics on the fibers E, yielding the concept of a metric over the manifold
M. This more general case may be considered in detail but the case E = TM is focused

herein, as follows.

2.1 RIEMANNIAN METRICS

Generally, metrics over vector spaces V are functions which allow one to define the
notions of sizes and angles of vectors, as well as the concept of orthogonality. One may

consider the basic example of V = R"” endowed with the canonical Euclidean metric

(-,-) given by

n

(u,0) =Y _u'v!, (2.1)

i
where u = (u!,...,u") and v = (Z)l, ..., 0" are vector in R". Further on, the Euclidean
norm may be defined by

[ERVAUADE (2:2)

which precisely measures the Euclidean size of a vector u € IR”. In addition, the angle 0

between two vectors u,v € IR” can be seen to be given by

{u,0)

f = arccos , (2.3)
[l 1]l
in such a way that this notion may be generalized as follows.
Definition 2.1. A metric over a vector space V is a function
g:VxV =R, (2-4)

satisfying the following properties:

31



32

RIEMANNIAN MANIFOLDS

(1) Symmetry: g(u,v) = g(v, u) for every u,v € V.

(2) Bilinearity: g(u, Av+w) = Ag(u, v) + g(u, w) for every u,v,w € Vand A € R.

(3) Positive-definiteness: g(u,u) > 0 for every u € V; g(u, u) = 0 if and only if u = 0.
One says that the pair (V, g) is a vector space endowed with a metric.

It is straightforward to see that the Euclidean metric satisfies the above conditions.
Moreover, in the context of manifolds M one may endow the tangent bundle TM with
a metric in such a way enabling the possibility of measuring these quantities in each
tangent space T,M. A choice of metric g, for each tangent space produces a collection

{8y} pem. However, as one might expect, such indexation shall be required to be smooth.

Definition 2.2. Let M be a manifold and consider its tangent bundle TM. A metric over M
is a family {gp}pem of metrics gy : TyM x T,M — R, which vary smoothly with p € M.
Namely, if X,Y € X(M), then the function g(X,Y) : M — R defined by

g(X/ Y)(P) = gp(Xp/ Yp)/ (25)
is smooth. In such case, the pair (M, g) is called an Riemannian manifold.

As in the case of affine connections over TM, one may see that every manifold M
admits a metric by the usual partition of unity argument. In what follows some of
the properties and classical constructions related to Riemannian manifold (M, g) are

presented.

Remark 2.3. An important notion in geometry is that of symmetries. Namely, whenever
one has two vector spaces endowed with metrics (V, g) and (V,§), one may look for an
isomorphism T : V — V preserving this structure in such a way that for every u,v € V
there holds

3(T(u), T(v)) = g(u,v). (2.6)

An analogous notion can be considered for Riemannian spaces. Namely, given (M, g)
and (M, §) two Riemannian spaces, an isometry between them is a diffeomorphism
F: M — M such that for every p € M and X,,Y, € T,M there holds

§@Fy(Xp), dFp(Yp)) = g(Xp, Yp). (2.7)
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One may now look at some elementary properties and constructions that can be
considered over a Riemannian manifold (M, g). Let (U; x!,...,x") be local coordinates
and let {d1,...,9,} be the associated coordinate basis. Then, note that ¢ € S*>(M) =
F(SymZ(TM)). Therefore, one may write

g= gijdxi ® dxd, (2.8)

where in this case it follows that
8ij = 8jir (2.9)
since g is symmetric. In addition, since g is positive-definite, it follows that the matrix
(8i7) defines an isomorphism. Therefore, there exists an inverse matrix which shall be
denoted by (g). Then, it follows that
S : 1, ifi=j,
gig = ¢ grj = 0} = - (2.10)
0, ifi#j.
One elementary but interesting property of metrics over manifolds is that they allow one
to convert vectors to covectors and the opposite. Namely, given a vector field X € X(M),

one can define the 1-form X’ by the relation
X'(Y) = g(X, Y), (2.11)

for every vector field Y € X(M). Then, (-) is called the flat isomorphism and in local
coordinates one has
X’ = g(X'0;, ) = gy X'dad. (2.12)

Putting it in coordinates with X’ = dexj it reads
X; = gi]-Xi. (2.13)

In the same manner, if w is an 1-form then the vector field w! may be defined in terms

of the inverse metric g/ by setting w* = w'd; and taking
w' = gijwj. (2.14)

The map (-)f is called the sharp isomorphism and together with the flat one these
are called the musical isomorphisms with respect to g. It is also clear that one is the
inverse of the other. Another important notion when working with metric is that of

orthogonality.
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Definition 2.4. Let (M, g) be a Riemannian manifold and fix p € M. Then, two vectors
Xy, Yp € TyM are said to be orthogonal if

Xy, Yp) =0. (2.15)

Moreover, if a collection of vectors X}, ..., X’;, € T, M are pair-wise orthogonal and unitary,
that is
X ,X;) =1, Vied{l,... k}, (2.16)

then the set {X;};‘:l is said to be orthonormal.

Remark 2.5. Let (M, g) be a Riemannian space and suppose that {e,...,e,} is a local
frame for p € M in some open neighbourhood U. Then, if for some q € U the basis
{ei(q),...,en(q)} for T;M is orthonormal then it is called an orthonormal basis. In
addition, if this property holds for every point in U then {ey,...,e,} is called an
local orthonormal frame. By the usual Gram-Schmidt orthonormalizing process it is

straight-forward to prove the

Proposition 2.6. Let (M, g) be a Riemannian manifold. Then, for every p € M there is a local
orthonormal frame {Ey, ..., E,} over a neighbourhood U of p.

Now, just like connections it is possible to extend the metric g for all of the tensor
bundle le(M). Of course, a metric for a more general vector bundle E over M is given
by a smooth parameterization of metrics g, : E;, X E, — R over the fibers satisfying the

properties given in Definition 2.1.

Proposition 2.7. Let (M, g) be a Riemannian manifold. Then, one may uniquely extend the
metric g to the tensor bundle le(M) with the property that if {Ey, ..., E,} is an orthonormal
basis for T,M with {E',...,E"} its dual basis, then the usual tensor basis for TZk(TpM)

associated with them is also orthonormal.

Proof. Let Ry, S, € le(TpM). Then, taking local coordinates (U;x!, ..., x") one may see

by direct computation that such metric must be given by
§(R,S) = gh" - ghigs, - gjs RIS (2.17)
UJ
Remark 2.8. In particular, notice that for a, w € Q!(M) there holds in local coordinates

(o, w) = gijaiw i (2.18)
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and on the other hand
g(af, wb) = g(gw;d;, ¢ amdy) = g wjnigy = g, (2.19)

so that the musical isomorphisms preserve the metric defined by means of Proposi-
tion 2.7. Such metric can be naturally extended to the space of k-forms, where for

homogeneous & = a1 A --- Aag and B = 1 A - - A By the metric is given by

g(a, B) = det (g(a;, B)))- (2.20)
Remark 2.9. Let F € 75(M) be a (’Z‘)—tensor field. Locally one has
F = Fg;l.'.'.'i];kajl ®: - ®0;® dx' @ - @ dx'l (2.21)

so that one can define a (];11) tensor called the lowering of an upper index as follows:

choose one of the contravariant entries of F, say 1 < m < k. Then, with respect to those

local coordinates one may define the symbols

JLoem—tjmeteJe _ pte fm—1mme - fk

jn1i1-~~il i1+ g”jm (2'22)

where the dummy index n sums over all values {1,...,k}. Analogously it is possible
to define the raising of a lower index of the tensor F by again choosing 1 < m <[ and
setting

J1Jkim _ Fjl"'jk gnim
e lp—1tma1Y 1M1

(2:23)

These operations shall be used in several occasions to come.

One may consider the case when M is oriented and perceive the relations with the

Riemannian metric.

Lemma 2.10. Let (M, §) be a Riemannian manifold with M oriented. Then, there is an unique
n-form volg such that for every oriented orthonormal basis {E{(p), ..., Ex(p)} for T,M there
holds

volg(Ey, ..., Ep) =1, (2.24)

which is called the Riemannian volume element for (M, g).

Proof. Fix p € M and let (U; x!,...,x") be local coordinates around it. Then, take a
(positively) oriented orthonormal basis {Ej, ..., E,} for T,M and consider its dual basis
{E',...,E"}. Define

volg = E'A---AE" (2.25)
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Obviously this n-form satisfies eqn (2.24) for the chosen orthonormal basis. In addition,
if {E',...,E"} is another oriented orthonormal basis for the dual space T;M then,

denoting by T the transition matrix between such basis, there follows
E'A---AE"=(detT)E* A--- AE". (2.26)

However, since both of them and orthonormal and positively oriented one has detT =1,

which gives the desired result. O

Remark 2.11. Let volg be the Riemannian volume form for (M, g), written in terms of
an orthonormal basis as
1
volg =E" A--- AE". (2.27)

Then, taking the local coordinates (U; x!, ..., x") one may denote by A the matrix with

0; in its i-th column with respect to this orthonormal basis. It follows that

|dxt A~ Adx"||= |det A|= 1/ det(AT A). (2.28)

Since by construction ATA = (8ij), one has the relation

volg = y/det(g;;)dx' A - -+ Ndx", (2:29)

Remark 2.12. Given an n-dimensional Riemannian manifold (M, g) with M oriented,

one may consider the Hodge star operation
*: OF(M) = Q" KM, (2.30)
which is defined by the relation
(w,a)voly = w N *x = & A\ *w, (2.31)
where w € OF(M) and a € (0" K(M). There holds
*2 = (=1 =h), (2.32)
In addition, consider the interior product
S X(M) x QF M) — QF (M), (2.33)
which for X, Xy, ..., Xx_1 € X(M) and w € QF(M) is given by
(Xow)(Xq, ..., X)) =wX, X1, .., Xi_1) (2.34)

One can then prove the important relation
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Lemma 2.13. Let (M, g) be a Riemannian manifold with M oriented, w € OK(M) and X a
vector field. There holds
*(X Jw) = (—=1)FX A *w). (2.35)

In particular, when w = volg one has
X Jvolg = *xXP. (2.36)
Proof. Let o € Qk’l(M). Then, there follows

a Ax(X Jw) = (a, X Jw)volg

= (X L w)(a*)volg
= w(X A a¥)vol
e (2:37)
= (w, X" Na)volg
= (Xb A &) N\ *w
= (=D T A (X0 A *w).
O

2.2 GEODESICS AND NORMAL COORDINATES

The important notion of geodesic curves may now be presented, being those the curves
with no acceleration over an affinely connected space (M, V). With the aid of the
covariant derivative along curves developed in the last chapter, one may be able to
define what acceleration means in a rigorous way in this case. Then using these entities

and a metric over M one may be able to present normal coordinates around a point.

Definition 2.14. Let (M, V) be an affinely connected space and «y : I — M a curve over M.
Its acceleration is defined as the vector field Dyvy' along +.

Example 2.15. It is possible to see that this definition is compatible with the usual
notion of acceleration on for curves in R”. Let v : I — IR" be a curve and assume V
to be the flat affine connection on E = T(IR") ~ R". Then, taking the canonical (global)
frame {é1,...,é&,} for E there holds for ty € I

D7 (to) = (¥:(to) + 7/ (t0) ¥ (to)w (@) = ¥ (to)ex = 7" (ko). (2.38)
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Definition 2.16. Let (M, V) be an affinely connected space and vy : I — M a curve over M. If

its acceleration is zero for all t € I, that is

Dy’ =0, (2.39)
then vy is said to be a geodesic with respect to V.

Theorem 2.17. [Existence and Uniqueness of Geodesics] Let (M, V) be an affinely connected
space, take p € M, Xo € TyM and ty € R. Then, there is an open interval I C R with ty € I
and a geodesic <y : I — M such that y(to) = p and ' (tp) = Xo. Also, two such geodesics agree

on their common domain.

The last result can be used in order to define a relation between the tangent space
TyM and points in a neighbourhood of p. Namely, each X € TM encompasses a
point 77(X) = p and vector X,,, which by Theorem 2.17 yields a geodesic yx such that
Yx(to) = 0 and v (tg) = X, for some tg € R. Then, one may define the subset ¢ of TM

¢ = {X € TM : the maximal geodesic yx : I - M has [0,1] C I}. (2.40)
The exponential map exp : € — M is then given by
exp(X) = rx(1). (2.41)
Lemma 2.18 (Rescaling lemma). Let X € TM and let c,t € R. Then there holds
Yex () = x(ct). (2.42)
Proposition 2.19. The exponential map exp : € — M has the following properties:

(1) €is an open subset of the tangent bundle T M containing the zero section.

(2) The geodesic yx is given by
Tx(t) = exp(tX), (2.43)
forallt € I andall X € TM.

(3) The exponential map is smooth.

It is also possible to consider for each p € M the restriction ¢, = € N T, M and then
define

exp, : € — M. (2.44)
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Lemma 2.20 (Normal Neighborhood Lemma). For every p € M there is a neighborhood Ny
of the origin in T,M and Ny of p in M such that exp,:No = Nyisa diffeomorphism.

Proof. One might see that the push-forward
d(expp)p : To(TyM) = T,M — T,M (2.45)

is, in fact, the identity and therefore an isomorphism. Hence, the result follows from the
Inverse Mapping Theorem. Indeed, let X, € T,M and 7y : [ — T,M given by *y(t) = tX,,.
Then,
d d d
d(expp)p(Xp) = %LO <expp o*y) (t) = %‘t:o expp(tXp) = tzO’yXp(t) =Xp.  (2.46)
OJ

Now, it is in our interest to introduce coordinates related to the exponential diffeomor-
phism containing desired properties to work with. Remarkably, the normal coordinates
are extensively used in Riemannian geometry but cannot be presented without the

presence of a metric g.

Definition 2.21. An affinely connected Riemannian space is given by a triple (M, g, V)

for which M is a manifold endowed with a metric g and an affine connection V.

Consider then the affinely connected Riemannian space (M, g, V). If {Ey, ..., E,} is

an orthonormal basis for T, M then there is a natural isomorphism E : T,M — R" given
by
EQE) = (1, xn), (247)

which in turn defines a coordinate chart
¢p=Eo exp;1 :N, = R", (2.48)
called the normal coordinates centered at p.

Proposition 2.22 (Properties of Normal Coordinates). Let (N, ¢) = (Np; x1,...,xn) be

normal coordinates centered at p. Then,

(1) For any vector field X = X'9; € T,M, the geodesic yx at p is represented in normal

coordinates by the radial line segment

plyx (D) = (¢X',... tX") (2.49)

39



40

RIEMANNIAN MANIFOLDS

whenever yx(t) is inside of N. Moreover, there is a neighbourhood N}, of p called the
restricted normal neighborhood at p € M for which every pair of points a,b € N, has

an unique geodesic between them.

(2) ¢(p) =(0,...,0).
(3) The components of the metric at p are g;; = J;j.

Remark 2.23. Fix dim M = n. Then, since in normal coordinates there holds g;; = ¢;; at

the point p, this in turn makes
giig" = 6,67 = Tr(Id) = n (2.50)
where Tr denotes the trace of a square matrix.

Remark 2.24. In the next section, a notion of compatibility between a connection V and
metric g over the manifold M will be considered, yielding the notions of torsion and
metric-compatibility. In that case, it also follows that if V is metric-compatible then the
partial derivatives g;; x vanish and if V is torsionless then the Christoffel symbols Fi.‘].
also vanish at p. It is important to note that these properties hold only on the "central"
point p. The description, even in normal coordinates, of geodesics between other points,
as well as the properties of the partial derivatives and Christoffel symbols vanishing do

not hold in all of Np in general.

Remark 2.25. Notice that the second property in the Proposition 2.22 shows that for
each p € M the metric g, over the tangent space in normal coordinates is given by the
Euclidean one. There is a generalization of this concept (structures over a manifold
that locally look like a fixed system in the tangent space) called G-structures. Their
more general formal theory will not be presented, but the specific case of the so-called

Go-structures will be perceived further on.

2.3 METRIC-COMPATIBILITY AND TORSION

As said before, it may be the case when M is endowed with both a connection V and a
metric g. In this section, the relations between these structures are investigated and a

sense of compatibility between them can be considered.
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Definition 2.26. Let M be a manifold. If V is an affine connection and g a metric over M then

the triple (M, g, V) is called an affinely connected Riemannian space.

Definition 2.27 (Metric compatibility). Let (M, g, V) be an affinely connected Riemannian

space. Then, the connection V is said to be metric-compatible or compatible with g if
X(8(Y, 2)) = g(Vx(Y), Z) + 3(Y, VxZ), (2.51)
forevery X, Y, Z € X(M).

Remark 2.28. The condition in definition 2.27 can be put in the following manner: let
v:I = Mbeacurvein M and X,Y : I — TM sections along -y. Then, the connection
V is compatible with g if and only if

d
718X, Y) =g(DiX, V) + (X, DyY). (2.52)

Proposition 2.29. Let (M, g, V) be an affinely connected Riemannian space. The following
statements are equivalent:

(1) The connection V is compatible with g.

(2) For any curve 7y : [to, t1] — M with (ty) = p and y(t1) = q, the parallel transport Tfro’tl
with respect to 'V is an isometry between (T, M, gp) and (T;M, &)

(3) The total covariant derivative Vg = 0
Now, one may recall the Lie bracket operation
[, -]: X(M) x X(M) — X(M), (2.53)
which, for a function f € C*(M), is given by
[X, Y1f = X(Y(f)) = Y(X(f)). (2.54)
Taking a coordinate basis {91, ...,9,} for T,M, it follows that
[X'0;, YI0j](f) = X'9;(Y/9;(f)) — Y/0;(X'0,(f)
= X'0,(YN0;(f) = YVo;(X2,(f) + X'V @d))(f) = YX'@9)(f)  (2.55)
- (Xiai(w') . yiai(xf)) 3,

where the relation 9;0; = 9;0; (by Schwarz’s Theorem) was used. The Lie bracket is

intrinsically related to Lie algebras and groups (more details on refs. [35,39, 40]). It
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measures the failure of the commutation of the global derivations spanned by the vector
fields X, Y € X(M). Note that the relation

[ai/ a]] =0, (256)

was used in the previous calculation. Such identity always holds for coordinate bases,
but not necessarily in more general ones. Besides, for any X, Y, Z € X(M) one may see

the so-called Jacobi identity
(X, [V, ZIT+ Y, [Z, X1 +[Z,[X, Y]] = 0 (2.57)
holds.

Definition 2.30. Let (M, V) be an affinely connected space and define the operator
T:X(M)x X(M) — X(M), (2.58)
called the torsion with respect to V by the relation
T(X,Y) = Vx(Y) = Vy(X) - [X, Y]. (2.59)

Remark 2.31. It is an easy task to verify that the torsion T for a connection V is a C*(M)-
linear alternating operator. Therefore, there holds T € T(A%(TM) ® TM) = Q*(M, TM).

In addition, a connection is called torsionless or torsion-free whenever T = 0.

Remark 2.32. Let p € M and choose local coordinates (U; x!, ..., x") with such the
coordinate vectors are given by {91, ...,9,}. Then, one can define the torsion symbols
T;k by ' ‘

i = dx’ (T(9;,0

]')) - dxi(r;.'kai - r;cjai) = ;k - I";'(].. (2.60)

Notice that by definition the symbols satisfy

and the connection is torsionless if and only if F’t i = 0. One may as well lower the
upper index, yielding
Tz'jk = gilT]-lk. (2.62)

The metric-compatibility and the torsion of a connection V are related, in the sense

that given a metric g these properties uniquely define a connection over M.
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Lemma 2.33 (Fundamental Lemma of Riemannian Geometry). Let (M, g) be a Riemannian
manifold. Then, there is an unique torsionless connection NV compatible with g. Such connection

is called the Levi-Civita connection of (M, g).

Proof. Suppose first that V is indeed a connection compatible with ¢ and let X,Y, Z €
X(M) be arbitrary vector fields. Using the compatibility relation, it follows that

Xg(Y,Z) = g(VxY, Z)+g(Y,VxZ),
YQ(Z,X) = g(VyZ,X)+g(Z, VyX), (2.63)
7Z3(X,Y) = g(VzX,Y)+g(X, VzY).

Since V is torsionless, there holds VxZ = VX + [X, Z] and similar relations with
respect to VyX and V7Y, yielding

Xg(Y, Z) = S(VXY, Z) + 8(Y/ VZX) + 8(Y/ [X/ Z])/
Y8(Z,X) =8(VyZ, X)+8(Z, VxY) +g(Z,[Y, X]), (2.64)
729(X,Y)=g(VzX, Y)+g(X,VyZ)+ 3(X,[Z,Y]).

One may add the two first equations and subtract the third, resulting in

Xg(Y, 2)+Yg(Z, X) — Zg(X,Y) = 28(VxY, Z2) + g(Y, [X, Z]) + g(Z,[Y, X]) — &(X, [Z, Y]).

(2.65)
Rearranging the terms comes

1
(2.66)
Now, since the right-hand side of eqn (2.66) does not depend on the connection V, if

V1! and V2 are both torsionless connection, then it follows that
g(VxY — VXY, Z) =0, (2.67)

for every X,Y,Z € X(M). Since g is non-degenerate, it follows that V%{Y = V%{Y, for
every X,Y € X(M). This proves uniqueness.

In order to prove existence one may show that such connection exists locally, then by
uniqueness this must be the only possible connection. A local chart (U, x1, ..., x;) may

be considered and applying eqn (2.66) on the coordinate vectors {01, ...,9,} yields

1
8(Vy,0;,9)) = E(aig(ajz d7) +0;8(9;,9;) — 918(9;,9)))- (2.68)
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It then follows in index notation that
1
T &m = Q(gjl,i + 8il,j — &iji)- (2.69)

Using the metric inverse of glk, there holds

1
Fi'{j = Egkl(gjl,i +8il,j — &ij,i)- (2.70)
Since l"f.‘j = l";-‘i, it follows that V is torsionless. By Lemma 2.29, to prove that V is
compatible with g it suffices to prove that Vg = 0. In components, one has
Vgij = Sijk — Tiglj — qugiz- (2.71)
One may use eqn (2.69) to conclude that
1 1
l [ _ g o
Thigij + D&t = 5 (ijk + 8kji — 8kij) + 5 (8jik + &kij — i) (2.72)
= ak glj
Therefore, Vg = 0 and so V is indeed compatible with g. ]
Remark 2.34. Since the Levi-Civita connection for a Riemannian manifold (M, g) is
unique, one may sometimes denote it by V& to make explicit its dependence on the
metric g. Moreover, another tensor which shall be of great importance is the contorsion

or the Cartan torsion® of a connection V as follows.

Definition 2.35. Let (M, g, V) be an affinely connected Riemannian space and consider its
Levi-Civita connection V3. Then, the contorsion is an application S : X(M) x X(M) — X(M)

measuring the difference between YV and the Levi-Civita connection. It is given by the relation
S(X,Y)+VxY = V§Y. (2.73)

It is straightforward to see that the contorsion is a (;)-tensor field, since by definition
it is C*°(M)-linear on the first entry and for f € C*(M)
S(X, fY) = V(fY) = Vx(fY)
= £ (VY = VxY) + X(f)Y — X(f)Y (2.74)
= fS(X,Y).
Additionally, it encompasses a considerable amount of information about the original

connection V. For the next result, fix the affinely connected Riemannian space (M, g, V)

with contorsion S as in eqn (2.73).

This tensor is sometimes simply referred as torsion in the literature, although there are some differences

between them in the general case.
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Proposition 2.36. The connection V is torsion-free if and only if the contorsion tensor S is

symmetric.
Proof. By a straight-forward computation, one has

T(X,Y)=VxY — VyX — [X, Y]
= V3Y — V§X — [X, Y] +5(Y, X) — S(X,Y) (2.75)
= S(Y, X) — S(X,Y),

hence the result. ]

One may explicitly define the tensor obtained by lowering the contorsion upper index
given by
A:X(M) x X(M) x X(M) — R, (2.76)

where, as usual, there holds
A(X,Y, Z) = g(5(X,Y), Z). (2.77)

Proposition 2.37. The connection V is metric-compatible if and only if the tensor A(X,Y, Z) =
8(S(X,Y), Z) is anti-symmetric in Y and Z.

Proof. The connection V is metric-compatible if and only if
XY, 2)) = g(VxY, Z2) +g(Y, VxZ), (2.78)
for every X,Y,Z € X(M). On the other hand,
8(VxY, 2)+ (Y, Vx2) = g(V&Y, 2) + (Y, V&Z) — §(S(X, Y), Z) — §(Y,S(X, 2)), (2.79)
and since V¢ is metric-compatible, it follows that
2(5(X,Y),Z2)+g(5(X,2),Y) =0. (2.80)
L

Definition 2.38. Given two affine connections ¥ and ¥V over M, one says that they have the
same set of geodesics over M whenever a geodesic vy : I — M for V is also a geodesic for V

and vice-versa.

Proposition 2.39. The connection V has the same set of geodesics as V38 if and only if
AX,Y,Z) = g(5(X,Y), Z) is anti-symmetric in X and Y. Equivalently, if and only if S

is alternating.
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Proof. Indeed, let X be any vector field and p € M. Then, let ¥ be a geodesic with
7(0) = p and 7/(0) = X;,. If V and V& share the same geodesics, then

S(Xp, Xp) = vi,y’ — V7 =0 (2.81)

and then it follows that S is alternating. Conversely, let oy be any curve. If S is alternating
then
I o8 ./
Voyy = V7/7 , (2.82)
and therefore a curve 7y is a solution of the geodesic equation for V if and only if it is a

solution of the geodesic equation for V. O

Remark 2.40. Notice that, by means of eqn (2.75), if S is alternating (hence anti-

symmetric), then,
T(X,Y)=-S(X,Y)+S(Y, X) = —25(X,Y), (2.83)

which, in coordinates, may be seen as

;’k = _ET;k = —Ij- (2.84)
In conclusion

Theorem 2.41. Let (M, g, V) be an affinely connected Riemannian space and denote by V& its
Levi-Civita connection and by S the associated contorsion. Then, V is metric-compatible and
shares the same geodesics as V38 if and only if the tensor A(X,Y, Z) = g(S(X,Y), Z) is totally

anti-symmetric. In addition, in that case there holds
T =-2S. (2.85)

Remark 2.42. We believe that Theorem 2.41 may provide a good explanation on why
the contorsion of an affine connection V is simply denoted by "torsion" in some of the
literature. Firstly, because in many applications (one of which shall be presented in
the next chapter) one considers an affinely connected Riemannian space (M, g, V), for
which the contorsion is assumed to be totally anti-symmetric, so that all the desired
properties listed in Theorem 2.41 may hold for the original connection V. Besides, since

in that case the torsion and the contorsion are multiples, there might be some confusion.

The contorsion is an important object in the so-called Einstein-Cartan theory (of
gravity), where one considers the nonvanishing of torsion in the underlying space.

More details on the contorsion and its applications to physics can be found in [41, 42].
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In this section, the notion of curvature for more general affinely connected spaces
(M, V) is analyzed and its local properties are investigated. The Riemannian geometric
interpretation of the curvature in the context of Riemannian manifolds (M, g) may be
considered (see e.g [35]) but is for now left aside. Whenever a metric is needed (and its
Levi-Civita connection by extent) their emergence shall be explicitly made clear, so that

results here may be presented as generally as possible.
Definition 2.43. Let (M, V) be an affinely connected space. The curvature tensor is the map
R : X(M) x X(M) x X(M) — X(M) given by
R(X,Y)Z =VxVyZ - VyVxZ —VxyZ. (2.86)
By straight-forward calculations one may see that the curvature tensor is indeed a

(é)-tensor field. By proceeding locally, if (U; x!, ..., x") are local coordinates around a

point p € U then there are 4n smooth functions R;-kl : U — R such that
R = Riyyd; @ dx) @ dx* @ dx!, (2.87)
where the convention?
R(ak, al)a] = R;'-klai (2.88)

is taken. One can also compute the curvature tensor in terms of the Christoffel symbols,

namely
R(9k,01)0j = V5, V,0; — V5, Vy.0; — V5, 9,19), (2.89)
and since locally [0y, 9;] = 0, there holds
R(9x,91)9; = V5, Va,0; — Vi,V 0;
= Vo, (T}10m) — Vo, (Tdm) (2.90)
= I} [ P g PO+ r;'j,kai — r;;jllai,
so that
Rl = T1iT}, = TET, + T — T - (2.91)
Whenever the manifold M is endowed with a Riemannian metric g one may also take

the lowering of the first index and get a covariant curvature 4-tensor given by

Riju = gimRj- (2.92)

2 One must be extremely careful about the curvature tensor convention, as it changes depending on the

literature.
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Theorem 2.44 (Generalized Bianchi Identities [39]). Let (M, V) be an affinely connected
space, X,Y,Z € X(M) and let T denote its torsion tensor. Then, there holds

(1) R(X,Y)Z = —R(Y, X)Z,

2) Y RX,VZ=Y ((VXT)(Y, 7)+ T(T(X, Y), Z)) (first Bianchi identity),

cyclic cyclic

) Y ((v xR)(Y, Z) + R(T(X, Y), Z)) =0 (second Bianchi identity).
cyclic
Remark 2.45. Notice that Theorem 2.44 is, in fact, a generalization of the more well-
known Bianchi identities seen in Riemannian geometry introductory courses. In such
background, this is due to considering the Levi-Civita connection of a metric defined
upon the manifold M instead of a more general connection. Indeed, consider now the
Riemannian manifold (M, g) and endow it with the unique torsionless metric-compatible

connection V8. Its curvature tensor shall be denoted by
R(X,Y)Z = VYV3Z - VYV Z -V | Z (2.93)

which will be called the Riemannian curvature tensor. By definition, the torsion for
V& vanishes and therefore the Bianchi identities (2) and (3) in Theorem 2.44 take the
more well-known forms
Z R(X,Y)Z=0 (first Riemannian Bianchi identity).
cyclic

Z (VxR)(Y,2)=0 (second Riemannian Bianchi identity).

cyclic

(2.94)

When a Riemannian metric is present, one may moreover consider the following also

well-known symmetries.
Proposition 2.46. Let (M, g, V) be an affinely connected Riemannian space. Then,
(1) If V is metric-compatible then

8(R(X,Y)Z, W) = —=g(R(X, V)W, Z). (2.95)

(2) If V = V& then
SR(X, Y)Z,W) = g(R(Z, W)X, Y). (2.96)
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It is often useful to consider the index notation which in general summarizes, at least

in the local setting, the information contained in the curvature tensor. Let (M, g, V) be

an affinely connected Riemannian space and take the local coordinates (U; xt, o am).

Then, (i - - - i) denotes the symmetrization of the indices iy, ...,i, whereas [i; - - - if]
denote their alternation. The first equation in Theorem 2.44 reads

R;kl = _R;lk. (2.97)
Following up, the generalized Bianchi identities can be perceived by the relations

Riky = Ty — T Tt = 0

m
‘ y (2.98)
Rty * R yu Ty = 0,

with their well-known counterparts when T = 0. Considering now a metric-compatible

connection V, one may now lower/raise indices. Equation (2.95) reads
Rijii = —Rjina, (2.99)
and moreover assuming that V is torsionless (so that V = V) yields
Riji = Ryij- (2.100)

A few contractions may be considered, as follows, in order to make the curvature
tensor easier to manipulate. Sometimes, the following notions carry enough information
so that one may consider them as constraints in geometrical problems. This introductory
chapter is then concluded with a brief application of the developed theory, with the
Einstein field equations in general relativity being presented along with the notion of

Einstein spaces.

Definition 2.47. Let (M, g, V) be an affinely connected space. The Ricci curvature tensor is
defined as the contraction of the curvature tensor using the metric g in the first and third indices.

Its components are denoted R;; and satisfy
R;i = Ri.‘k]. = gkamikj, (2.101)
Further contracting the Ricci tensor gives the scalar curvature R, given by
R = Rf = Ri]-gij. (2.102)

Remark 2.48. Notice that from eqn (2.100) it follows that whenever V = V¢, then the

Ricci curvature is a symmetric 2-tensor.
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The geometric theory of Riemannian manifolds (M, g) is remarkably prominent in the

general relativity theory of gravity, in which one considers the Einstein field equations
1

where G is the gravitational constant, A is called the cosmological constant and T}, the
energy-momentum tensor, which describes the mass distribution of a given phenomenon.
In this background, M is considered to be a 4-dimensional manifold, called the space-
time, which is endowed with a (to be determined) metric> ¢ over M and one considers
the Levi-Civita connection. Intuitively, since ¢ depends on the observed phenomenon
(the data given by T,,), this equation describes how mass, and therefore gravity, is
connected to the underlying geometry of space-time, here encompassed by the unknown
metric which in turn defines the unique connection V&. A thorough exposition on
general relativity with many examples can be seen in [43].

Now, in order to determine the metric one may consider the elementary case, namely

the vacuum-state of this theory (T = 0). Contracting the field equations with g gives
R — 2R = —4A, (2.104)

that is,
R =4A. (2.105)

Then, inserting this relation back to the equations yields
RVV = Ag}“/. (2-106)
Equation 2.106 then motivates the

Definition 2.49. An affinely connected Riemannian space (M, g, V) is called an Einstein
space if the metric g is a scalar multiple of the Ricci curvature, that is, there is a function
A M — R such that

Rij = Agij (2.107)

all over M. Besides, whenever A = 0 identically then M is called Ricci-flat.

3 To the well-aware reader, this shall be, in fact, a pseudo-Riemannian metric over the manifold M.
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GEODESIC LOOPS

This chapter is devoted to establishing the theory of the so-called geodesic loops over an
affinely connected space (M, V). The construction and basic notions of such structure
shall be considered and one shall be able to see that they are intrinsically related to the
geometry produced by the connection V.

It is subdivided in the following way: the first section is devoted to the aforementioned
basic constructions over geodesic loops as given by [28]; in the second one, the algebraic
aspects of these structures are studied, such as their fundamental tensors and W-
algebras; subsequently, a metric over the manifold M is considered in order to depict
some of the relations between the fundamental tensors of a geodesic loop in an affinely
connected Riemannian space and its underlying geometry, which are results developed
in [29, 44]; finally, in the last section an introduction to applications of this theory
is provided, for instance in the context of supergravity, namely the Kaluza-Klein

spontaneous compactification theory, following the work presented in [30,31].

3.1 LOCAL LOOPS

In this section, the more general notion of local loops is considered, as originally
presented in [28]. The word loop” here is, in fact, related to the algebraic definition of a

loop, as follows.

Definition 3.1 (Quasi-group). Let A be a non-empty set and x : A x A — A a binary
operation. If, for every x,y € A, there are unique zq,z, € A such that

X*xzy =Y and zpxx =Y, (3.1)
then the pair (A, *) is called a quasi-group.
Definition 3.2 (Loop). Let (A, *) be a quasi-group. If there is an element e € A such that

Xkxe=exXx=Xx (3.2)
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for every x € A, then (A, x) is called a loop. Such element e is called an identity element (or

unity) in the loop (A, *).

Remark 3.3. Notice that, in a loop (A, *), the unity e must be unique. Indeed, if there is

another element ¢ € A with such property, then

g=exi=e, (33)
so that one may call e the unity in the loop (A, *). Moreover, taking y = e in the
quasi-group relation (3.1) produces the elements xL_l, xlgl € A such that

1 1

x*xp =e and x; *xx=e¢, (3-4)

respectively called the right and left inverses in the loop (A, *). It is straightforward
to see that an associative loop is a group, since there the right and left inverses agree.

Indeed,

xil = xgl * (X % xlgl) = (x[l * X) % xlgl = xlgl. (3.5)
The notion of local loops in a topological space M may now be introduced. In what
follows, whenever x € U C M, one denotes Ul = {x} x U and U2 = U x {x} in M x M.

Definition 3.4 (Local Loop). Let M be a topological space. If there is an open set U C M and
a continuous map
u:UxU—U (3.6)

such that, for every x € U, there holds

(1) plyy and p|p are homeomorphisms onto U;

(2) Thereis e € U such that u(e, x) = u(x,e) = x,
then the pair L(U, p) is called a local loop over M.

Remark 3.5. For simplicity, the juxtaposition product notation

ul,y) = xy (3.7)

may be used. It is clear that property (2) in Definition 3.4 guarantees the existence of a

unity for this product. In addition, given x € U condition (1) shows that y restricted to

{x} x U or U x {x} is bijective onto U, so that given y € U there are unique z1,z, € U
such that

u(x,z1) =xz1 =y and p(zz, x) =z22x =y, (3.8)

which is precisely relation (3.1) in the definition of a quasi-group. Hence, U endowed

with this juxtaposition product is a loop as given in Definition 3.2.
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The main example analyzed here is due to Kikkawa [28] where an affinely connected

space (M, V) is considered. Since now one deals with a smooth structure, consider the

Definition 3.6 (Differentiable Local Loop). A local loop L(U, i) over a manifold M is called

a differentiable local loop whenever y is smooth.”.

In that setting, a differentiable local loop may be defined when considering the affinely
connected space (M, V). Indeed, take e € M and consider its normal neighbourhood

N,, over which the exponential map
exp, : No = N, (3.9)

is a diffeomorphism. One may moreover assume that N, is the restricted normal
neighborhood for e so that every point in N, is connected by an unique geodesic.
Now, fix x,y € N, and consider the unique geodesic 7y between e and y in N, with
Y(tp) = e and 7y(t1) = y, so that the parallel transport Tff’tl over this curve can be taken
into consideration. One may then define the geodesic loop product between the point

x and y by means of the expression [46]

ux,y) = exp, OT§°’t1 o exp;l(x). (3.10)

It is also straightforward to see that u(x,e) = p(e,x) = x for every x € N, so that

condition (2) in Definition 3.4 is already satisfied.

exp, ' (z)

Figure 1: The geodesic loop product, as given in eqn 3.10.

Theorem 3.7. Let (M, V) be an affinely connected space. Then, for every e € M eqn (3.10)
defines a differentiable local loop L(N,, i) around a restricted normal neighbourhood N.

More details on smooth loops as a generalization of Lie groups and other constructions regarding loops

may be seen in [45].
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Proof. In order to see that y is smooth, consider the local coordinates (Ng; xt, ..., x™)
centered at e and let F;k be the Christoffel symbols for the connection V with respect to
the coordinate basis {01, ...,d,}. For the sake of simplicity, let T,,, denote the parallel
transport over the unique geodesic joining e and p € N.

Consider x,y € N, and denote by () and (s) the unique geodesics between e and

each of x and y respectively, with

12(0) =7(0)=¢, 7:()=x, ¥(1)=y. (3.11)

Then of course .(0) = expe_l(x). Moreover, letting

X(s) = X"y(s) = Te,’y(s)(Xe) = Te,fy(s)(')’;c(o)) (3'12)

it follows that X(s) is the unique parallel vector field over y(s) with X(0) = v%(0) so that

it is completely determined in N, by the differential equation
X'(s)+ 7 ()X O(r(s) =0, i,jk=1,...,n, (3.13)
and the initial condition X*(0) = "y;(O). Notice that by construction
X(1) = Tg'l o expe_l(x). (3.14)

Consider now the geodesic 7, (t) such that ,(0) = y and 'y]’/(O) = X(1). It follows that

7y(t) is uniquely determined inside of N, as the solution of

PO+ T O OiEn =0, ijk=1,...n (3-15)

Since 1y, is a geodesic and N, is the restricted normal neighbourhood of all of its points,
then it is defined for t = 1 so that

Ty(1) = expy('y]'/(O)) = expy(X(l)) = exp, ng'l o exp,(x), (3.16)
which is precisely eqn (3.10). The application y may then be defined by

]/l : N€ >< Ne —> Ng
(x, y) 1—> u(x,y) = 1y(D).

(3-.17)

Now, it is known that the Christoffel symbols F;.k are smooth functions over N, in such a
way that for two points x,y € N,, the solutions 'yi,(t) of eqn (3.15) are differentiable with

respect to the parameter ¢ and initial values y', ..., y"; X(1),..., X"(1). Using the same
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argument for eqn (3.13) it follows that there are uniquely determined differentiable
functions ui(x!,...,x",y',...,y") such that
'y; =u' Yy, (3.18)

so that y is, in fact, a differentiable map in N, x Ne.
Finally, in order to show property (1) in Definition 3.4 one can take x € N, and
consider the restriction of y over N, x {x}, which shall be denoted by p,. It is given by

the expression
1x(z) = u(z, x) = exp, 0Ty © expe_l(z), (3.19)
which is clearly continuous with inverse given by
y;l(z) =exp, 0Ty, 0 exp;l(z). (3.20)
It follows that y, is a homeomorphism onto N,. Conversely, one may study the
restriction of i over {x} x N,. Setting x = e yields, in local coordinates, the relation
yi(O, ...,0,z, 2 = Z, (3.21)
since p(e,z) =z and e = (0, ..., 0) in such coordinates. It then follows that

% _oui(0,...,0,2L, ..., 2"
oz/ B oz/

z=e z=e

= 5]1 (3.22)

Hence, by the Inverse Mapping Theorem yu can be restricted to a (possibly) smaller

open set N C N, which restricts to a diffeomorphism over {x} x N, for x € N/. Since

such neighbourhood is still restricted normal, one may just denote it by the initial N.

Therefore, L(N,, 1) is a differentiable local loop. O]

Definition 3.8. Let (M, V) be affinely connected space. The differential local loop L(N, p)
from Proposition 3.7 is called a geodesic loop around the point e € M.

Remark 3.9. From now on, the application y is dropped and the juxtaposition product
is employed. For simplicity, the notation x € L, is taken to mean that x € N,, whenever

it is clear which geodesic loop is being considered.

3.2 ALGEBRAIC REALIZATIONS

As previously seen, the geodesic loop is an algebraic structure which is defined via

an affine connection over a manifold M. One may therefore analyze if information on
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the loop level may be related to the underlying geometry defined by the connection.
The simplest case may be considered, namely an affinely connected Riemannian space
(M, g, V), where V is a flat Levi-Civita connection [47]. In that scenario, it is known

that the geodesic curves are just straight lines in local coordinates.

Lemma 3.10. Let (M, V) be a flat affinely connected space and consider the geodesic loop L,
around e € M. Supposing that e = (e',...,e") in local coordinates then for every x,y € L,
there holds

(xy) =y +x' — ¢ (3-23)
Proof. Indeed, since the connection is flat, geodesics are given by straight lines in

coordinates. Then, the geodesic between ¢ and x is locally given by

To(t) = e +(x =€), (3-24)

and notice that indeed 7.(to) = x* if and only if ty = 1. The parallel transport of the

vector 74 (0) = x — e to y does not change coordinates, which in turn yields
(y) =7 =y +x' —¢, (325)
as desired. ]

Corollary 3.11. Let (M, V) be a flat affinely connected space. Then, the geodesic loop L. is an
abelian group for all e € M.

Proof. Let x,y,z € L,. It suffices to prove that the geodesic loop is commutative and

associative. Indeed, using the local coordinates one has
() =)' = (¢ +x' =€) = (T +y =) =0, (3-26)

In addition,

(xy)2) — (x(y2) = 2"+ (xy)' — ' — (yz)' — x' +¢'
pxiry—el — i —yitel — (327)
=z +x'+y —e —zZ' —y' +e' —x' =0.

Therefore, L, is an abelian group. OJ

Remark 3.12. All geodesic loops of flat vector spaces are isomorphic, since the product
p consists on the vector sum inherited from the space. In general, geodesic loops may
be neither commutative nor associative. To investigate such properties, fix for now on
a general affinely connected space (M, V) and consider the geodesic loop £, around
e € M.
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The so-called fundamental tensors may then be discussed, which shall be proven to
be one of the most exceptional tools when analyzing geodesic loops. The following
results can be found in [44,48]. As seen before, if x,y € L,, then one may perceive the

equation xy = u(x,y) by means of local coordinates centered at e. Namely

(xy)i = ‘ui(xl, ... ,x”,yl, Ly = yi(x, ). (3.28)

By construction, one has ui(x,0) = x' and 1/(0,y) = y'. Because of this, one can see that

the Taylor expansion centered at ¢ = (0,0) has the special form

(xy) =x'+y' + /\}kx]yk - E(pt;-klx]xkyl + v]l-klx]ykyl) +0(0%), (3-29)
where ) .
. 0°(x,y)
1 _
7= 9xiayk lx=y=0 (3-30)
and
_P(xy)
1 _ 7
Hikd =3 xigxckay! | x=y=0’ (3.31)
i _ Py

(3-32)

Ujkl _axjaykayl x=y=0'

These coefficients do not define tensors on M (considering the local description in R"),
since a change of coordinates does not factor through the derivatives in eqns (3.31, 3.32).

In order to define one, let
A:Npx Ny = Ny (3.33)

be the map given in coordinates by

A(x,y) = Ay, (3-34)
Then, one may define the application

A:Nyx N, = N, (3-35)

given by the relation
1
A(X, y) = E (A(X, y) - A(y/ X)) ’ (336)

which in turn has the local description

Al(x,y) = alxlyF = > Ak = MDY = Al (337)
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Therefore, one may consider the symbols
Dé;-k = /\[jk] (3-38)
which by construction are anti-symmetric. Namely,
(x;-k = —ocf{]-. (339)
In a similar way, consider the following maps locally given by

M(x,y,2) = iy,

l. L (3-40)
N'(x,y,z) = v].kley z'.
These allow one to construct the following application:
B(X, Y Z) =2 (N(x/ Y, Z) - M(x/ Y, Z) + A(xr A(yl Z)) - A(A(X, ]/)/ Z)) ’ (341)
which in coordinates is given by
B'(x,y,2) = Biuxy'2, (3-42)
where by eqn (3.41) yields
Bl = 2y — pig + ALy, — ABiAL). (3-43)

Definition 3.13. Let (M, V) be an affinely connected space. The tensors zx}k and ;B;'kl defined by
eqns (3.38, 3.42) are respectively called first and second fundamental tensors of the geodesic

loop L.
Remark 3.14. Notice that alternating eqn (3.41) gives

B(u, v, w) + B(v, w, u) + B(w, u,v) — B(v, u, w) — B(w, v, u) — B(u, w, v)

(3-44)
=A(u, A(v, w)) + A(v, A(w, u)) + (w, Au, v)),
which can be seen using the symmetries
ik = Wi
A (345)
Viki = Vjik-
Then, in index notation, eqn (3.44) reads
Bijwin = {1y (3.46)

which is called the generalized Jacobi Identity. The relation with the usual Jacobi

identity (2.57) shall be shortly unveiled.
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These tensors’” symbols are intimately related to the commutativity and associativity
of the geodesic loop L., as follows. As mentioned before, if x € L, then xfl and xEl
are the left and right inverses of x, respectively. Also, one may define the left and right

commutators of the geodesic loop product, respectively given by
ar(x,y) = (xy); ' (xy),
ar(x,y) = (Xy)(xy)g "

Proposition 3.15. Up to second order terms, the left and right commutators of the geodesic loop

(3-47)

L, are equal and determined by the first fundamental tensor a;:k.

1 1

Proof. From the equalities z; , one can see that in local coordinates centered

at e there holds

Z=e€e=2zzp

() = =2+ A2t + 0222 o), .
(zlzl)i =7+ /\;:kzjzk + ’f]?klzjzkzl + 0(p3),
where
. 1 . . ‘
T = —E(P‘Ejkz) — V(i) — A;(j)\,’;y (3-49)
1. . .
Tt = 5 (Mg = Viikn) — A o M- (3.50)

As usual, parentheses denote symmetrization in the indexes. Notice that the difference
between the left and right inverses begin to appear only in the third-order term of the

Taylor expansion. Using eqn (3.48), one can then calculate

(L) = =2 =y = Ay + A + Y E + ) +0(0?), (3.51)
which in turn with eqn (3.29) yields
ociL(x, y) = 2a§kxjyk + o(pz). (3.52)
Following the same reasoning it is possible to obtain
aR(x, y) = 205 xTy* + 0(p?), (3.53)
which concludes the proof. [

In order to investigate associativity one may define the left and right associators,

namely
BLx,y,2) = (x(y2); ((xy)2),
Br(x,¥,2) = (xy)D)(x(y2)R "

Using a similar procedure as in Proposition 3.15, one may prove the

(3-54)
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Proposition 3.16. Up to second order terms, the left and right associators of the geodesic loop

L. are equal and determined by the second fundamental tensor :Bj'kl'

Remark 3.17. In conclusion, Propositions 3.15 and 3.16 assert that a}k and ,B;'-kl are rough
approximations for the failure of commutativity and associativity in the geodesic loop
L. It directly follows that

Corollary 3.18. Let (M, V) be an affinely connected space and consider the geodesic loop L,
around e € M. The following statements hold:

(1) If L. is commutative then the first fundamental tensor oc;'.k vanishes.
(2) If L, is associative then the second fundamental tensor 5§'kl vanishes.

Remark 3.19. The fundamental tensors of a geodesic loop may be further used in order
to endow vector spaces with multilinear operations. The notion of W-algebras, which
are vector spaces equipped with certain kinds of multilinear operations are now briefly

presented.
Definition 3.20. Let V be a vector space and let the two multilinear operations

[, ]:VXxV =YV,

(3.55)
[,, ] VXxVxV =YV,
with [-, -] anti-symmetric, be related by
[X, IV, ZN+ [V, [Z, XN+ [Z, [ X, Y] = [X, Y, Z) + [Y, Z, X]+ [Z, X, Y] + [Z, X, Y] (3.56)
3:5

- [X/ Zl Y] - [ZI Y/ X] - [YI X/ Z]
Then, the triple (V,[-,-],[-, -, -]) is called a W-algebra over V.

Given any affinely connected space (M, V) and a geodesic loop £, around e € M
one is able to define a W-algebra over an n-dimensional vector space by means of the

fundamental tensors of £,. Namely, the geodesic commutator
[, ]: VXV =V (3:57)
may be defined by the relation

[u,v] = Zoc;.kujvke,‘, (3.58)
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where {ey,...,e,} is a basis for V for which u = ujej and v = vFe,. It follows directly
from the anti-symmetry of the first fundamental tensor that this operation is also
anti-symmetric.

Similarly, one may use the second fundamental tensor in order to define the geodesic
associator, given by

[u, 0,w] = Biyyulo*w!, (3.59)

where w = wke;. It follows directly from eqn (3.46) that the relation (3.56) is satisfied.
Notice that when the right-hand side of the same equation vanishes, one is left with
the usual Jacobi identity. In that case, the geodesic commutator [, -] satisfies all the
properties of the Lie bracket and therefore (V, [+, -]) is isomorphic to a Lie algebra. The
more natural vector space over which one may consider this construction is the tangent
space T,M and then clearly (T, M,[-,-],[-,-,]) is a W-algebra.

Remark 3.21. If one is already given a more general algebra (A, *) over a vector space

A, it is possible to define the commutator and associator operations, namely

[u,v]=u*xv—v+*u
(3-60)
[, v, w] = (u*0v)*xw—ux*(v*w).
Whenever these operations satisfy the generalized Jacobi identity, the triple (A, [-,-],[-, -, -])
is called the W-algebra associated to (A, *).

3.3 GEOMETRIC REALIZATIONS

One may now proceed to investigate connections between the developed algebraic
properties of the geodesic loop with the geometry of its underlying space. More
explicitly, one may ask at what extent does commutativity and associativity of the
product heretofore discussed intervene in geometric structures.

Theorem (3.23), proved by Kikkawa [28], is a direct application of the geodesic loop
construction. It shows that one can indeed expect that the algebraic information about

the geodesic loop would give relevant information about the connection V.

Definition 3.22. A loop (A, ) is called left diassociative if, for every x,y € A,

xx(x*ky)=(x*x)*Y. (3.61)
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Theorem 3.23. Let (M, V) be an affinely connected space and suppose V is torsionless. If the
geodesic loop L, around e € M is left diassociative, then the curvature tensor R vanishes at the

point e.

Proof. Let X, € T,M and consider the vector field

X(p) = Te,p(Xe)/ (3-62)

for each p € L, called the vector field adapted to X.. One may then consider x(t) to
be the geodesic through e with x'(t) = X,(). By construction, the geodesic curve y(t)
through a point y € £, with tangent vector equal to X, at y is given by the geodesic
loop product

y(t) = x(t)y. (3.63)
Notice that each geodesic arc through e gives rise to a 1-parameter local subgroup, that

is, there holds x(+')x(t?) = x(t' + t?). Then, by applying the diassociative hypothesis,

y(s +1) = x(s + )y = (x(s)x(1))y = x(s)(x(H)y). (3.64)

Therefore, there holds v/(t) = Xy and since y is arbitrary in L., it follows that all

trajectories of the vector field X are geodesic arcs. It follows that
VxX=0 (3.65)

all over L, for every adapted field X.

One may then take two vectors X, and Y, tangent to e and consider their adapted
fields X and Y. It follows that X + Y is adapted to X, + Y,, and therefore it satisfies eqn
(3.65). Then, there holds

VxY+VyX=0. (3.66)

It follows that

R(X,Y)X =VxVyX — VyVxX — Vx| X

(3.67)
=—VxVxY —-VyVxX— V[X,Y]X.
By assumption one has a torsionless affine connection, which implies that
T(X,Y)=VxY—-VyX—[X,Y]=0, (3.68)

where T is the torsion tensor. Using eqn (3.66) one gets

VY = ;[X, Y], (3.69)
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From the above equation and using that Y is adapted to Y, there holds VxY = 0 all over
the trajectory x(t) of X. Then,

[X/ Y]e =0 (370)

and
(VxVxY), =0. (3.71)

Using eqns (3.65, 3.70, 3.71) it follows that
Re(Xe, Ye)Xe = =(VxVxY)e = (VyVxX)e — (Vix,y1X)e = 0. (3.72)
Therefore,
Re(Xe, Ye)Ze = —Re(Ze, Ye)Xe, for every X, Ye, Z, € TeM, (3.73)

which comes from the linear expansion of R.(X, + Z, Y¢)(X. + Z¢) = 0. Since T =0, one
can then use the first Riemannian Bianchi identity, which can be further modified by

the anticommutation relation in the first two entries, yielding

0= Re(Xe, Ye)Ze + Re(Ze, Xe)Ye — Re(Ze, Ye) Xe

= Re(Xe, Ye)Ze — Re(Ye, Xe)Ze + Re(Xe, Ye) Ze (3-74)
= 3R(Xe, Ye)Ze,
which finally gives
Re(Xe, Ye)Ze, =0, forall X,,Y,, Z, € T,M. (3-75)
Therefore, R, = 0. ]

One of the most powerful results on geodesic loops so far may now be presented.
To that end, however, normal coordinates will be required, so that in this proof one is
obliged to consider a metric ¢ over M. Hence, an affinely connected Riemannian spaces
(M, g, V) must be at hand. Additionally consider respectively T, S and R the torsion,
contorsion and curvature tensors for the connection V.

In the light of all that was previously discussed, the following result gives a local
relation between the fundamental tensors of the geodesic loops (algebraic information)
and the geometry of the underlying space. Some complementary results are considered

in what follows, before presenting the main theorem due to Akivis [29].
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Consider an affinely connected Riemannian space (M, g, V) and let L. be a geodesic
loop around the point e € M. The local equation of a geodesic y(t) through the restricted

normal neighbourhood N, is given as the solution of the differential equation

(1) + T (r )V (17 (1) = 0. (3.76)

In normal coordinates (N,; x!, ..., x"), the geodesics through e are straight lines, so that

a point in N, is connected to e by a geodesic, which is locally given by

1) = (A, (3.77)

for some fixed A; € R. In particular, eqn (3.76) reads

r;ik(ry(t))AfAk =0. (3.78)
Now, considering e itself, eqn (3.78) holds for every choice of A’ € R, so that taking
i _ 1 . .
Al = (5]-, it yields .
Ii(e) = 0. (3.79)

Then, using (3.79) and taking now A = 5]’: + 5,"{ one has

Fé].k)(e) =0. (3.80)
In order to simplify the notation, let
f;ik = r;ik(e). (3.81)
Since, by definition,
. 1 .
or using the contorsion tensor S,
(k1 = —Sik (3-83)

adding together eqns (3.80, 3.83) and evaluating at ¢, it comes
[ = —Si(e) = =S (3-84)

Remark 3.24. As a quick note, see how eqn (3.84) shows that considering normal
coordinates around a point ¢ € M in an affinely connected space (M, g, V), then the
Christoffel symbols at the point e are precisely given by the contorsion tensor. In the

case V = V¢, the contorsion vanishes and, therefore, so do the Christoffel symbols.
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Now, let us once more analyze the geodesic loop construction. Take x,y € N, and
respectively denote by yx(f) and (s) the geodesics joining e to x and to y. Also, let
& = (&) be the parallel transport of the vector 7%(0) to the point y through . As before,
denote by (t) the geodesic with initial conditions

1) =y, Tyt) =" (3.85)

Such geodesic at t = 1 gives the expression of the geodesic loop product xy = 7,(1)
by the construction depicted before. Since 7(f) is also a geodesic, then one may

differentiate eqn (3.76) yielding

(6 = ~Thal ik,

, . , . (3.86)
Ty(#) = =y — DT — T L0 (D 7y (8).
Evaluating at the point y comes
730 = ~T e,
! : (3:87)

(0) = —(Tlyy — Thy Tl — T, TITEE.

Now one can Taylor expand at y in order to see that

B =y + 8t = JTIGITTR — (T, — T, Tl — T IDTEEE +0(). (389

Then, using eqn (3.84) and supposing that the geodesic <y from e to y is given in normal
coordinates by v'(s) = y's (since ¥(1) = y), one can Taylor expand the coefficients in eqn

(3.88) around e to get
Ti(r(9)) = =Si + T y's +0(s), (3-80)

which produces in eqn (3.88), with respect to the variable p = V12 + 52, the expansion

1yl =y + 8t S(E DT P+ o) (5:90)

One may now rewrite eqn (3.90) taking into account the Taylor expansion of the
coordinates of the vector ¢. If one takes X(s) = T,,,(s)(7%(0)) as before, then the parallel

transport equation reads
Xi(s) = —T5XI7*(s) (3:91)

It then follows that

X(s) = (=i s = T D) XI5 (s)7 9)- (3.92)
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This yields, similarly as before, the expansion around e (s = 0) given by
. S e 1 o : o: o ;
X'(s) =x"+ S;kx]yks — E(_r}k,l — SjnkS}’f)x]ykylsz +0(s?). (3.93)
One can then prove the

Theorem 3.25. Let (M, g, V) be an affinely connected Riemannian space and let T;k and R;:kl
denote the torsion and curvature tensors of this space in normal coordinates. If oy and By, are

the fundamental tensors of a geodesic loop L., then

{ 20 = =Ty,
B = —ViTyy — Riyy-

Proof. Sets =1 in eqn (3.93) and insert it in eqn (3.90). Then, setting ¢ = 1 and observing
that

X'(1)=¢&,
. . (3-94)
1,1) = (xy),

it follows that
() = 7y() = x' +y' + Shly — ;(f‘;’k,l — SuSHAYy! — ;f;‘k,zxjxk]/l +o(p®),  (3.95)
where p = max(|x'], [y’|). But since eqn (3.29) reads
£ =y 4 Ay (Y ) + o) (3.96)
one gets the relations

i _ & i o_ i
ik = Sk Miw = Lk,

l. e (3-97)
Vi = _(rjk,l - Smijl)'
Moreover, since ]/t;kl = y;;ﬂ and v]lfkl = v,’;jl, there holds
i = Ll Vin = =Tl = SmS[iin)- (3.98)

One can then calculate the fundamental tensors oc;'.k and :B;'kl in terms of eqns (3.97).
For the first fundamental tensor, using the anti-symmetry of the torsion tensor one

can see that

S . 1 .
Wj = Spjgy = Sji = 5 k- (3-99)
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On the other hand, for the second fundamental tensor there holds by definition

_ZIB]kl (]k)  + 1 i)~ lm(ksml) +SikS = SSim
1 o s o 1 o o
(r]z e =T - 2 omkSjl — szs + St — i Sim (3.100)

E(I—;l Fk] l) + Sl[k5|m|l] S SZ

Now, one may use the local relations

S
] 27 el

(3.101)
lRlﬁ = _T¢ _TMmT! .
2kl jike Il = jlk™ [m|1]*

Differentiating the first equation at e yields

Ui = —Sjku (3.102)
whereas the second one reads
I 1 o o o
I1;'[k,l] - _ER;'kl - S]r'flksim“]/ (3.103)

where I%;kl = R;kl(e). Subtracting, it comes

S0 ) = 2 RE + S — S (3.104)
and it follows that
—2ﬁ]k1 ; ik~ 5 35[]kSl] L (3.105)
Further on, since
ViSi = S s = Syl — Sk Tii + ST, (3.106)

then it is possible to see that at e the expression above has the form

VZS]k(e) ]kl +35[]kSl]m, (3.107)

which finally implies that
Bin = (Vls He — 4 Riy. (3.108)
Since this construction can be made upon any point e in the manifold, it finally reads
ocj-k = S;k, (3.109)
Bl = Evlsj‘k - i i (3.110)

which gives the desired result. O
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SPONTANEOUS
COMPACTIFICATION

The search for an unifying theory of everything has been central in theoretical physics
for years now. The so-called supergravity, which encompasses general relativity and
supersymmetry, may offer a possibility to perceive such objective in a theoretical view.
In such configuration, the maximal dimension for which one can balance bosonic
and fermionic degrees of freedom with highest spin is eleven [31]. Therefore, one
can consider spontaneous compactifications in such theory, that is, solutions of the
11-dimensional equation of motion over a space which is a product of a 4-dimensional
spacetime and a compact 7-dimensional space.

A mechanism to achieve such goal is to consider the so-called Kaluza-Klein spon-
taneous compactification, as follows [30,31]. The ground state is a product My x K,
where My is a maximally symmetric 4-dimensional space (de Sitter space, anti-de Sitter
space or Minkowski spacetime) and K is a compact manifold called the internal space,
which is assumed to be an Einstein space. Maximally symmetric space here means
that no point in such space can be distinguished one from another, apart from the

information of it being either time-like, space-like or light-like. A metric gpy on My x K

v 0
SMN = (gy ) , (4.1)
0 Imn

is considered in the form

where g, is the metric on My and g, on K (greek letter denote spacetime indices
whereas roman letters denote the internal space indices). Such representation of gy is

compatible with the Einstein equation
1
Run = 5RgmN = Tmun — Agmn, (4.2)
where the energy-momentum tensor of matter fields is given by

i = K180 (43)
Ton = kzgmn .
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One may consider (My, g,v) to be the 4-dimensional Riemann spacetime of signature
(+,+,+, —). The Christoffel symbols shall be taken as

Tii = i + Sije, (4.4)
where f;‘k are the Christoffel symbols for Levi-Civita connection taken with respect
to gmn- It is also assumed that S;j is a fully anti-symmetric tensor, and therefore V
is metric-compatible and its geodesics are the same as the ones for the Levi-Civita
connection. Notice that the sign in eqn (4.4) is the opposite as ours when defining the
contorsion S.

One can then analyze the Freund-Rubin-Englert mechanism [32,49] of spontaneous
compactification for d = 11 supergravity. The equations of motion of this theory, which
encompass the Einstein field equations and equation for the anti-symmetric gauge field

strength F, have the form [50]

1
RmN — EgMNR =12 <8FMPQRFNPQR - gMNFSPQRFSPQR> , (4-5)
MNP \/z
F Q,M = —ﬂﬁNPQMl"'MSFM1M2M3M4FM5M6M7M8, (4.6)
where eM1+-Ms i a fully anti-symmetric covariant constant tensor and e1_ = ||¢|| 2. The

Freund-Rubin solution [49] for this mechanism is given by

Fuver = P€uvon, (4.7)

where p is a real number and all other Fy;ypg vanish (namely, the ones in the internal
space). One can nonetheless obtain other solutions with non-vanishing components
in the internal space. Such solutions, such as the Englert solution [32], were first

constructed in the 7-sphere S” with torsion. They read

Fuver = P€uvonr, (4.8)

One may analyze, using the tools developed so far, the restrictions such solutions force
over the space My x K and its geometry.
As seen in [30], this may be done by considering geodesic loops around points

e € My x K and analyzing its algebraic information in the light of the last section. As
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said before, in [30,31] the contorsion is taken with the opposite sign, so that these

changes turn Theorem 3.25 equations into

‘X;’k =— ;’k' (4.10)
4Bl = =2V Sy — Ry (4.11)

Besides, the generalized Bianchi identities read

RZ[.]'kl] + Zv[J‘S;d] + 4Sf?ksf]m =0 (4.12)
VIkR;]m] - 2er{[kSlnm] =0. (4.13)

The first constraint to a geodesic loop in the previously set background is presented
in this section, as seen in [30]. Namely, one may see that geodesic loops around points
e € My x K must be nonassociative in order to guarantee the Einstein space property
for My x K.

Indeed, if for every e € My or K its geodesic loop L, is associative, then since = 0

the generalized Jacobi identity reads

fftt]yy = 0 (4.14)

so that the W-algebra defined over the tangent space of e is isomorphic to a compact
Lie algebra. Such algebras may be classified depending on the underlying space (M4
or K) and then the first fundamental tensor (x;k and therefore the contorsion S;:k are
determined by the structure constants of these algebras. Moreover, in that case, it

follows from eqn (4.11) and from the total anti-symmetry of the contorsion that

Rijki = =2Sjjk1 = —2Sijk 10 (4.15)

and since the curvature is anti-symmetric in the last two indices, it follows that R;j; is

totally anti-symmetric. Then, writing

i _ pi i i m qi m qi
ikt = R + Sl = Sjk s + Sii Sk — SikSmn)s (4.16)

where Ioijkl is the curvature with respect to the Levi-Civita connection, it follows that

R;; = spisk (4-17)

mj’

so that it is possible to show that the space M4 x K cannot be an Einstein space unless

the metric g is degenerate [30]. This is because the right-hand side of eqn (4.17) depends
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only on the Lie algebras’ structure constants, so that a case by case inspection shows
that it indeed vanishes. Therefore, the geodesic loop for this space cannot be associative.

Furthermore, it can be seen that the Freund-Rubin solution

Fyvm\ = PE€uvoA (4.18)

does not impose restrictions on the spacetime M, and neither do the geodesic loop

relations in that case. One may therefore analyze the Englert solution.

4.1 ENGLERT SOLUTIONS

Since the geodesic loop L, around e € M must be nonassociative, one might look for
examples of such structure. One may consider the octonion algebra O [2] which is a

real division algebra over R8 with canonical basis {1,e1,...,e7}, such that
ejoer=—0Oj+ cljkei, (4.19)

where o is the octonion product and the structure constants c;; are totally anti-

symmetric and equal to the unity for the cycles
(ijk) = (123), (145), (167), (246), (275), (374), (365). (4.20)

The basis elements {ey, ..., ey} are called the imaginary units and are easily seen to sat-
isfy ¢ = -1 Each choice of cycles in (4.20) yields a different
(but isomorphic) octonion product. The octo-
nion algebra is not associative but alternative,
meaning that every 2-dimensional subspace is
associative and is therefore endowed with a

group structure. Equivalently, the associator

[x,y,z] =(xoy)oz—x0(yoz) (4.21)

is totally anti-symmetric in x,y,z € O. The

octonion product may also be condensed in

the so called Fano plane in Fig. 2. Therein,

Figure 2: The projective Fano plane. [2]

each triple of basis elements determines a
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quaternionic-like product given by the direction of the arrows. As an example, the line

segment containing the triple {eg, €2, €4} encodes the octonion product by the relation
e60€) =64, €0€4=05 €40€5=E6, (4.22)

and ep o e = —ey4 and so on for the other commutations. Additionally, one can define an

involution x — ¥, satisfying x + ¥ € R (the conjugation) and a function N(x) = xx € R.

Then, N may be seen to be a norm in O which is precisely given by the Euclidean
norm. In the next Chapter the rigorous definitions and results on more general normed
division algebras, such as the octonions, are presented and some of them are deliberately
used here.

The unit octonion set can be defined by
SO={xecO:N((x) =1}, (4.23)

which is closed relative to multiplication and is, therefore, a loop. The tangent algebra

at each x € SO is given by the commutator algebra of pure imaginary octonions,
ImO={xecO:x+x=0}. (4-24)

Of course, it has the canonical basis {ej, ...,e7} and the commutator and associator
with respect to the octonion product can be perceived by means of
[e;, ex] = 2ciye;,
! (4.25)
lej, ex, e1] = 2¢jei,

where c;jy; is a completely anti-symmetric nonzero tensor, equal to the unity for the
cycles

(ijkI) = (4567), (2345), (2367), (1357), (1364), (1265), (1274). (4.26)

One may then suppose that the geodesic loop £, around a point e € M is locally
isomorphic to the 7-dimensional unit octonion space SO. Since its tangent algebra is

given by the commutator algebra Im O, the fundamental tensors satisfy

Xijk = Cijks (4.27)
Bijki = Cijki-

Besides, ¢;jy is fully anti-symmetric and then it follows that

Bijw = Bits (4-28)
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so that the generalized Jacobi identity reads

ﬁ§k1 = M[?k“é]m' (4-29)
Now, it follows from eqn (4.16) that
1
SRk = StiiSkim — Sijk,1- (4.30)

Hence, i1 and S;j; are fully anti-symmetric. It follows from (4.11) that R;j; is also

fully anti-symmetric. Conversely, if R;j; is fully anti-symmetric, then

1

5 Rijkt = S{jiSkiym = S (431)

and therefore Sijk,1 18 fully anti-symmetric. Then again, from eqn (4.11) one has that Bijki

is totally anti-symmetric, giving eqn (4.29). In terms of the W-algebra, it reads

[x, [y, 2] + [, [z, x]] + [z, [x, ]I = 6(x, y, 2) (4.32)

which is called the Malcev identity. Now, there is only one compact simple non-Lie
Malcev algebra satisfying this relation, which is precisely the commutator algebra
Im O [30].

In order to generalize such construction, take a basis {ej, ..., ey} for Im O such that
lei, ej] = 2kcjjey, (4-33)
lei, e, k] = 2K%cijqey, (4-34)

where k is a real constant. It follows that
aijk = kcijr, (4-35)
Biju = K>cijia.- (4.36)

The tensors c;jx and c;jy; are connected by self-duality relations, which can be therefore

extended to the fundamental tensors. Such identities read

€PN kayy = 6T, (4-37)
eIl B = 24ka"P. (438)
Additionally, there holds
i " = 6K257, (4-39)
,Bmijkﬁmj k= 24k25;71/ (4.40)
a{ma;-‘na};p = 3k2amnp. (4.41)
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These identities are proven in the next Chapter, namely by means of Theorem 6.8. One

can then see that using such identities and the ones depicted in the last session, and

assuming the Englert solution
Fyva/\ = peyvcr)u
Fiunpg = A9iq1Smnp)s

it follows that the equation of motion reads
anpq,m — \/Epsnpqijleijkl-

Now, from the second Bianchi identity and from eqn (4.31) there holds

1 t
ERmnpq,m = Stm[ns pq],m - Smnp,q,m

/ /
=S S Sq — S mlnS pql1

which together with relations (4.39) and (4.41) results in

Si’lpq,Tﬂ’m +4k25npq = 0.

In addition, eqn (4.31) yields
Snpq,m = a[msnpq]-

Since Fiunpg = a[msnpq] over K, there holds
4k2snpq + \/Epgnpqijklsijk,l — 0,

and a solution in the form

Smnp,q = MStimnSpq
can be perceived as an ansatz. One can work out the parameter  from
SmnpqS™ = B2 Brunpg ™" = 24°K15,,
whereas from (4.45) comes
Sinp,gS™P = —SynpS T = 24k45,.

It follows that & = 1 and then inserting the ansatz in (4.47) yields

k = £61/2p.

(4-42)

(4-43)

(4-44)

(4-45)

(4-46)

(4-47)

(4-48)

(4-49)

(4.50)

(4.51)
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From eqn (4.31) it comes that

R =0, ifh =1, (4.52)
Rijg #0, if h = —1. (4.53)

Condition (4.52) is not obligatory and therefore, one can choose

Funpg = EAS mnS gy (4.54)

It is then possible to understand the constraints imposed in the space My x K by this

solution. Namely, inserting (4.54) in the Einstein equations one gets

Ryv = _10k2gy1// (4'55)
Rmn = 6k2gmnr (4.56)

so that 2A% = (12k) 2. Therefore, K is indeed an Einstein space and My is the anti-de

Sitter space.

4.2 CARTAN-SCHOUTEN GEOMETRIES

As seen in [31], the above construction can be generalized, as follows. Cartan and
Schouten are credited to construct 3 connections over the 7-sphere S” [51,52] and a
generalization to an one parameter family was presented by Akivis [29], which may
be investigated in order to derive geometric information using the results heretofore
developed. The 7-sphere S’ may be perceived as the set SO of unit octonions, where
the octonion product defines a parallel displacement, resulting in an affine connection,
as follows.

Let e € S” and N, be its normal neighbourhood. Such a parallel displacement can
be defined by means of the octonionic right multiplication Rx(y) = y o x for x,y € O,
in such a way that if u, v € N,, then the geodesic (e, u) from e to u can be translated
into the geodesic (v, w), where v = Ry(e) and w = R,(u) for some x € S’. This defines

a product
uev=uo(e o). (4.57)
Such equation defines a local loop £, with unity e. Such loop is nonassociative (since it

makes use of the octonion multiplication in S7) and is locally isomorphic to S” [53,54].
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One can further define an one-parameter family of loops £ with multiplication given

by

uxv=0v"euev %, (4.58)

where « is a real constant. Note that when a« = 0, one has (4.57). By the above
observation, such loops are isomorphic to the loop £*, which is defined by the following

multiplication rule, denoted by juxtaposition:

uv=v*ouov! ™ =Ry(v* ouov?). (4-59)

Now, let v be a fixed point in S” and let u denote a point in an one-parameter subgroup
from e. It follows that the point #’ = v* o u 0 v™* runs an one-parameter subgroup and
the point w = uv runs through a line obtained by translating u’ by R,. Therefore, if
e and v are fixed and u describes the geodesic (e, u), then the point w describes the
geodesic (v, w). Therefore, all loops L; are geodesic loops of affine connections on S7
which share the same set of geodesics generated by one-parameter subgroups of the
loop on the unit octonions.

Therefore, by means of the fundamental tensors one can find the curvature and
torsion tensors of affine connections generated on S” by the geodesic loops £%. Since
two elements in a loop generate a group, it follows that one can make use of the
Campbell-Hausdorff series

1

1. 1 , ,
(xy) =x"+y' + Ec}kx]yk + Ec]-mc}g(x]xkyl +ylyfaly+ .., (4.60)

where C;'k are the structure constants of the octonion algebra. Since (%) = v, from eqn

(4.59) one gets
i i i L ik L i mpiok 2\ ko
(xy)' =u"+v +§(1 —20¢)cjkufv +Ecjmckl[”]” v+ (1 —6a+6a )/ u'l+... (4.61)
On the other hand, in the geodesic loop £* there holds
P i i i ik e ik i ik
(xy) =u'+v +/\jku v+ E[P‘jkl“ U + v v'v ul+... (4.62)

Which yields the relations for the fundamental tensors

21x§-k =(1- Za)c;ik, (4.63)

—4ﬁ§kl =a(l — zx)c;'-mc,’g +(1+3a+ 30&2)0;1[ch}]. (4-64)

79



8o

SPONTANEOUS COMPACTIFICATION

It follows that "‘;.'k = kc;'.k, where k is a real constant depending on the real parameter
«. Since oc;'-k = —S;-k and c;'.k is fully anti-symmeteric, it follows that for each fixed « the

geodesic loop L% generates a metric-compatible affine connection on S’ given by

Cije = Tijk + Sijr,s (4.65)
where Io“ijk is the Riemannian symmetric connection and S;j is a fully anti-symmetric
torsion. Using the full anti-symmetry of S;jx one can rewrite the tensor 5;'kl by means of

Theorem 3.25 and equations

i _ _qi
Xjk = ~9jks

i i i (4.66)

By eqn (4.63) one can see that if « = 1/2 then the connection yields a torsionless
Riemannian geometry. If & # 1/2 then by eqn (4.63) it follows that the new solution

depends on a with
1
=1 o (4.67)

Finally, using eqn (4.67) one can find the Riemann curvature tensor of the affine

Sijk1 = hS[iSkm, I

connection given by the parallel translation considered in £5. Namely,
Rijkl = 40((1 — “)Sg?sklm - 406(2 - 30()5%51(1],”. (4.68)

If & = 0 then the curvature vanishes and if « = 1 it is fully anti-symmetric, and these
correspond to the solutions in (4.48). The geodesic loops LQ and L] are therefore also
locally isomorphic to the loop S”. Using the same ideas as before, but now considering
the parameter /1 one gets

Sppgi™ + (2hK)*Sppq = 0. (4.69)

Inserting in the equation of motion yields
(2hK)2S™P1 + /2pe"PAIKIS ) = 0. (4.70)
Then, using again the self-duality relations gives
h = 6\/§pk_1. (4.71)
Likewise, using the Einstein equations one gets

A
Rymy)\va? = _6P2gyw (4.72)
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which yield
Ryv = _10(hk)2g;¢w (4.74)
Ry = 6(hk)28mnr (4.75)
with
202 = (12k) 2. (4.76)

Therefore, the constants & and k are determined by p and A which are arbitrary in this

construction. Therefore, one obtains a family of geometries in the internal space K

which come from solutions of the spontaneous compactification mechanisms for d = 11.
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G,-STRUCTURES AND DEFORMATIONS






THE OCTONIONS

In this Chapter the main results on Gp-structures over 7-dimensional manifolds, which
may be subsequently used to define the so-called octonion bundle OM, are established.
With such structures, one can rigorously define the octonion product over M which can
be seen to connect with the torsion of the underlying G,-structure. The main results are

extracted from [33,55] and the computational results come from [56, 57].

5.1 DIVISION ALGEBRAS

In this section division algebras are analyzed from the ground up, having as final
goal the definition of the octonion algebra O and further understanding its elementary
properties. The ref. [58] is followed and omitted proofs can be found therein. For more
information on octonions and division algebras, one can see for instance [2].
Throughout this composition the vector spaces ID = R" are considered and endowed

with the usual Euclidean inner product (-, -). Define then the binary product

*x :DxD— D
(A,B) — A=xB.

(5.1)

Definition 5.1. The pair (ID, *) is called a normed division algebra if it is a real algebra
over R with unity 1 € ID such that

| A« Bl|=[[A[l[|BI|, VA,BeD, (5.2)
where as usual ||A||?>= (A, A).

The first obvious examples are the real R and complex C division algebras, which
satisfy eqn (5.2). As it may be seen there are only two other examples, namely the quater-
nions H ~ R* and octonion O ~ R algebras, the latter being of greater importance for

the work to be discussed afterwards.
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Remark 5.2. For now on, whenever a normed division algebra ID is introduced its

product shall be denoted by juxtaposition, namely
AxB=AB. (5.3)

Therefore, whenever D is normed division algebra then this product is automatically

considered. In addition, the notation for the unity may be fixed as 1 € D.

Definition 5.3. Let ID be a normed division algebra. The real and imaginary parts of D,
respectively denoted by Re(ID) and Im(ID), are defined by the relations

Re(D) = span({1}) = {A1 : A € R},
Im(D) = (Re(D)) ~R"™,

where the orthogonal complement is taken with respect to the Euclidean inner product over
D =R"

Remark 5.4. It follows that for each A € D there are unique Re(A) € Re(ID) and
Im(A) € Im(ID) such that
A =Re(A) +Im(A). (5.5)

These are respectively called the real and imaginary parts of A. One can then follow to

define the linear map A — A called the conjugation given by
A =Re(A) — Im(A). (5.6)

The conjugation is an involution over ID, which means that A=A By construction, it is

also an isometric reflection across the hyperplane Im(ID). Moreover, notice that

Re(A) = ;(A +A) Im(A) = ;(A — A). (5.7)
This description gives a characterization for the real Re(ID) and imaginary Im(ID) parts
as
AcIm(D) <= A=-A,
AcRe(D) <= A=A, 4)
Lemma 5.5. For every A, B,C € D there holds
AB = BA, (5.9)
(A,BC) = (AC, B), (5.10)
(A,CB) = (CA,B), (5.11)
(AC,BC) = (CA,CB) = (A, B)||C| ] (5.12)
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Proof. Each identity from eqn (5.12) upwards may be considered. By straightforward

calculations there holds

I(A+B) C|*= ||AC + BC|?= || AC||*+2(AC, BC) + || BC|1. (5.13)
On the other hand,
|4 +BIPlIC|?= (| AlP+2(4, B) + |[B]?) ] (5.14)
Now, since
I(A+B)C|*= | A+B|?|C|?, (5.15)

one arrives at both equalities in (5.12). Besides, eqns (5.11, 5.10) are obviously satisfied
when C € Re(D), since the inner product is bilinear and C = C in this case. One may
hence assume C € Im(D) and so C = —C. Notice then that by definition C is orthogonal
to 1, which makes

1+ ClPP=1+]C|I* (5.16)

It follows that
(4,B) (1+]C|?) = (A, B)||1+C|*= (A (1+C) ,B(1+C))
= (A+AC,B+BC) = (A,B)+ (AC,BC) + (A, BC) + (AC, B)

(A,B)+ (A, BY|CIP+(A, BC) + (AC, B) o7
= (1+1ICIP) (4, B) + (4, BC) + (AC, B),
which in turn implies
(A, BC) = —(AC, B) = (AC, B), (5.18)

as wanted. For the remaining equation, using the previous ones and the fact that the

conjugation is an isometry (and therefore self-adjoint) one gets

(B,C) = (AB,C) = (B, AC) = (BC,A) = (C,BA) = (BA,C),  (519)
which proves eqn (5.9) since the previous relation holds for all C € D. O
Corollary 5.6. For every A, B,C € D there holds

A (BC) +B(AC) =2(A,B)C, (5.20)
(AB) C+ (AC) B=2(B,C)A, (5.21)
AB+BA =2(A, B)1. (5.22)
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Proof. Indeed, taking D € ID it follows from eqn (5.12) that
(A,B)||IC+D||*=(A(C+D),B(C+D))

= (AC,BC) + (AD, BC) + (AC,BD) + (AD, BD)

= (4,B) (I[CIP+|DIP) + (AD, BC) + (AC, BD),
on the other hand

(4,B)C+DIP = (4,B) (I[c[>+2(C, D)+ |D|]?)
= (4,B) (||CI*+|DI?) +2(A, B)(C, D).
Therefore, one can see that
(AD, BC) + (AC,BD) =2(A, B)(C, D).
With the aid of eqns (5.11, 5.10) it becomes
(D,A(BC)) +(B(AC),D) =2(A,B)(C,D),

which holds for every D € ID. Finally, one gets the relation

A (BC) +B(AC) =2(A, B)C.

(5-23)

(5-24)

(5-25)

(5-26)

(5-27)

Making A — A and B +— B gives eqn (5.20). In addition, eqn (5.21) is obtained from

(5.20) by making A +— C, B — B and taking the conjugate on both sides. Ultimately,

eqn (5.22) is just (5.20) with C = 1.
Corollary 5.7. If A, B, C € Im(ID) then there holds

A (BC)+B(AC) = —2(A, B)C,
(AB)C + (AC) B = —2(B,C)A,
AB+BA = —2(A, B)1.

Corollary 5.8. If A, B € D then it follows that
(A,B) =Re (AB) =Re (BA) =Re (BA) =Re (AB)

and
|Al|*>= AA = AA.

In addition, if either A or B is imaginary then there holds

(A, B)1 = —Re(AB).

]

(5-28)
(5-29)
(5-30)

(531)

(5-32)

(5-33)
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Proof. From eqn (5.10) it follows that
(A,B) = (AB,1) = Re (AB), (534)

and the other equalities come from the symmetry of the inner product and from the

conjugation being isometric. Finally, notice that
AA = AA = AR, (5.35)

so that AA is real (and similarly for AA). Therefore, eqn (5.32) follows. Now, using the

previous identities and supposing B = —B yields
(A,B) =Re (AB) = —Re (AB). (5.36)
O

Corollary 5.9. The element A € D has the property A> € Re(ID) if and only if A € Re(DD) or
A € Im(DD).

Proof. One can set A = Re(A) + Im(A) and note that since —Im(A) = Im(A) there holds
Im(A)? = Im(4) (~Tm(4)) = — [[fm(4)[, (5:7)
where eqn (5.32) was used. Then,

A? = (Re(A) +Im(A)) (Re(A) + Im(A)) = <Re(A)2 — HIm(A)H2> 1+ 2Re(A)Im(A).

(5:38)
Since A? is real, it follows that its imaginary part vanishes, namely
2Re(A)Im(A) =0, (5:39)
which implies that Re(A) = 0 or Im(A) = 0. ]
Corollary 5.10. For every A, B € D there holds
(AB)B=A (BB) = |B|*A= A (BB) = (AB) B,
A (AB) = (AA)B=||A||*B= (AA)B=A(AB).
Proof. Using the identities proven so far, one has
((AB)B,C) = (AB,CB) = (A,C)|[B||*= (A||B||*,C) = (A (BB) , C), (5.41)

which holds for every C € ID. The other identities follows similarly. O
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As it is well-known, the real and complex normed division algebras IR and C are both
commutative and associative. However, this may not hold for every normed division
algebra ID. With that in mind, one may define the usual operators measuring the failure

for the product over D to be commutative or associative.

Definition 5.11. Let ID be a normed division algebra. Then, one can define a bilinear map
[,-]: D x DD — D by the relation

[A,Bl= AB—BA, VA,BeD. (5.42)

Such map is called the commutator of ID. Furthermore, the trilinear map (-,-,-] : ID x D X

D — DD given by
can be defined and is called the associator of ID.

Proposition 5.12. The commutator and associator operators over a normed division algebra ID

are both alternating multilinear applications.

Proof. Notice that whenever one of the arguments is purely real, the associator vanishes.
Therefore, one may exclusively consider the imaginary case. If A, B € Im(ID) then as

usual A = —A and B = —B. It then follows from eqn (5.40) that
—[A, A, Bl =[A,A,B]l = (AA)B— A (AB) =0. (5.44)

In the same way one may see that —[A, B, B] = [A, B, B] = 0. Therefore, the associator
is alternating in the first two arguments. Hence, [A, B, A] = —[A, A,B] = 0 and it
follows that [, -, -] is totally anti-symmetric, as wanted. The commutator is alternating

by definition. O

Proposition 5.13. For every A, B,C € Im(ID) there holds [A, B] € Im(ID) and [A, B,C] €
Im(ID).

Proof. It suffices to show that [A, B] and [A, B, C] are both orthogonal to 1. As usual,
one has A = —A for every A € Im(D), yielding

(IA,B],1) = (AB— BA,1) = (B, A) — (A, B)

= —(B,A)+(A,B) =0. (545
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For the associator, one has
([A,B,C],1) = ((AB)C — A(BC),1) = (AB,C) — (BC, A)
= —(AB,C)+ (BC,A) = —(A,CB) + (BC, A) (5.46)
=(A,CB+BC) = (A,BC+BC) =2(A,Re(BC)) =0,
where in the last line one uses the relation BC = CB = (—C)(—B) = CB. O
Proposition 5.14. The mappings (A, B,C) — (A,[B,C]) and (A,B,C,D) — (A,[B,C, D])
are multilinear and alternating.
Proof. Since these are compositions of multilinear maps, it is straightforward that they
also are multilinear. Moreover, since the commutator and associator are already anti-

symmetric one must only show that (A, [A, B]) and (A, [A, B, C]) both vanish. It follows
that

(A,[A,B]) = (A, AB — BA) = (AA, B) — (A4, B)

(5-47)
= ||A||*(1, B) — | A[|*(1,B) =0
and
(A,[A,B,C]) = (A, (AB)C — A(BC)) = (AC, AB) — || A||*(1, BC)
27 2/ (5-48)
= [|A[|*(C, B) — [[A[|*(C, B) = 0.
O
52 @ AND ¢

Maintaining the notation, consider ID ~ IR a normed division algebra and Im(ID) ~~
R"~! its imaginary part. The restriction of its product over the imaginary part may be

then analyzed, defining the following well-known operation:

Definition 5.15. Let D be a normed division algebra. Then, the vector cross product x over
Im(ID) is the operation x : Im(ID) x Im(ID) — Im(ID) defined by

A X B =Im(AB). (5.49)
Lemma 5.16. Suppose that A, B € Im(ID). Then,

AXB=—-BxA, (5.50)
(AxB,A)=(AxB,B)=0. (5.51)
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Proof. As usual one has A = —A and B = —B and then, since 2Im(A) = A — A, it follows
that
2A x B=2Im(AB) = AB— AB=AB - BA =[A,B], (5.52)

which proves the first identity by the anti-symmetry of the commutator. Now, since
A € Im(DD) there holds (Re(AB), A) = 0 and therefore

(A x B,A) = (Im(AB), A) = (Re(AB) +Im(AB), A) = (AB, A). (5-53)
But then, since B € Im(ID) one has
(A xB,A)=(AB,A) = ||A|*(B,1) =0, (5.54)

as wanted. By the same reasoning one gets (A x B, B) = 0, which proves the statement.
O

Remark 5.17. Notice that by eqn (5.33) there holds Re(AB) = — (A, B)1 and by definition
A x B =Im(AB) so that one gets

AB=—(A,B)1+ A x B. (5-55)

Besides, eqns (5.50, 5.51) respectively show that x is anti-symmetric and that the vector
A x B is orthogonal to both A and B. Remarkably, these are all properties of the usual
vector product x over R? and one may see that it is indeed connected to the notion of
normed division algebra here presented. In order to do that, by Propositions 5.13 and

5.14 one may naturally define the following applications

Definition 5.18. Let ID be a normed division algebra and define the 3- and 4- forms ¢ and
over Im(ID) by the relations

1

P(A,B,C) = 1<[A BL,C) = 5 (4,1B,Cl), (5:56)

(A,[B,C,D]), (5.57)

/B,
$(A,B,C,D) = 5 <[A B,Cl, D) = ;

for every A, B,C,D € Im(D).

Remark 5.19. Notice that eqn (5.52) shows that [A, B] = 2A x B. Therefore, by definition
there follows
¢(A,B,C) = (A x B,C), (5.58)

for every A, B,C € Im(ID). In addition, since from eqn (5.55) AB and A x B differ only

by a real part, one has
¢(A,B,C) = (AB, C). (559)



5.2 ¢ AND ¢

Lemma 5.20. If A, B, C € Im(ID) then

A(BC) = —;[A, B,C]— @(A,B,C)1 — (B,C)A+(A,C)B— (A, B)C.

Proof. Using each of the identities in Corollary 5.7 one has
A(BC)=—-B(AC)—2(A,B)C

=—-B(—CA—-2(A,C)1)—-2(A,B)C
=B(CA)+2(A,C)B—2(A,B)C
=—C(BA)—2(B,C)A+2(A,C)B—2(A,B)C.

Now with eqn (5.22) it is possible to see that

C(BA) — (AB)C=C(AB) +(AB)C =2(AB,C)1 =2¢(A, B, O)1.
Hence, it follows that

A (BC) = — (AB)C —2¢(A, B,C)1 —2(B,C)A +2(A,C)B — 2(A, B)C.

Finally, using [A, B,C] = (AB) C — A (BC) in the last equation gives the desired result.

Proposition 5.21. Let A, B, C € Im(ID) and x the vector cross product defined over Im(ID).

There holds
|4 x B||* = ||A|*||B|*~(A, B)* = | A A B2,
A X (BxC)=—(A,B)C+(A,C)B— ;[A,B, C]
= —(A,B)C+(A,C)B—(A,B,C,-)".
Proof. There holds
4||A x B||>= (AB — BA, AB — BA) = |AB|>+||BA||*~2(AB, BA)
= 2||A||*||B||*~2(AB, BA).

Now, since AB=—(A,B)1+ A x Band BA=—(A,B)1+B x A, one has

(AB,BA)(—(A,B)1+A x B,—(A,B) — Ax B) = (A,B)?> — || A x B|%.

(5-60)

(5.61)

(5.62)

(5-63)

OJ

(5.64)
(5.65)
(5.66)

(5-67)

(5.68)

Combining the two previous expression yields the first identity. Similarly, there follows

Ax(BxC)=(A,BxC)1+A(BxC)
= ¢(A, B,C)1+ A ((B,C) + BC)
= A(BC) + ¢(A,B,C)1 + (B,C)A.

(5-69)
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Then, inserting eqn (5.60) into A (BC) yields the second identity. Finally, it follows
directly from (5.57) that

Ax (BxC)=—(A,B)C+(A,C)B—(A,B,C,-), (5.70)

where the sharp operation is defined via the Euclidean metric (-, -). O
Corollary 5.22. Let A, B,C € Im(ID). Then, it follows that

Ax (AxC)=—||A|)C+ (A, C)A. (5.71)

In addition, suppose {A, B, C} is an orthonormal set with respect to the Euclidean metric. It
follows that if A x B=C then Bx C=Aand C x A =B.

Proposition 5.23. Let A, B,C, D € Im(ID). Then, there holds
1
(AxB,CxD)=(AANB,CAD) —§<A,[B,C,D]> (5.72)
=(AAB,CAD)+¢(A,B,C,D). (573)
Proof. As previously seen, one has

(A, D)

(ANB,CAD) = det <<A’ €) >) = (A,C)(B,D) — (A,D)(B,C).  (5.74)

(B,C) (B,D
Using eqn (5.58) it follows that
(AxB,CxD)=¢(A B CxD)=—-¢(A,CxD,By=—(Ax(CxD),B). (5.75)
Then, using (5.65) it comes

(A x B,Cx D) =(—(A,C)D+(A,D)C — ;[A,C, DI, B)

— (A,C)(B,D) — (A, D)(B,C) + ;<B, [A,C, D) (5.76)

_ (A,C)(B,D) — (A, D)(B,C) — ;(A, [B,C, D).
Then since (A, B,C, D) = —%(A, [B,C, D]) it follows that

(AxB,CxD)=(AANB,CAD)+y(A,B,C,D). (5.77)



5.2 ¢ AND ¢

Remark 5.24. These results show that given a normed division algebra ID one can

define a vector cross product over the imaginary part Im(ID) satisfying some identities.

Conversely, one can make the following definition:
Definition 5.25. Consider I ~ R"~! endowed with the usual Euclidean inner product. One
says that 1 has a vector cross product if there exists an alternating bilinear map

X :IxI—1 (5.78)
such that for every «, B,y € I there holds

(o x B a)=(axpp)=0, (5.79)
lac x BII* = [lac][?[|BII*— (@, B)* =l A BI*. (5.80)
Remark 5.26. What has so far been developed is that if one has a normed division

algebra ID then setting I = Im(ID) it follows that the vector cross product x as defined
in eqn (5.49) satisfy properties (5.79, 5.80). In fact, one may prove the

Theorem 5.27. There is an one-to-one correspondence between normed division algebras ID =

R" and spaces 1 = R"~! admitting vector cross products.

Proof. As stated before, given a normed division algebra ID one can construct a vector
cross product over Im(ID). Let now I = R"~! be endowed with a vector cross product

x. Set D = R @I and equip it with the usual Euclidean metric, namely

((a,a),(b,B)) =ab+(a,B), (5.81)
where a,b € R and «, B € II. Then, one can define the following product over DD:
(a,a) (b,B) = (ab—(a,B),af+ba+a x B)). (5.82)

Such product is clearly bilinear with (1, 0) its identity. Therefore, for ID to be a normed

division algebra, one must only check if eqn (5.2) holds. Calculating comes
@, )b, )2 = (ab — (@, B) +[|ap + ba+a x B|?)
= a’b” — 2ab(a, ) + ({a, B))* + a*|| B> +b% || |*+ ]| x B (583)
+2ab(w, B) +2a(B,x x B) +2b(x, a x B).
Using the defining identities (5.79, 5.80) of the vector cross product it follows that
(2, &) (b, B) |I* = a®b* + o B*+b* [l c]|*+[| ]| B
= (@ +1lal2) (824 1817) = lI(a,a) 1l1(6, B) I,

as wanted. m

(5-84)
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Since a vector product can only the defined over a space of dimension 0,1,3 or 7
(see e.g [59] for a concise self-contained algebraic proof), then it follows that normed
division algebras can only exist in dimensions 1, 2, 4 and 8. This result is commonly
called Hurwitz Theorem and these four normed division algebras are precisely the
real R, complex C, quaternion IH and octonion O algebras. Each of these algebras is a
subalgebra of the next one and their description can also be visualized from the standard
Cayley-Dickson doubling construction point of view [2]. Namely, such construction
depicts the algebraic properties lost from each step to the other. For instance, C loses
the real property (@ = a) and the field ordering property. In addition, from C to H
the commutative property is lost and finally when one arrives at the octonions O
associativity is dropped giving place to alternativity. The automorphism group of the
octonion algebra will be of great importance to what follows. For now on, consider the
octonion algebra O as given in the last Chapter. Namely, take an orthonormal basis

{1,e1,...,e7} and define the octonion product by the relation
ejex = —Oj + cijkei, (5.85)

where the structure constants ¢;j are totally anti-symmetric and equal to the unity for

the cycles

(ijk) = (123), (145), (167), (246), (275), (374), (365). (5.86)

Furthermore, the octonion algebra is deeply considered in the literature and several
applications may come forth, for instance in [60-62] one may perceive the relation
between (split-)division algebras and super-symmetry and the emergence of exceptional

structures in for physical theories.

5.3 THE EXCEPTIONAL GROUP G»

In order to establish the basic results on G»-structures over 7-dimensional manifolds
M one may first analyze the group G, itself. Consider the vector space R” endowed
with the usual Euclidean metric g,, the orthonormal basis {ey, ..., e} and the volume

form vol, = e! A - - - A e’ associated with Qo- In the light of eqns (5.56, 5.57), a 3-form ¢,,
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4-form 1p, and vector cross product X, related to these structures can be considered. By

the identification R’ ~ Im(O), one can set

pola, B, = 5 ([ BL7) = (@ 0 B,7),

1 (5.87)
Pola, B, 77, 9) = 5 ([, B, 7], 6),

for every a,B,7v,0 € R7. These are the 3- and 4- forms given in Definition (5.18).

Explicitly, letting el Nel A ek = ek where {el, ., e7} is the associated dual basis one has
o = o123 4 o145 | 167 | 246 _ 257 _ 347 _ 356 (5.88)
Yo = 567 | 2367 | 2345 | 1357 _ 1346 __ 1256 _ 1247 (5.8)

Remark 5.28. Note that depending on the choice of octonion product, the descriptions
of ¢, and 1, may vary from text to text. In [58] a different definition is taken, whereas

in [33,63] the ones used here can be found.

Let x, be the Hodge-star operation induced by g, and vol,. Then, it is straightforward

to see that
Po = %0 Po. (5.90)
Also, notice that
Po N\ @o = 7v0l,, (5.91)
so that
lpoll?= [lyoll*= 7. (5.92)

Definition 5.29. The group G, C GL(7, R) is defined by
Gy ={T € GL(7,R) : T*(go) = g0, T"(voly) =vol,, T*(¢o) = @0}, (5.93)
where T* denotes the pull-back by T € GL(7, R).

Remark 5.30. Definition 5.29 is one of the (many) possible for the exceptional group G,.
Note that G, C SO(7) since it preserves the metric g, and orientation voly. Hence, it also
preserves the Hodge star x, and ,, and since x, is completely defined by the metric
and ¢, then it preserves the vector cross product as well. Nevertheless, the following
result shows that an application T € GL(7, R) only needs to preserve the 3-form ¢, in
order to be in G; [63].

Theorem 5.31. G, = {T € GL(7,R) : T*¢p, = ¢ }.
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Proof. In terms of the standard dual basis {¢, ..., e’} it is easy to show that

(1 2@0) A (V3 @o) A @o = 680(1t, V)VOL,. (5.94)

Now, one may take T € GL(7, R) such that T* ¢, = ¢,. It follows from this relation that

(T*go)(u,v)g"vol, = go(T (1), T(v)) det(T)vol, = go(1, v)vOl,. (5.95)

This implies that
det(T)go(T (1), T(v)) = go(u, v). (5.96)

Taking the determinant of the previous relation gives

det(T) det(g,) = det(g,) (5.97)

so that det(T) = 1 and then T*(vol,) = vol,. But then, by eqn (5.95) there also holds
T%(g0) = 8o, which proves the claim. []

Corollary 5.32. The group Gy is equal to the automorphism group Aut(O) of the octonion
algebra O.

Proof. Let T € Aut(0O) and &« € Im(O). As before, there holds a? = —a& = —||a||2. Then,
it follows that

T(a)=T(a?) =T (~llaf2) = —lla]2, (5.98)
since T(a) = a, for every a € IR. It follows from Corollary 5.9 that T(«) is either real or
imaginary. Nonetheless, if it is real, say T(x) = a € R, then T(«x) = T(a) and since T is an
automorphism there holds « = a, which contradicts a being imaginary. Then, it follows
that T(x) = —T(«) whenever « is imaginary.

Now, take A = Re(A)1 +Im(A) € O. Notice that

T(A) = Re(A)1 + T(Im(A)), (5-99)

since T is linear and is the identity over Re(O). Therefore, T(A) = T(A) and it follows
that
IT(A)II3= T(AT(A) = T(A)T(A) = T(AA) = T(|A) = | All7 (5-100)

Hence, ||T(A)/o=||Allo- Now, since TIm(0O)) C Im(O) and T(1) = 1 one has T € O(7).
This implies that
(T o), B, 1) = @o(T(a), T(B), T(7)) = (T()T(B), T(7))

(5.101)
= (T(p), T(7)) = (B, 1) = o(a, B, 7),
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for every «, B,y € Im(O) = R?. Therefore, T € G,.

Conversely, if T € G, then it preserves the cross product and inner product over
R” ~ Im(0). Then, extending T to R & Im(O) ~ O with T(1) = 1 it follows from eqn
(5.82) that T(AB) = T(A)T(B), for every A, B € O, so that T € Aut(O). O

Remark 5.33. Notice here that if a, 8,7 € R” are such that ¢,(«, B,7) = 0 then in the
light of eqn (5.58) it follows that the cross product of any two elements in {«, B, 7} is
orthogonal with respect to the other. In fact, a choice of a triple of vectors in R” with

such property can be seen to completely define the group G,.

Lemma 5.34. Let {hy, ha, hy} be a triple of orthonormal vectors in R” such that @,(hy, ho, hy) =
0. One may define

hy Xohy =h3, hyXohy=hs, hyXohs=he hyxohz=hsx,(h1 Xoh)=h7. (5.102)
It follows that {hy, ..., hy} is an oriented orthonormal basis for R’.

Proof. Itis tedious but straightforward to see that (h;, h;) = 5; forevery 1 <i,j <7. Now,
notice that if 1 = ¢; for j € {1,2,4} then the same relation is true for all j € {1,...,7}
by the octonion multiplication table. Since eq, e and e4 are orthonormal to each other,
there is T € SO(7) such that T(e;) = h; for each j € {1,2,4}. But then the pull-back T*
takes the identity matrix in SO(7) to

A = (h1|ho|hs|ha|hs|he|h7), (5.103)

which is the matrix with columns given by the elements of {h;, ..., h7}. It follows then
that A € SO(7) and, hence, {hy, ..., h7} is oriented, which concludes the proof. O

Corollary 5.35. The exceptional group G, can be perceived as the subgroup of SO(7) consisting
of elements T € SO(7) of form

T = (h1|halhy o halhg|hy X0 ha|hy X0 ha|(hy X0 ho) X, hy), (5.104)
where {hy, hy, hy} is an orthonormal triple such that ¢,(h1, hy, hy) = 0. Furthermore,
dim G, = 14. (5.105)

Proof. As previously seen, a matrix T € SO(7) is in G; is and only if it preserves the
cross product x,. Now, since T(e;) = h;, the result follows from the definition of the

octonion product and its cross products. Furthermore, since an element in G; is fully
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characterized by a triple (hy, hy, hy) of orthonormal vectors in R” with @o(h1,ha,hy) =0
then in order to choose the first vector for such triple one must take #; € S, since it
must have unit norm. Then, choosing an unitary h; orthogonal to /1; means choosing h;
in the 5-sphere orthogonal to /;. Finally, the unitary hy must be orthogonal to hy, hy
and hy X, hy, therefore lying in a 3-sphere. It follows

dim G, = dim S° + dim S° + dim S° = 14. (5.106)

O
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As seen in the first Chapter, given a Riemannian manifold (M, g) one may consider
the normal coordinates at p € M, which have the property that the metric g, over
the tangent space T,M is precisely the Euclidean one in the n-dimensional vector
space IR" in these coordinates. This property may be condensed as follows: consider
the Frame bundle Fr(M) defined as a (principal GL(7, R)) bundle with the projection
7 : Fr(M) — M for which a fiber at p € M consists of all frames (bases) for T, M,
namely

7 '{ph)={T:R" — T,M : Tis a linear isomorphism}. (6.1)

Then, for a Riemannian manifold (M, g), the property that in normal coordinates there
holds g;i(p) = ;; can be stated as follows: for every p € M, thereis T € 7 1({p}) such
that

Tgp =) (6.2)

where (-, ) is the Euclidean metric in R". Notice that the choice of isomorphism
T € m=1({p}) is exactly the choice of basis by means of eqn (2.47). Moreover, note how
if ¢ € S?(T*M) is just a symmetric 2-tensor over M with the property in eqn (6.2), then g
would necessarily be a Riemannian metric over M. Moreover, in that case the subgroup
G C GL(n, R) preserving that relation is precisely the orthogonal group G = O(n), so
that one may say that ¢ is an O(n)-structure.

Let now M be a 7-dimensional manifold. It is then possible to endow such manifold
with the octonionic structure discussed heretofore. The natural way to do this is to

consider the Gy-structure over M, given in terms of

Definition 6.1. A G,-structure over a 7-dimensional manifold M is a 3-form ¢ € Q*(M)
such that for each p € M there is a linear isomorphism T : R” — T, M with the property that

T ¢ = ¢,. (6.3)

In that case, for simplicity the pair (M, @) is also called a Gy-structure.
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To make more sense of the last definition, as seen in [63] one may let 77 : Fr(M) — M

be the Frame Bundle projection as previously defined. Then, define the map
7t : Fr(M) — A3(T*M) (6.4)

by the relation
(1) = (T7) (g0, (6.5)

where T : R” — TM is a linear isomorphism. Then, if 7(T;) = 7(T>) let G € GL(7, R)
be such that T; = G o T». It follows that

(671) (90 = (66)

and hence G € G,. Therefore, the fibers over the bundle map 7t are exactly the G,-orbits
in Fr(M), that is,
7t(Fr(M)) ~ Fr(M)/G,. (6.7)

One may denote 7(Fr(M)) = A3(T*M). Then, for p € M the elements in the fiber
Ai(T;‘M) are 3-forms ¢, € A3(T;M) such that thereis T : T,M — R” with ¢p = T (o).
Notice now that since dim GL(7,R) = 49 and dim G, = 14, it follows that

dim Fr(M) /G, = 49 — 14 = 35 = dim A3(T* M), (6.8)

and hence Ai(T;; M) is open in A3 (T; M). The local sections of such bundle over an open
set U C M may be denoted Q3 (U) and are called positive (or definite) 3-forms and by
Definition 6.1 this is precisely the space of G-structures over U. Now, the existence of
a (global) Gy-structure over a 7-dimensional manifold M is purely topological. More
specifically, M admits a Gy-structure if an only if it admits a spin structure and if M
is orientable [33,64]. Overall, a Gy-structure is in one-to-one correspondence with the

open subset O3 (M) C Q3(M) of positive 3-forms over M.

Remark 6.2. Following [56,57], given a G,-structure ¢ over a 7-dimensional manifold
M, then by definition, for every point p € M, there is an isomorphism T : T,M — R"

for which
(PP(ur g, w) = <T(M) Xo T(U), T(ZU)>, (69>

for every u,v,w € T,M, where (+,-) is the usual Euclidean inner product and x, the
cross vector product as given in the previous section. Then, one may look for a metric g

that globally describes this local behaviour for a fixed Gy-structure ¢ over M. In what



G»>-STRUCTURES

follows, (-, ) shall denote the desired metric, with ||-||?= (-, -). In addition, since M is
oriented, one may take the volume form vol with respect to this metric, which in turn

defines a Hodge star denoted by .

Lemma 6.3. [56,57] For every 1-form a and vector field X over M the following identities
hold:

ol =7, lpl*=7, (6.10)

lp A ael|? = 4], lp Aaf? =3]a] (6.11)

(@ A (¢ A\ ) = —4a, (WP A*(p Na)) =3 (6.12)
PAX(pAa)=0, PAXYPAa)=2¢p N« (6.13)
*p AX) =X 1y, *PYAX)=X g (6.14)

PN Xop)=2%x(X19), lP/\(X_I(P)=3*Xb (6.15)
PAXop)=—4xX°, YA(X ) =0. (6.16)

Proof. Every identity can be straightforwardly calculated using the pointwise description

of ¢ and ¥ given by eqns (5.88, 5.89) and Lemma 2.13. ]

Proposition 6.4. Let X be a vector field over M. Then,
(X 2@)A(X19)A @ =6|X]|>vol. (6.17)
Proof. By eqn (2.35), there holds
«(X°Ap)=X_g, (6.18)

which with eqns (6.13, 6.11) yield

(Xo@)Ag=2X"Ay) (6.19)

and then
X2@) AN (X 29)Ag=2|X° Ay|/>vol = 6] X]||>vol. (6.20)
[]

Polarizing eqn (6.17) in X yields, for another vector field Y over M

X1@)AN(Y 1p)Ag@=(X,Y)vol (6.21)
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Lemma 6.5. Let {ey, ..., ey} be a choice of local frame for the tangent bundle T M over some
neighbourhood of M. Then, if locally X = X¥ey then the expression

(Xu@)AN(Xap)Ao)(e,---,€7)

T (6.22)
(det (((ej2 @) A (eja9) No) (e1,-..,€7)))°
does not depend on the choice of frame {e1, ..., e7}.
Proof. Let {¢}, ..., e}} be another frame and let
¢ = Ale;. (6.23)
There holds
(cisg) A(€jag) N =ASA (exs9) Alersg) Ag, (6.24)
and then the denominator of eqn (6.22) changes by a factor of
1
(det(A)2 det(A)7) ? — det(A). (6.25)

Since the numerator also changes by a factor of det(A) by eqn (6.17), the proof is
finished. N

Theorem 6.6. Let X, € T,M and {ey, ..., e} be a basis for the tangent space. Then,
(Xo@)N(Xa@)Ne)(e,..., er)

(det (((ei2@) A (ej29) Ag) (e1,... €7)))°
Proof. Fix det(g) = det(gi;), where g;; = (e;, ¢). Then, from eqn (6.17) there follows

1X,]?= 675 (6.26)

((ei2@) A (ej2 @) A @) = bgijvol

- 6g;j /det(g)e!234567, (6.27)
hence
det (((eia @) A (ej @) A @) (e1,...,e7)) = 6 det(g) det(g)%
=6 det(g)%. (628)
Finally, calculating the numerator of eqn (6.26) comes
(Xp2@) A (Xp @) Ag=6]Xp|*vol (6.29)
_ 6||Xp||2\/m&234567,
and then
(Xpa@) N (Xpa@)A)(er,..., e7) = 6HXpH2det(g)%, (6.30)

which combined with the denominator calculation yields the desired result. O
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In the light of the last result, polarizing the expression (6.26) comes

(Xp, Yp) = 673 (Xpo9) A (YP JQ)AN@) (e, .., )
(det (((eiz@) A (eja@) Ng) (e1,...,e7)))

Remark 6.7. In conclusion, for every G,-structure ¢ over M there is a 7-form valued

(6.31)

\Ol—=

bilinear form B, given by

1
ByX, V)= (Xu@) AN (Yug) A g (6.32)
for which there are an unique Riemannian metric g, and volume form vol, such that

for every vector field X and Y. In local coordinates there holds
89lii=—=— 7 (6.34)

One then says that ¢, and vol,, are respectively the metric and volume form associated
with ¢. The 3-form subscript is usually lost whenever it is clear which Gp-structure is
being considered. Then, eqn (5.58) can be generalized over the manifold M. Namely,
for vector fields X, Y, Z € X(M) the vector cross product

X 1 (M) x (M) — X(M) (6.35)

is defined be the relation
P(X,Y,Z)=(XxY,2Z). (6.36)

Then, it follows from eqn (5.66) that
Xx(YxZ)=—(X,Y)Z+(X,2)Y —¢(X,Y,Z,-), (6.37)

where the sharp isomorphism is taken with respect to the associated metric. Addition-

ally, from (5.73) it comes
(XXY,ZxXW)=(XANY,ZAW)+yp(X,Y,Z,W). (6.38)

The following result, which depicts several important relations between the ¢ and ¥
tensors handled so far, may then be perceived as being direct consequences of these

previous equations.
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Theorem 6.8. Let ¢ be a Gy-structure over a 7-dimensional manifold M with associated metric
g. Then, there holds

PijkPabc8™ = ia8jb — SibSja + Vijabs (6.39)
PijkParc8” 8™ = 68ia, (6.40)
PiikPabed8™ = —ZiaPjpc — SibPajc — SicPaby + SajPive + §bjPaic + §cjPavis  (6-41)
PijkPabca8”’ 8™ = 4@iap, (6.42)
YijParca8™ 8™ = 48186 — 48v&ja + 2Wijab, (6.43)
YijaPabcag” 8 g = 24ia, (6.44)

Proof. One may consider the volume form vol, Hodge star %, vector cross product x
and as usual ¢ = x¢. Fixing the notation, one may take local coordinates (U; x!, ..., x”)

for which
Q= é(pijkdxi Adx! A dxk, (6.45)
P = ;Llpijkldxi Adxd A dxF A dat. (6.46)

As usual, set g;; = ¢(d;,d;) and let

9; x 9j = A0 (6.47)

Then, by eqn (6.36) it follows that
Pijk = Alijglk (6.48)
pijg™ = ALy (6.49)

Now, from eqn (6.37) one can see that

d; X (aj X 0f) = —gijak +8ijaj - l/’z‘jkl(dxl)ﬁ (6.50)
A" A = —gij0k + gixdj — Yijug" .

Then, inserting this expression in the metric with 9,, yields

A Al &mn = —8ii8kn + 8ikgjn — Wigkigmng™"
fPilpgpmgmnéﬂjkbgbl = —&ii8kn + &ik&jn — Yijkn (6.51)
%nl@jkbgbl = —8&ik8in + 8ij8kn + Yinjk,
where @;;,, = —¢;,;; was used. This proves the first equation. The second equation is

then straightforwardly derived by contraction with g%/.
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For the third and fourth equations (where again the latter is obtained by contracting
the former with ¢), one may calculate g(d, x 9y, 9; X (9; x di)). First, by eqn (6.38) there
holds

8(9a X 9p,0; X (9 X k) = §(9a A Iy, 9; A (9j X 9g)) + P(da, Ip, 0j, I} X i)
= 8(3a,9;)8(3, 9 X 9) — (u, 0; X 3)g(Bp, 3i) + Yapit A’y
= 2aign Ay — 8uguiA i + Parit Al
= SaiPbjk — SbiPajk + Yabit Pujk"-

(6.52)

On the other hand, using (6.50) there follows

§(da X 9y, 9; X (9; x Ik) = &(A}Om, —SijOk + &ik0j — ¢ijklglnan)
= —&iiGmk A"y + &migik ATy — Yiju g A Gmn (6.53)
= —&ijPkab * ik Pjab — ll)ijkzgl"%ab-

Hence, one may write the expression
Tijkab = SiaPjkt — SivPjka + KijPavk — SikPaby + PjknPavitg” + PapnPijug " =0 (6.54)
It is not enlightening to present explicitly but one can see that from
Tijkav + Tajkbi + Toijka — Tkijab — Tjkabi =0 (6.55)

it follows the desired result.

By a similar a reasoning, calculating
8(da X (9p X 9), 9; X (9j X I)) (6.56)
tirst using eqn (6.50) and then (6.38) yields

YabcaPijki8” = — PajkPive — PiakPjoc — PijaPrbe
+ 8ia8jb&8ke T 8vi8ak8jc T 8ci8ja8bk

— Lingjc8kb — 8bigja8ck — 8ciSak8jb (6.57)
+ 8jaPocki + 8aiPjkbe + SakPijbe
— SabWijkc + SacWPijkb.

which can be further contracted with ¢ and g%, resulting in the two last identities. [
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6.1 G»-SPLITTINGS OF Q)(M)

Let (M, ¢) be a Gy-structure and fix g its associated metric. In this section, an orthogonal

Gy-splitting of the space of differential forms

7
QM) = P Of(m) (6.58)
k=1
the over the 7-dimensional manifold M is analyzed. Such decomposition shall be
Gp-invariant and will be proven to be a great tool to what follows. These results are
extracted from [56, 58].

Any tensor defined by means of ¢ shall be Gy-invariant and, therefore, also will the
ones defined by 1, x and the associated metric g. When k = 0,1,6 or 7, then Qf(M) is
irreducible, but when k = 2,3, 4 or 5, there exist non-trivial decompositions. Since there
holds

QF(M) = <" F (M), (6.59)

it suffices to understand the decompositions of O*(M) and Q3(M) and then take the
Hodge star to understand their 4 and 5 dimensional counterparts. In what follows, one

writes Q;‘ to mean the /-dimensional part of QF(M) according to this splitting.

Theorem 6.9. Let (M, @) be a Gy-structure. There is a Gy-invariant splitting of the space of
2-forms given by

OA(M) = Q2@ 03, (6.60)

where
2 ={Bc M) : x(pAB)=2B}={X_1¢ : X € X(M)} (6.61)
O ={Be® : xpNp)=—P}={pcQ®: pAYP=0}. (6.62)

The proof is presented in what follows: indeed, one may define a map
R : O*(M) — O*(M) (6.63)

by setting
R(B) = (g A ). (6.64)
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Then, in local coordinates one may write g = %ﬁi]-dxi Adx/ and R(B) = %(R(ﬁ))ubdx“ AdxP.

Calculating, it comes

1 o 1. ‘
R(B) = (@ N P) = Eﬁij * (dx' Ndx) A @) = 551‘]‘81181 Jx(dx! A @)
1 7 1 o1
= —5Big" 8" o 2 0n o = =3 Biig" " G Ymiapdx N dx)  (6:65)
- iﬁifwlmabgilgjmdxa Adx?,

where the anti-symmetry of 2-forms and eqn (2.35) were used twice. It then follows
that

(R(B))ab = _;wubcdgdgdjﬁzf (666)

Now, one can see that R is self-adjoint, so that it splits Q*(M) orthogonally. Indeed,

notice that

1 ci . dj 1 ci dj s
(R*(B))ap = 5 Yabeag gU(R(P));; = 1 Paveatpijse8 8¢ 3" By,
1
= 1(4gusgbt - 4gutgb5 + zwabst)gs}jgtqﬁpq

1
= Bav — Poa + Elpabsthpgtq,qu
=2Bap + (R(B))ap-

(6.67)

Then R? = 2Id + R, so that (R — 2Id)(R +Id) = 0. It follows that the eigenvalues for R
are precisely +2 and —1, which gives the presented splitting for Q*(M).

Now, in order to derive the second description of each part ()2 notice that if X € X(M),
then

X=X i (6.68)
Besides, the condition
PAB=0 (6.69)
is equivalent by eqn (2.35) to
Biig" " Prmk = 0. (6.70)

Proposition 6.10. Let B = 5B;idx' Adx) € O2. Then,

BeM <= B¢ P =4Ba =  Bij =X i,

s o (6.71)
BeOl, <= B¢ Y =280 < Biig" " Prmi =0.
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Proof. In order to prove the statement one may use several contractions from Theorem

6.8. Starting with 2, suppose that
Biig" & Wimab = 4Bav- (6.72)
Multiplying it by ¢,;; yields
Biig" & Wimab Prij = 4Bab Prij
Bij(4®rap) = 4Bap Prij

ﬁij(Prabq’sab = :Babgorijq)sab (6.73)
ﬁij(6grs) = ,Babq)sabq)ﬂ']'

1
Bij = ﬁ,ﬁab(Prub(Prij-
Then, just set X" = ﬁ Bap@"™. Tt follows that
Bij = X" @rij, (6.74)

which proves the first implication. Conversely, suppose B;; = Xk(pijk for some X € X(M).
Then,

.Bijgilgj " Wimap = qu’ijkgﬂgj "Wavim

= 4X* Pap (6.75)
= 4,Bub/
as wanted.
For the O3, part, suppose
Biig" & Yimab = —2Pap- (6.76)

Then, multiplying by ¢g;; yields

Biiabim Psii8" §™ = —2B b Psij

(6.77)
4Bii®sab = —2Bav Psijs
and then further multiplying both sides by ¢*¢/* gives
o 1 o
Pii8" 8" #sab = — 5 Bavsijg "8 6:78)

=0.
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Finally, if ﬁijg” ¢/ @1k = 0 then since

Vimab = —8la8mb + §1b&ma + Plumr Py (6.79)
there holds
Biig" & imab = Bij&" "™ (— 1agmb + 16Gma + Pimr Patl)
= —,Bab + ﬁbu (6.80)
= —2Bab,
which completes the proof. O

Remark 6.11. Notice that since Go C SO(7) then, in the Lie algebra level, one has
9o C s50(7) ~ O*(M), (6.81)

in such a way that, in fact, it is possible to see that the 14-dimensional part Q% 4 of QZ(M)
has
g~ 03 (6.82)

as Lie algebras. Since the splitting is orthogonal, there holds
(62)” = (6:83)
with respect to the associated metric g.
Lemma 6.12. If B € Q3 then
Bav8" Pipg = B8 Pmap — Bpig"™" Pmag- (6.84)

Proof. By the last proposition, since g € 0%4 one has B, = —% ,Bi]-gim gfnlpmmb. Calculat-

ing, it comes

Bus" 010 = —5 (B8 V) Pipas”
= _iﬁijgimgjn ( = &pmPana — &pnPmga — EpaPmng
+ SmnPpna + SngPmpa + ag gvmnp> (6.85)
= —5 (B Paua + Bip&™ Paa — B Ppng — Bing™ )
= Ba18"" Pmap — Bpig" Pmag,

where ,Bl-]-g” ¢/ @1k = 0 from last proposition was also used. O

111



112

G>-STRUCTURES

Proposition 6.13. The space (3, C (Y*(M) is a Lie algebra with respect to the commutator

(B, 1ij = Biu& " tmj — 118" Bumj- (6.86)

Proof. Since so0(7) ~ (M) already has a Lie algebra structure, it suffices to show that
the commutator is closed in Q2,. By the previous results, it is known that [B, u] € Q3 if
and only if

(B, 11ii8""8" Pate = 0. (6.87)

Hence, using eqn (6.84) it follows that

(8, 11188 Pave = Bug" Himig" 8" Pave — 118" Bijg" 8" Pabe
= 8" 1mig" (Ber8” Pstv — Bur” Psic) — 1irg"" Bj& 8" Pabe
= —Burg” Ps1c8 " pmig" — Hing"" B8 8" 8" Pave (6.88)
= — @Bl + @l B!
= O,

as desired. ]

In order to analyze the space of 3-forms Q3(M) let (A;'-) € M(7,R) = gl(7) be a real

matrix. Then, e/4 € GL(7,R) and one can consider the action
1 . .
e g = gq)ijk(etAdxl) A (e Adxl) A (et dxF). (6.89)

Then, it follows that

1 . ,
—| et ¢ = E(Aﬁ-(pl]-k + Aéq)ilk + Ai(piﬂ)dx’ Adxd A dxk. (6.90)
t=0

It is then possible to use the associated metric g to identify the matrix A € I'(T*M ® TM)
with a bilinear form A = (A;)) = (Ag g1j)- Notice that the space of sections I'(T*M & T* M)

of bilinear forms can be decomposed by
[(T*M ® T*M) ~ S*(M) & Q*(M), (6.91)

where as usual
S2(M) =T (Sym2 (T*M)) . (6.92)

The trace defined by ¢
Trg(A) = Aijg” (6.93)
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may be considered as well. Now, if h € S?(M) one can write its traceless part as

1
ho=h— - (Treh) g, (6.94)
yielding a decomposition
S*HM) ~ QM) & SH(M) (6.95)

where S2(M) corresponds to sections of traceless symmetric bilinear forms over M.

Considering the already obtained decomposition of QO?(M), one can see that

N(T*M ® T*M) ~ Q'(M) & S§(M) & OF & O (6.96)
Then, one may write
A= ;(TrA)g +Ag+ A7+ Ay, (6.97)
with Ay traceless symmetric and A; € (O? for i = 7 or 14. Then, the application
F:T(T*M ® T*M) — Q3(M) (6.98)
given by
F(A) = ;t et g (6.99)
t=0

is a linear map between Q% @ SS(M) &) Qg &) 0%4 and Q3(M). The next result gives the
G, splitting for Q3(M), as follows.

Theorem 6.14. Let F : QO & S3(M) & Q% & O3, — Q3 be as previously defined. Then, its
kernel is equal to O3, and the parts QOF, S3(M) and Q3 are isomorphically mapped, respectively,
onto ng, 037 and Q%, which are given by

Of ={fe : feC(M)}, (6.100)
O3 ={X1yp : XcxM}, (6.101)
03, = {hz’jgjldxi AN@©p @) : hij=hji, Trg(h) =0}. (6.102)

Proof. Since G, is the group preserving ¢ then by definition g, = ker F. By dimensional
count it suffices to show that O3, is inside the kernel. One may then write for € O*(M)

the decomposition
Bij = (57)1']' + (:314)1']'/ (6.103)

for which, as before, there holds

1
(Ba)ij = 5 (B1a)ap 8" i (6.104)
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Then, using the contraction between ¢ and 1 one has
l ) 1
(F (B14))ijr = (B1a); @ujic + (B1a)j @itk + (Bra)i @it
=2 ((,314)5 Prjk + ([514)§- ik + (B1a)i 901‘]'1) ’ (6.105)
=2(F (B1a))ijkc-
and then F (B14) = 0 so that 0%4 C go = ker F, as wanted. In addition, it follows that F
is injective in Q¥ @ Sg(M) ® Q2.
Maintaining the notation B;j = (B7);; + (P14);; for p € ()2, one may now analyze the
image of )2 by F. From Proposition 6.10 it follows that
(B)ij = B rijs (6.106)
where .
Bk = @(57)ij%bc8kcgmgj ’. (6.107)
It then follows that

1
(F(B7))ijk = E((ﬁﬂ”%ilglm Pk + (B7)" P8 Pimk + (B7)" @18 Pijm)

1
= E(,Bﬂn(gnjgik — &nk8ij + Wnijk + nk&ji — ni8jk — Ynjik + §ni8kj — &njSki + Wnkif)

= 432(,37)n¢nijk
= X" Puij,
(6.108)
where X" = 11—4(/37)”. One may therefore conclude that
FQ3) = {Xl1yp : X € X(M)}, (6.109)

which is denoted by (3.
The image through F of the symmetric part S>(M) = Q%(M) @ SS(M) can then be
perceived. Obviously, there holds
FQ(M)) = {fg : feC™(M)}, (6.110)
which is denoted Q% - Besides, if h;; € Sg(M) then
1 . :
P(hlj) = g(hfgol]k + hé(/’ilk + hiq)ijl)dx’ Adxd A dx
Lo j Nk
= E(higpljk)dx’ Adx! A dx (6.111)
= hldx' A ) 1 @)
= higl'dx' A (9 1 9),
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and then
F(S§(M)) = {h;g/dx' A9y @) = hyj = hy;, Tre(h) =0} (6.112)

is the Qi—factor, as wanted. ]

Remark 6.15. It follows that, in a Gy-structure (M, ¢), a 3-form 5 € Q3(M) is completely
characterized by the data given by a vector field X € X(M) and a symmetric 2-tensor 1
(which encompasses all of S = Q% & Sp). It reads

n= hl‘jgjldxi A0 @)+ Xlal a1
1 i ok L i ik (6.113)

= Ehi(Pljkdx Adx! A dx® + EX Prijrdx’ Adx A dx”.
Furthermore, since h;; = %Trg(h)gij + h?j, where h?j

h;:, it follows that

corresponds to the traceless part of
ijr
L i v A gnk

F(hlj) = Ehi(Pl]'kdx Adx! A dx

3 1 ' . (6.114)
= S Trg(h)p + E(ho)g(pljkdxl Adx! A dxk,

which explicitly depicts the O} and O3, components.

A Gp-structure ¢ over M determines a Riemannian metric ¢ and therefore one may

consider the Levi-Civita connection V '. One may then analyze the tensor field
VeeT (T*M ® A® (T*M)) . (6.115)

In the Riemannian manifold case one was interested in the metric-compatibility property
(which was seen to be equivalent to Vg = 0). Then, one may define a similar notion for

the Gp-structure case.

Definition 6.16. Let (M, @) be a Gy-structure and consider the tensor field Vo € T (T*M @ A3 (T*M)).
If
V=0, (6.116)

then ¢ is called a torsion-free Gy-structure.

Theorem 6.17. Let X be a vector field over M. Then, V¢ lies in the subspace O3 of the
G, splitting of Q3(M). It follows that the covariant derivative V¢ is a smooth section of
T*M ® A3 (T*M).

The notation V¢ is dropped for simplicity, since more general connections V are not considered in this

section.
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Proof. Since any 3-form 7 can be written as 1 = F(A) for an unique A = h + A7, where
h € S2(M) and A; € O3, it follows that

1 o
(F(A), Vx9) = 2 (F(Aii(Vx Dascg 5" 8"
1 L
= E(Af'(Pljk + Algi + Ak i) X"V i @apeg 818"
(6.117)

1 o
_ EAS(Pl]ka Vm(/’ubcgmg]bgkc

1 .
— EAlaXm qoljkvmq)ubcg]bgkc-

Now, Theorem 6.8 gives @;jx@apc gfbgkc = 6gi,. Taking the covariant derivative V,, and

using the compatibility with g, it comes

(V@) Pabc8”’8" = = 91jx(V m@ane)8’" 8. (6.118)

Therefore, eqn (6.117) is anti-symmetric in the indices I and 4. Hence, the symmetric

part of A" does not contribute to the expression, which gives the result. O

Remark 6.18. The last result shows that
VeeT (T*M ® A2 (T*M)) , (6.119)
so that for each X € X(M) there holds
Vxee B ={Y_ p :YecxM)} (6.120)
With such characterization in mind, one may consider the following definition.

Definition 6.19. Let (M, @) be a Gy-structure. The torsion tensor of the Gy-structure is given
by T € I(T*M ® T*M) such that

Vxe =2T(X) 29, (6.121)
for each X € X(M).
In index notation, one has
Vi @ijk = 2Tmp8" 1gijks (6.122)
and contracting with ,,,,.9" g% ¢ yields
Tonn = 418vm§0ijklpnabcgmgjbgkc' (6.123)

It follows that the G,-structure satisfies V¢ = 0 if an only if T = 0 and a classic result on

torsion-free Gy-structures is given by
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Corollary 6.20. [58,65] The Go-structure ¢ over M is torsion free if and only if dg = 0 and
dy = 0.

Moreover, since
T c(T*M ® T*M) ~ Q°(M) & S3(M) © Q2 & O3, (6.124)
one may decompose the torsion into four independent parts through
T=T1+Ty+T7+ Ty, (6.125)

where Ty = %Trg(T)g and Ty is traceless symmetric. Considering the vanishing or
nonvanishing of each of its parts, a number of 2* = 16 distinct torsion classes of
Gy-structures emerge from this splitting. The torsion can be seen to connect with the
curvature tensor of the underlying space and, in fact, some results are known depending
on the class. For instance, if one considers the scalar case where all parts vanish but

T # 0, then the induced metric ¢ can be shown to be positive Einstein with

3

Rij = 57\281] (6126)

and there holds d¢ = Ay [56,58]. More details on torsion classes of Gy-structures can be
found in [56—58, 66].

6.2 OCTONION BUNDLE

Given a Gp-structures one may present a generalization of the octonion algebra over
a 7-dimensional manifold M, called the octonion bundle OJM/, as seen in [33,55]. Fix,

from now on, the Gy-structure (M, ¢) with associated metric ¢ and volume form vol.
Definition 6.21. The octonion bundle OM over M is the rank 8 vector bundle

OM =A"(M) & TM, (6.127)
where A%(M) = M x R is the trivial line bundle and for each p € M

O,M =R & T,M. (6.128)
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This bundle encompasses the real /imaginary decomposition of an octonion. A section

A € I'(OM) will be simply called an octonion. There are globally defined projections
Re : T(OM)— Q°(M),

(6.129)
Im : I'(OM) — X(M),
and the octonion A can generally be written as
Re(A
A = Re(A) + Im(A) = (Re(A), Im(A)) = [ XD (6.130)
Im(A)
As before, the conjugation can also be defined by means of the equation
A = (Re(A), —Im(A)). (6.131)

The metric g over M may induce a metric over OM, called the octonion metric. Namely,
for A = (a,a) € I'(OM) such metric is taken as
IA* = (A, A) = a* + g, )
(6.132)
= a? + |a|?.
Definition 6.22. Given a Gy-structure (M, ¢) the vector cross product x , with respect to ¢

can be defined by the expression

(@9 B,7) = ¢la, B,7), (6.133)
for every vector fields a, B,y € X(M).

This vector cross product obviously satisfy all properties obtained in the first section.
For now on, whenever it is clear as to which 3-form ¢ the definition of the cross product

takes use, it shall be simply denoted by x.

Definition 6.23. Let A, B € I(OM) be octonions with A = (a,«) and B = (b, B). Then, the
octonions product A o, B with respect to ¢ is defined by

o @—wp
AoyB= (a,B+boc+zx X(pﬁ) e I'(OM). (6.134)

Remark 6.24. Notice that this definition mimics eqn (5.82). In fact, the Gy-structure
globally provides with the information needed to define a cross vector x over the
tangent bundle, which is the most important ingredient when defining a normed
division algebra product. Whenever it is clear, the octonion product is simply denoted
by juxtaposition AB and it obviously has the expected properties from the division

algebra O developed in the last Chapter.
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As before, the commutator and associator operations can also be considered: let A, B

and C be octonions over M, with A and B as before and C = (c, 7y). Then,
[A,B] = AB—BA
=20 X (6.135)
=2¢(w, B, ),
and
[A,B,C] = (AB)C — A(BC)
= 29(a, B, 7, )"

This construction shows that given a Gp-structure over a 7-manifold, it is possible to

(6.136)

fully transfer the octonion algebra structure to OM. Some useful identities in this

configuration can be perceived as follows [33].

L . . . = 1
Lemma 6.25. Let A = (0, &) be a pure imaginary octonion. Then, its exponential e = ]; HAk

is given by
sin (||«
e = cos () +a 1D 6.137)
Proof. It follows directly from the definition of octonion multiplication that
A=u,
A%= el (6.138)
13
A% = —||a|a,
At = el
and so on. It follows that,
1 1 1 1 «
A_ (1 a2 a4 I PR I TP SN
_ sin((Ja ) 0
= cos(|al]]) + a————=.
lec]
O

Corollary 6.26. Let B = (b, B) € I'(OM) be a nonzero octonion. Then, for every k € Z there
holds

B = ||B|¥ <cos (ko) + BS;;((]{OQ))> ’ (6.140)

where B = ﬁ and 6 € R with cos (0) = ﬁ and sin (0) = ||B]|.
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Lemma 6.27. For each octonion A, B, C € T(OM) and k € IN there holds
(1) [A,B,C]=—[A,B,C],
(2) [A%,A,CI=0,
(3) A[A,B,C]=[A,B,ClA,
(4) [A, A¥B,C] = A¥[A, B, C]
(5) [A,BAX,C] =[A, B, C]AK,
(6) [A¥1 B,C] =[AK,B,C]A +[A, B, C]AX.
In particular, the last equation gives for k = 1 and k = 2 the relations
(1) [A%,B,C] =[A,B,Cl(A+A),
(2) [A3,B,C] =[A, B,CI(A% + ||A||*+A?).

Remark 6.28. Let B € I'(OM) and consider the right and left translations

Rp, Lg : T(OM) — I'(OM) (6.141)
respectively given by
RpA = AB
(6.142)
LpA = BA.

When B # 0 these maps are invertible with (Rg)~! = R;_1 and similarly for Lp. Besides,

as already seen, they satisfy
Lemma 6.29. Let A, B,C € I'(OM). There holds

(RpA, C) = (A, RgC) (6.143)
(LA, C) = (A, LC). (6.144)
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One would like to known if, given a G-structure (M, ¢) with associated metric g,, there

is another Gp-structure (M, ¢) with associated metric g5 such that

8¢ =8¢ (6.145)

all over M. It turns out that the answer is positive so that for a fixed Gp-structure
¢ there is a family parameterized by S”/Z, ~ RIP” of other Gy-structures with the
same associated metric g, [67]. Indeed, notice that in general this can be analyzed by
looking into the quotient SO(7)/G,, which is 7-dimensional, and can be shown to be
diffeomorphic to the projective space RIP’. This notion is investigated in this section

and its relation with the octonion bundle OM is considered.

Definition 6.30. Let V € I'(OM) be a non-vanishing octonion. Then, the adjoint map
Ady : T(OM) — I'(OM) is defined by the expression

Ady(A) = VAV, (6.146)
for each A € T(OM).

Remark 6.31. Notice that the adjoint map is invertible, since Ady -1 = (Ady)~!. Also,
there holds
Adyy = Ady, (6.147)

so that one may assume that V' is unitary, without loss of generality. Besides, it preserves

the octonion metric which can be seen by the straightforward computation

(Ady(A), Ady(B)) = (VAV~L, VBV 1)

= H;H2<VAV, VBV 1) 61a8)
.14

-V (V‘1> A, BVV)

= (A, B).

Therefore, Ady € O(8). Moreover, Ady preserves the real part of O, so that it maps
imaginary octonions to imaginary octonions. Therefore, it restricts to pure imaginary

octonions, with restriction denoted by

Ady|mo€ O(7). (6.149)
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For simplicity, denote Ady|imo= Ady. Let also B be a pure imaginary octonion and
V = (vg,v). There holds

Ady (B) = VBV 1

= || |2(vo+v)ﬁ(vo—0)

- Wk (vo+0) ({v,B) +voB+v X B) (6.150)
1

= 7 (188 2000 x po(o, ) 0 x (0% B)
1

= AL ((v% — Hv||2> B+ 2vpv X ﬁ+20(v,ﬁ>) .
It follows that, in index notation:

(Adv |Im0) ' !

- - 2 2\ sa a a
b_HVHZ((UO 0] )517 200(v 12 @), +20 vb). (6.151)

Furthermore, it may be seen that det <AdV|Im@) = +1, so that Ady|imo€ SO(7) [33].
Since Ady|reo= +1, there follows Ady € SO(8). The adjoint map also satisfy the

following identities:

Lemma 6.32. Let V be a nowhere-vanishing octonion. Then, for every A, B € I'(OM) there
holds

(1) (VAY(BV~Y) = Ady(AB)+[A, B,V I|(V+V),
(2) (AV"1)(VB)= AB+[A,B, V- 1V.

Proposition 6.33. Let (M, @) be a Gy-structure and suppose V' is a nowhere-vanishing octonion.
Then, for every A, B € I'(OM) there holds

(Ady (A)) (Ady(B)) = Ady(AB)+[A,B, V1] <V +V+ H ;HZ V3> : (6.152)
Moreover, there holds
Ady-1 ((Ady(A)) (Ady(B))) = AB+[A,B,V21V° (6.153)

- (AV—3) (V3B> . (6.154)
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Proof. By using the second identity from Lemma 6.32 and the ones found in Lemma

6.27, it follows that
(Ady(4)) (Ady(B) = (vav~') (vBv 1)
= (VA) (BV*) +[VA, BV L v v

V2 (6.155)
V2
V3
V1>

= (vA) (BV™") +VIA,B,V"]

= (VA) (Bv—l) +[A,B, V]

Now, the first equation from Lemma 6.32 can be used to derive
V3

(Ady(A)) (Ady(B)) = Ady(AB) +[A, B,V 1 (V+ V) +[A,B, V] Vi

(6.156)

3
= Ady(AB)+[A,B, V] (V +V+ H\‘jH2> ,

which proves the first identity. Now, noting that the subalgebra generated by the two
elements V and [A, B, V1] is associative and applying Ad,-1 to the last equation yields

Ady-: ((Ady(A)) (Ady(B))) = AB+ V! <[A, BV (V . VV3>) v

V]2
3
= AB+(v'4,B,v ) (<V+ V4 H“;|I2> V> .
(6.157)
Using the identities from Lemma 6.27, there holds
_ V3 1%
_ V2

=AB—[A,B,V] <<V+VHVH4)> (6.158)

= AB—[A,B,V] (\72 + HVH2+V2) Ve

From the last equation in Lemma 6.27 and the second one in Lemma 6.32, one can

finally see that
Ady-1 ((Ady(A)) (Ady(B))) = AB — |[V] ™[4, B, V°]V°
= AB+ || V| %A, B, V3V3
= AB+[A,B,VV?

- (ar7) (vs).

(6.159)

123



124

G>-STRUCTURES

as wanted. ]

Now, given a non-vanishing octonion V one can then define a new octonion product
oys given by

Aoys B = Ady((Ady(A))(Ady(B))) = (AV3)(V3B). (6.160)

It would be then natural to ask what kind of three form ¢y would define such product.

Notice that for every pure imaginary octonions A, B and C there holds

¢ (Ady-1(A), Ady 1(B), Ady 1(C)) = (Ady 1(A) x Ady 1(B), Ady 1(C))

(6.161)
= ((Ady-1(A))(Ady-1(B)), Ady-1(C)).

since the adjoint restricts to the imaginary part. Obviously Ady is self-adjoint so that

9 (Ady 1(A), Ady 1(B), Ady 1(C)) = (Ady(Ady 1(A)Ady 1(B)), C)

= (Ao B,C) (6.162)
= ¢V3(A, B, C)
Therefore,
py3(A, B,C) = p(Ady-1(A), Ady-1(B), Ady,-1(C)). (6.163)

Remark 6.34. Notice that since Ady is invertible, then eqn (6.163) shows that ¢y is in
the GL(7, R) orbit of the original G,-structure ¢. Moreover, since Ady preserves the
metric associated with ¢, it follows that ¢s has the same metric associated as ¢. In
order to better understand these relations and the octonion product defined by means

of eqn (6.160), one can define the following map:

Definition 6.35. Let (M, @) be a Gy-structure. Then, for each non-vanishing octonion V =
(vo, v) define the map of 3-forms oy : Q3(M) — Q3(M) given by

1

oy () = i <<v% = HZ)H2> @ — 2000 3P +20 A (v (p)) . (6.164)

Theorem 6.36. Let (M, @) be a Gy-structure. Then, for any nowhere-vanishing octonion V
there holds

ays(@)(-,+, *) = e(Ady1(0), Ady-1(0), Ady-1(0)). (6.165)
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Proof. For pure imaginary octonions A, B and C there holds

¢y3 (A, B,C) = ¢ (Ady-1(A), Ady-1(B), Ady-1(C))
= (Ady-1(A)Ady-1(B), Ady-1(C))
= (Ady(Ady-1(A)Ady-1(B)), C)
= (AB+[A,B, V3V 3,C)
= ¢(A,B,C)+ ([A, B, V3V3,0C).

Now, let V3 = (wg, w) and so ||V3||?= w3 + |w|?>= W. Then, there holds

(w01 —ZU)
W

1
= %[A, B, w] - —-[4, B,w] x w.

[A, B, V3V =[A, B,w]

In order to expand in index notation one may write w = w*

express the associator. It follows that
([ea, ep, W], ec) = (Zgiflpjabdwdei, ec)
= Zgl]lpjabdwd <ei/ ec>
= 28" i Pjapaw
d
= chabdw .
Furthermore,
(e, ep, w] X w, ec) = <2¢Z}7dwdw”(em X en), ec)
= Zzp;’;,dwdw"(em X ey, ec)
= 2¢%d¢mncwdwn~

Considering the previous relations, it follows that
Zwo 2
(Pv3)abe = Pave + W‘/’cabdwd - W(Pcmanmabdwdwn-
Now, (6.41) can be used in the form

q’abclpmnpc =-3 (ga[mgonp]b - gb[m%p]a) ’

yielding

d

PemnPgpgw0 W" = H”||2(Pabc - 3w[a§0bc]mwm,

(6.166)

(6.167)

eg and use ¥ in order to

(6.168)

(6.169)

(6.170)

(6.171)

(6.172)
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which turns eqn (6.170) into

2 2w 6
((PV3>abc = (1 - W’w’2> Papc T Wowcabdwd + Ww[uqobc]mwm, (6.173)

which in coordinate-free notation is given by

1 2 2
Pys = W <(w0 — [|wl] ) @ —2wow 3P +2w A (w A (p)) , (6.174)

as claimed. m

Remark 6.37. The last result shows that o5 = o if and only if V? is real. Since one
may assume V to be unitary, then the octonion product is preserved by Ady if an only
if V® = 1. Furthermore, from Proposition 6.33, the octonion product defined by the
Gy-structure oy(¢) for a nonvanishing octonion V' is given, for A, B € I(OM), by

Aoy B= Ao, B=AB+[A B VIV = (AV)(V 'B). (6.175)
Lemma 6.38. Let U and V be nonvanishing octonions. Then,
UopyV=UoyV (6.176)

Proof. Let V = (vp,v). Then, the result comes directly from the octonion product

definition and from the calculation

1
vaoy(p) = Y- ((v% - ||sz) @ — 2000 5P +20 A (v qo))
1

=7 (= lol?) v s@+2folPo o) (6.177)

=0410@.

Therefore, multiplying by V' using the product oy defined by oy (¢) is the same as using
the product o defined by ¢. One may then write the expression UV without specifying

which octonion product is being taken. O

Remark 6.39. Since oy (@) defines a new product oy then given A, B,C € I(OM) one

may denote their associator with respect to oy by
[A, B, C]V = (A oy B) oy C—A oy (B oy C) (6178)

Theorem 6.40. Let (M, @) be a Gy-structure. Then, given nowhere-vanishing octonions U and
V there holds

oulov(e)) = ouv(e). (6.179)
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6.4 OCTONION COVARIANT DERIVATIVE

Given a Gp-structure (M, @) one may analyze the relation between the octonion product
over OM and the (Levi-Civita) connection given by the associated metric g, being the
torsion naturally introduced. As usual, the connection V satisfies the Leibniz rule
between the product of two vector fields, but extending it to the octonion bundle one
may investigate how V behaves with respect to it.

Let (M, @) be a Gy-structure and fix from now on the Levi-Civita connection V of the

metric ¢ associated with ¢. If A = (4, ) € I'(OM) then one may define the extension
VxA = (Vxa, Vxa) (6.180)
for each X € X(M).

Proposition 6.41. Let A, B € T(OM). Then, for every X € X(M) there holds
Vx (AB)=(VxA)B+A(VxB)—[T(X), A, B], (6.181)
where T(X) = (0, X 2 T) and T is the torsion of the Gy-structure .

Proof. One may write A = (a,a) and B = (b, ). Then, using the octonion product

definition there holds

VX(AB):VX< ab—(a,p) )

(Vxa)b+a(Vxb) —Vx ((«,B)) (6.182)
ap +ba+ p(a, B, -)! T

Vx (aB+ba) +Vx (e(e, B,)°) .
whereas

(6.183)

(VXA)B=< (Vxa) b~ (Vxa,p) )

(Vxa)B+b(Vxa)+(Vxa)x B
and similarly for A (VxB). Then, notice that since V is metric-compatible and satisfies

the Leibniz rule, it follows

0
Vx (AB) — (VxA)B— A(VxB) = (VX ((P("‘r B, )ti) —(Vxa) X B—a X (V)g@)) .
(6.184)

However,

(Vx9) @B, ) = Vx (9w, B,)F) — 9(Vxat, B, F = pla, VxP, )

(6.185)
= Vy (4’(“' ﬁ,.)ﬁ) — (Vxa) x B—a x (VxB),

127



128

G>-STRUCTURES

and hence

0
Vx(AB)= (VxA)B+ A (VxB) — . 6.186
x(AB) = (VxA)B+ A (VxB) <(Vx(q0))(a,ﬁ,-)ﬁ) (6.186)

From eqn (6.121) one has Vx(¢) = 2T(X) 2 ¢, and therefore
(Vx(@) @ B, =29 (T(X), 2, B, )}
= [T(X), a, Bl,

(6.187)

which gives the result.
O

Remark 6.42. It is straightforward to see that if either A or B is real then the associator

vanishes and one may recover the standard Leibniz rule for V. Also, notice that
[T(X),A,B]=0 (6.188)

identically for all X € X(M) and A,B € I'(OM) if and only if T = 0, that is, the
Levi-Civita connection is compatible with octonion multiplication if and only if the

Gr-structure is torsion-free.

It is possible to adapt the covariant derivative in order to make it compatible with
octonion multiplication [33]. Note that the torsion tensor T' may be considered as a pure

octonion-valued 1-form over M, that is

T € I(T*M ® Im(OM)) = Q' (Im(OM)), (6.189)
with
(XC_)I T) = T(X) € IIm(OM)). (6.190)
Definition 6.43. Define for each vector field X € X(M) the octonion covariant derivate
Dx :T(OM) — I'(OM) (6.191)
by the relation
DxA =VxA — AT(X), (6.192)

for each A € T(OM).
Remark 6.44. By straightforward computation there holds
Dx1=—-T(X), (6.193)

for every X € X(M). One may see that this derivation satisfies a quasi-derivation

property with respect to the octonion product, as follows.
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Proposition 6.45. Let A, B € I'(OM) and X € X(M). It follows that

Dx (AB) = (VxA)B+ A (DxB) (6.194)
Proof. Using Definition (6.192) directly, it comes

Dx(AB) = Vx(AB) — (AB)T(X), (6.195)

and then using Proposition (6.180) and associator properties there follows

Dx(AB) = (VxA) B+ A (VxB) — [T(X), A, B] — (AB)T(X)
= (VxA)B+A (VxB) —[A, B, T(X)] — (AB)T(X) 6106
= (VxA) B+ A (VxB) — A(BT(X)) + (AB)T(X) — (AB)T(X)
= (VxA)B+A (DxB).
O

One may also show that D has a kind of metric-compatibility with respect to the OM

extended metric, namely
8(A, B) = Re(A)Re(B) + g(Im(A), Im(B)), (6.197)
where g in the right-hand side denotes the original associated metric over M.
Proposition 6.46. Let A, B € I'(OM) and X € X(M). There holds
Vx(g(A, B)) = g(DxA, B) + (A, DxB). (6.198)
Proof. One may see that

§(DxA, B) = g(VxA — AT(X), B)
= 8(VxA, B) — g(AT(X), B) (6.199)
= 8(VxA, B) — g(T(X), AB),

where Lemma 6.29 was used. Similarly

8(A, DxB) = g(A, VxB) — g(A, BT(X))

_ (6.200)
= g(A, VxB) — g(T(X), BA).

Combining the previous relations yields

¢(DxA, B)+¢(A, DxB) = g(VxA, B) + g(A, VxB) — g(T(X), AB — BA). (6.201)
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Now, T(X) is pure imaginary whereas AB + BA is real, so that their inner product is

zero. Therefore,
g(DXA/ B) + g(A/ DXB) = g(VXA/ B) + g(A/ VXB) = VX(g(A/ B)) (6202)
]

One may now consider a change of reference given by a nonvanishing octonion V
by means of oy(¢) in eqn (6.175) yielding a new octonion product oy, as previously

analyzed.

Lemma 6.47. Let V be a nonvanishing octonion. Then, for every A,B € I'(OM) and any
X € X(M) there holds

Vx (Aoy B) = (VxA) oy B+ Aoy (VxB) — [Ady(T(X)) + V(VxV 1), A, Bly. (6.203)

Remark 6.48. Denote by Ty the torsion of the Gy-structure oy (¢). Then, by eqn (6.181)

there follows
Vx(Aoy B) =(VxA)oy B+ Aoy (VxB) —[Ty(X), A, Bly. (6.204)
Comparing the last equation with (6.203) gives the following result.

Theorem 6.49. Let (M, ¢) be a Gy-structure with torsion T € Q'(Im(OM)). Then, the torsion
Tv of ov(¢) for some non-vanishing octonion V € I'(OM) is given by

Ty = Im(Ady T+ V(VV ). (6.205)
Furthermore, if V has constant norm then
Ty = —(DV)V L. (6.206)

Proof. This comes directly from eqn (6.203). Since it is defined for every A, B € I'(OM),
comparing with (6.204) yields that the imaginary parts of Ty and AdyT + V(VV 1)
must be the same. However, since Ty is pure imaginary, the result follows.

However, in general Re(Ady T + V(VV 1)) # 0. Notice first that since VV~! =1 and
since [A,V, V1] =0 for every A € T(OM) then one has

vvv1hH=0
VIVV h+(vyvl=0 (6.207)
V(VV hH = —(vV)v L
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It follows that

Re(AdyT +V(VV 1) = (Ady T+ V(VV 1), 1)
= (V(VV1,1)
= —((VV)V11)

1
— _W<vvl V> (6.208)

1 1
-~ VIVIE
VI

= —VIn||V|.
In particular, if | V|| is constant then the real part vanishes and therefore
Ty = AdyT+V(VV™Y
=VIV—(vV)v!
=—(VV-vT)Vv!
= —(DV)V L.

(6.209)

6.5 SPINOR BUNDLE

To conclude this chapter, it is possible to relate this description of Gy-structures with
one emerging from the so-called spinor bundle over the 7-dimensional manifold M,
as one may see in [33]. The general construction of the spinor bundle using Clifford
algebras are briefly introduced and an equivalence between the two descriptions on the
level of affinely connected spaces is presented.

Let V be a finite n-dimensional real vector space and consider the space of alternating
k-multilinear transformations A*(V). Such space gives rise to the exterior algebra A(V)
by means of the well-known wedge product. If 1, ¢ € A¥(V) then one can define the

reversion given by
W = ¢y, (6.210)

which is an algebra anti-automorphism. There also holds

§= (_1)k(k*1)/2¢_ (6.211)
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On the other hand, the graded involution is an automorphism given by
§=(=Dfy, (6.212)

and the conjugation, which is the composition of the reversion and the graded involu-
tion is denoted by
P = (—1)f D2y, (6.213)

One can also define the projection ( - ); on the i-vector part . If ¢ = ¢ + - - - + ¢, where
P € N (V) for each j, then
(¥)i =i (6.214)

It is possible to further define the projection on the i and j part of ¢, given by
(W)iwj =i+ ), (6.215)

and so on.

Now, let (V, g) be a quadratic space (g is a non-degenerate symmetric bilinear form
over V). The Clifford algebra associated to (V,g) is denoted by C/(V, g) and can be
perceived as a deformation of the exterior algebra A(V). It is a Z,-graded associative
algebra with unity 1 € C/4(V, g) and it is isomorphic to the exterior algebra as a vector
space and therefore it inherits the previously mentioned (anti)automorphisms and

projections. Denote by C¢*(V, g) its even subalgebra. One may also write
n .
CUV,8) = P A(V), (6.216)
i=0

so that the multivector structure of the exterior algebra can also be considered. The
Clifford algebra is endowed with a product ” - ” which is defined by the so-called
Clifford identity, which for each u,v € V reads

u-v+v-u=29(u,0). (6.217)
In fact, if I is the ideal in the tensor algebra T (V) generated by all elements
v®v—g(v,), (6.218)
where v € V, then the Clifford algebra is given by the quotient

CUV,g) =T(V)/1, (6.219)
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so that one can see that the Clifford product satisfies
u-v=uNv+gu,o). (6.220)

In the case V = IR", then Sylvester’s Law of Inertia for the quadratic space (R", g) says
that there is an orthogonal (with respect to g) basis {ey, ..., ep,eq, .-, ep+q} for V, where

p+4g =n, and such that

1 if1<i<p,
glei, ej) = o P (6.221)
-1 ifp+1<i<yg.

Then one may denote (R", g) = RP¥ where (p, q) is called the signature of such quadratic
space. The Clifford algebra for RP/7 is then denoted by C/, ;.

Example 6.50. In the trivial case V = {0} the tensor algebra is just T(V) = R and so
Clyp = R. Consider now the quadratic space V = R%!. Then, there is a vector e; € R
such that

g(er,e1) = -1, (6.222)

where g is the quadratic form associated with R%!. A basis for the Clifford algebra is
then given by {1,e;} and it is straightforward to see that

Cly, ~C. (6.223)
Similarly, the quadratic space V = R%! has
Cgl,o ~ R & R. (6224)

Example 6.51. Moving forward one may consider the space V = R%2, for which there is

an orthonormal basis {eq,e;} such that
gleen) = glezen) = 1, gler,e2) = glea,er) = 0. (6.225)
An arbitrary element in C/p is in the form
Clyp 2 a+bey +cep +dejey, (6.226)
with a,b,c,d € R and

e1-ep=e-ep=-—1, e1-ep=ep-e1 =0. (6.227)
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It follows that
(1 - e2)* = —1. (6.228)

Therefore, the set {1, e1, e, e1 - €2} is a basis for C¢j » and one can see that it is isomorphic
to the quaternion algebra H. An explicit isomorphism p : C{y, — H can be defined,
for instance by
P(l) =1, P(el) =1, P(EZ) = jl P(el ’ 62) =k, (6229)
where i,j and k are the imaginary units in H, such that > = j2 = k* = —1 and
ij =—ji=k, jk=—kj=1iand ki = —ik = j. Therefore,
Clyp ~ H. (6.230)
In a similar way, one can see that
Clyy ~Cly1 ~M(2,R). (6.231)
In the general case V = R”7 one need only to construct explicit isomorphisms up to

dim V = 8, since there holds

Theorem 6.52 (Atiyah-Bott-Shapiro Periodicity Theorem). For every quadratic space IRPA
it follows that C¢) 548 ~ M(16,R) @ Cl) ;.

In the light of the last Theorem, one may define the following table:

p—g mod 8 0 1 2 3

Clyyg M@/ R) M@ R) @ M2/ R) MQEI2ARY | MEMA, C)
p—q mod 8 4 5 6 7

Cly, M@ H) | MEMA H) o MEMAH) | MEEAETH) | M)

Table 1: Clifford Algebra Classification (n = p+g and [ - ] is the floor function) [68].
Now, a natural group sitting inside of C/}, 4 is the subset of invertible elements, namely

Clpy={aeCly, : Ja~t € Cly,l, (6.232)

and a prominent subgroup in Clifford theory is the so-called twisted Clifford-Lipschitz
group given by
Ipg={ae€cCl,, : ava~t € R, Yo € R}, (6.233)

Defining the application
0:Tpq — Aut(Clp,), (6.234)
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given by

o(a)(v) = dva? (6.235)

then one can prove the

Theorem 6.53. Let C{;, 4 be the Clifford algebra for the quadratic space RFP1 and let o : T 4 —
Aut(Clp, q) be as previously defined. Also, let I'; , =Ty g NCLy . Then,

o(Tp,qg) ~ O(p, q),

. (6.236)
o(T},) ~ SO(p,q).
Moreover, there holds
kero = R¥, (6.237)
where R* = R\ {0}.
Now, one may consider a norm N : C{;, ; — R defined for each a € C¢ 4 by
N(a) = |(aa)o|- (6.238)
This norm satisfies the relation
N(a-b) = N(@)N(b), (6.239)

and it may be used to define the Pin(p, q) subgroup of the twisted Clifford-Lipschitz
group, given by
Pin(p,q) ={a €Tp, : N(a)=1}. (6.240)

Then, the Spin(p, g) group is just
Spin(p, q) = Pin(p,q) N CL,, . (6.241)
It then follows from Theorem 6.53 that

Pin(p, q)/Z> ~ O(p, q),

(6.242)
Spin(p, q)/Z> ~ SO(p, q).

Then, the restriction ¢ : Spin(p, q) — SO(p, ) can be seen as a 2-fold covering of the
space SO(p, q). Elements of an irreducible representation of the group Spin(p, q) are

called (classical) spinors.
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This construction can be transported to an oriented manifold M as follows: one
considers a Spin(p, q)-principal bundle 7t : Pspinp,q) (M) — M with a 2-fold application
[69]

St Pspin(p,q)(M) = Pso(p,q)(M), (6.243)

for which there holds
s(pe) = s(p)a(¢), (6.244)
for every p € Popin(p,q and ¢ € Spin(p, q). Then, in order to define spinor fields over
M one must first set the notion of a spinor bundle. Namely, it is given by the vector

bundle

S(M) = Popin(p,g)(M) Xp Sp,q, (6.245)
where p : Spin(p, q) — End(S, 4) is a representation of the Spin group and S, is a left
module for C/,,. This yields the following description with respect to the Clifford

algebra classification [68, 70]:

p—g mod 8 0 1 2 3
[(n—1)/2 —1)/2 —1)/2 —1)/2 -1)/2]-1
Sy R g g2 07 RZEDAT [ @l D7T [l
p—q mod8 4 5 6 7
[(n—1)/2]-1 -1)/2]-1 -1)/2]-1 -1)/2 -1)/2
Sp,q H2 (n-1/ o Hz[(" )/2] ]I_Iz[(n )/2] Cz[(ﬂ )/2] IRz[(" )/2]

Table 2: Spinor classification (n = p+¢g and [ - ] is the floor function) [68].

Then, one says a spinor field is precisely a section in §. More details on the definitions
and properties of the Clifford algebras can be found in [68, 71] whereas for spinor
bundles one can see [64]. Further applications of spinors and their emergence in
mathematical-physics can be also seen in [71-82].

Let now (M, ¢) be a Gy-structure and A € I'(OM) be an octonion over M. Then,
consider the algebra of left translations L4 : [(OM) — I'(OM), with L4 (V) = AV for
every V € I'(OM). Notice that for every A, B,V € I'(OM) there holds

LuLg(V)+LgL4(V) = A(BV) + B(AV)
= AB(V) +[A, B, V]+(BA)V +[B, A, V] (6.246)
= (AB+BA)V,

so that if A and B are pure imaginary then

LALB + LBLA = —<A, B>Id, (6247)
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which is precisely the defining identity of the Clifford algebra. Therefore, the octonion
algebra gives rise to a Clifford algebra (which is associative, since composition is
associative) by means of left translations. This construction is called the enveloping

algebra of the octonion algebra O. Notice that in general LyLg # Lp.
Lemma 6.54. Let (M, @) be a Gy-structure over M and A, B, C € I'(OM). Then,
A(BC) = (A oc B)C, (6.248)
where oc is the octonion product defined by means of oc(¢). In particular,
LaLgC = Lo BC. (6.249)
Proof. Direct computation yields

A(BC) = (AB)C +[A, B, C]

=(AB+[A,B,Clc™HC (6.250)
= (A oc B)C,
where the relation A oc B = AB +[A, B, C]C~! was used. ]

Let now S(M) = S be the spinor bundle over the 7-manifold M and denote by (-, )s
its inner product. Also, one may denote by (-, -)o the octonion metric with respect to
the Gy-structure (M, ¢). Then, a nowhere-vanishing unit spinor ¢ € I'(S) over M also

defines a Gp-structure via the expression [83]

pe(, B, ) = —(C,a-(B-(v-O))s, (6.251)
where «, B,y € X(M).
Lemma 6.55. Let o, B,y € T(ImOM) and V € I'(OM) an unit octonion. Then, there holds

(ove) @ B,7) = —=(V,a (B(7V)))o- (6.252)
Proof. From Lemma 6.54 it comes
w(f(yV)) =a((Bovy)V)
(6.253)
= (aoy (Bov 7)) V.

Then, since ||V||=1 it follows that
(V,a(B(7V)))o =V, (xov (Bov 7)) V)o
=(Laoy (BovT))o (6.254)
= —(a, Bov 7)o
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Therefore, there holds

(V,a(B(7YV)))o=—(a,Bov 7)o
(6.255)
=—(ove) (a,B,7)-

]

Since the Clifford algebra product only depends on the metric, notice that the differ-
ence between eqns (6.251, 6.252) is that the first assumes a choice of metric whereas the

second assumes a choice of Gy-structure ¢z. One may then define the linear map

je : T(S) — I(OM) (6.256)

given by
je@) =1 (6.257)
]C(V ’ 77) =V O ](’,‘(77)1 (6258)

for every octonion V and spinor field #. Notice that if 7 = A - ¢ for some octonion
A € T(OM) then

jen) = j(A - ) = A. (6-259)

If one fixes a nowhere-vanishing spinors ¢ then there is a pointwise decomposition

of SasR-¢@® {X ¢ : X € R”}, so that every spinor 7 can be writen as 17 = A - & for

some octonion A. Therefore, jg is a pointwise isomorphism of real vector space from

spinors to octonions.

Lemma 6.56. The map jz preserves the inner products, namely

(1, 1m2)s = (z(n), jz(m2))o- (6.260)
Proof. Indeed, let V; and V, be octonions such that 1 = V1 - ¢ and 1, = V, - § with
Vi = (111,01) and Vo = (az, 02). Then,
(m,m)s=(Vi-¢& Va-g)s

= ma|[§[*+(v1 - V1,02 Va)s

= may||§[+(o1, 02) €17 (6.261)

= (Vi,2)o

= (je(11), je(12)) o-
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With respect to the change of reference, one can see that if one fixes a non-vanishing

unit spinor ¢ then under j by the last result there holds

(PC(“lﬁ/')’) = _<C/(X ’ (ﬁ ’ (’7 : (:)»S
=—(fz (5), & (B (7 (je (£)))))o

(6.262)
=—(La(B(7)
= (&, ),
as expected. Then, if 7 = A - { by Lemma 6.56 it follows that
Py, By) = =G e (B (v-1)))s
=—(je (1), 2 (B (7 (jz (1)) ))o (6.263)

=—(A,a(B(7(4)))),

where the octonion product is given with respect to ¢¢. It follows from eqn (6.252) that

Pa.z=0a(Pe)- (6.264)

Corollary 6.57. Let ¢ be a nonvanishing unit spinor on a 7-dimensional manifold M and let

@g be its associated Gp-structure. Then, for any unit octonions U and V there holds

Pu-(v-&) = Puv)-¢- (6.265)
Proof. Theorem 6.40 asserts that

ou(ov¢e) = ouvee- (6.266)
On the other hand, from eqn (6.264) it comes

ou(ovexi) = oul(ev.e) = Pu.v-g) (6.267)

ouvPs = Quvy-g,
which gives the desired result. O

Furthermore, one may endow S with a connection V¢ lifted from the Levi-Civita

connection V over M. It has the property that if 7 = A - { then
Van = (VxA)-E+A-VSE. (6.268)
It follows that there is an endomorphism T® : X(M) — X(M) such that [41]
v§e=-TOX)-¢, (6.269)

where T¢ is called the torsion tensor of @¢- It then follows
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Theorem 6.58. Let ¢ € I'(S) be a nonvanishing unit spinor on a 7-dimensional manifold M

and @g its associated Gy-structure. Then, for every 11 € T'(S) there holds
Je(V%) = DX Gz n), (6.270)
where D) is the octonion covariant derivative with respect to the Gy-structure @g.

Proof. From (6.269), it comes

j2(VRE) = —TOX)

= Dgg)l (6.271)
= DYje(@)-
Then, for 7 = A - ¢ the identity
Vi = (VxA)-§+A-V§E (6:272)

allied with the defining relations for jz yield

j2(VE) = (VxA) - jo(@ + A - j(VSE)
= VxA — ATO(X)

(6.273)
=D¥A
= Dje().
O

Therefore, the isomorphism & ~ OM provided by jz for a choice of nonvanishing
unit spinor ¢ gives an isometric relation which maps the spin bundle connection
VS to the octonion covariant derivative DS. However, since the Clifford algebra is
associative, the octonion algebra contains more information. The octonion product can
be further defined in terms of projections of Clifford products as seen in [84] and the
product deformation as in eqn (6.175) can be perceived therein, and its relation with
spinor fields over the 7-sphere S” with non-vanishing torsion can be scrutinized [34, 85].
Furthermore, with the study of Gy-structures we can extend the formalism herein
introduced, emulating S” spinors into current algebras and Kac-Moody algebras, as

in [34,86].



CONCLUSION

The objective of this work was to formulate more general descriptions of geometries
on manifolds which could be further considered within the framework of theoretical
physics. In order to do that, affine connections with non-vanishing torsion were
analyzed, being those key ingredients to work with the Kaluza-Klein supergravity
theories in 7 dimensions. Besides, the octonion product was integrated to 7-dimensional
manifolds and octonionic fields in this context were seen to relate to the important
notion of spinor fields in physics, which may yield generalizations in the parallelizable
7-sphere S7 asin [34,85,86].

A brief introduction on vector bundles and Riemannian geometry was given, and
affine connections over a manifold were considered in a way that some useful properties
of the Levi-Civita connection could still be perceived by allowing the notion of totally
anti-symmetric contorsion. The Riemannian metric was shown to be a great tool in
order to define normal coordinates and was introduced only when needed.

Then, geodesic loops were constructed onto affinely connected spaces and their
fundamental tensors considered. The tangent space was endowed with the W-algebra
operations and the fundamental tensor were related to the underlying notions of torsion
and curvature. This apparatus was then considered in the context of the Kaluza-Klein
d = 11 spontaneous compactification theory of supergravity, where the equations of
motion were seen to yield geometric constraints over the ground state by using the

techniques of geodesic loops heretofore scrutinized.

In addition, the normed division algebras were analyzed and their properties exposed.

A treatment on the algebra O was given and by means of the 3-form ¢ a G;-structure
over the vector space R” was considered. Further on, the notion of G,-structures over
7-dimensional manifolds was analyzed, enabling such space to be endowed with an
octonion-like product, yielding interesting relations with the spinor bundle and its

covariant derivative.
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Apart from the above-mentioned possible generalizations for spinor fields emerging
from the octonion bundle, it is also possible to consider more general connections when
discussing the octonion covariant derivative. For instance, the results found in [33] on
this matter may be generalized for deformations of the Levi-Civita connection by a
totally anti-symmetric contorsion, since it still satisfies the metric-compatibility property,
which was extensively used. The relation between geodesic (and local) loops and more
general global (Lie) loops and the topological constraints to their existence may be
further considered. Finally, we believe there may be a link between the torsion of a
Gy-structure and the underlying torsion of a connection which can be perceived locally

by the fundamental tensors of the geodesic loop.



BIBLIOGRAPHY

[1] E. Cartan, Sur les variétés a connexion affine et la théorie de la relativité généralisée.

(premiere partie), Annales Sci. Ecole Norm. Sup. 40 (1923) 325-412
[2] J. C. Baez, The Octonions, Bull. Am. Math. Soc. 39 (2002) 145-205

[3] T. Kugo and P. K. Townsend, Supersymmetry and the Division Algebras, Nucl. Phys.
B 221 (1983) 357-380

[4] M. Gunaydin and F. Gursey, Quark structure and octonions, J. Math. Phys. 14 (1973)
1651-1667

[5] M. Gunaydin and F. Gursey, Quark Statistics and Octonions, Phys. Rev. D 9 (1974)
3387

[6] M. Gunaydin, K. Koepsell and H. Nicolai, Conformal and quasiconformal realizations
of exceptional Lie groups, Commun. Math. Phys. 221 (2001) 57-76

[7] L. Borsten, D. Dahanayake, M. J. Duff, H. Ebrahim and W. Rubens, Black Holes,
Qubits and Octonions, Phys. Rept. 471 (2009) 113-219

[8] M. Gunaydin and H. Nicolai, Seven-dimensional octonionic Yang-Mills instanton

and its extension to a heterotic string soliton, Phys. Lett. B 351 (1995) 169-172

[9] B. A. Bernevig, J. p. Hu, N. Toumbas and S. C. Zhang, The Eight-dimensional
quantum Hall effect and the octonions, Phys. Rev. Lett. 91 (2003) 236803

[10] R. Kallosh and A. D. Linde, Strings, black holes, and quantum information, Phys.
Rev. D 73 (2006) 104033

[11] M. Gunaydin, C. Piron and H. Ruegg, Moufang Plane and Octonionic Quantum
Mechanics, Commun. Math. Phys. 61 (1978) 69

[12] J. M. Hoff da Silva, R. T. Cavalcanti, D. Beghetto and R. da Rocha, Spinor

symmetries and underlying properties, Eur. Phys. J. C 80 (2020) no.2, 117

143



144 BIBLIOGRAPHY

[13] R. Lopes and R. da Rocha, New spinor classes on the Graf-Clifford algebra, JHEP 08
(2018) 084

[14] R. da Rocha and W. A. Rodrigues, Jr., Where are ELKO spinor fields in Lounesto
spinor field classification?, Mod. Phys. Lett. A 21 (2006) 65-74

[15] R. da Rocha, A. E. Bernardini and J. M. Hoff da Silva, Exotic Dark Spinor Fields,
JHEP o4 (2011) 110

[16] M. R. A. Arcodia, M. Bellini and R. da Rocha, he Heisenberg spinor field classification
and its interplay with the Lounesto’s classification, Eur. Phys. ]. C 79 (2019) no.3, 260

[17] R. da Rocha, L. Fabbri, J. M. Hoff da Silva, R. T. Cavalcanti and J. A. Silva-Neto,
Flag-Dipole Spinor Fields in ESK Gravities, ]. Math. Phys. 54 (2013) 102505

[18] R. da Rocha and ]. M. Hoff da Silva, From Dirac spinor fields to ELKO, J. Math.
Phys. 48 (2007) 123517

[19] R. da Rocha and J. M. Hoff da Silva, ELKO, flagpole and flag-dipole spinor fields, and
the instanton Hopf fibration, Adv. Appl. Clifford Algebras 20 (2010) 847-870

[20] A. E. Bernardini and R. da Rocha, Dynamical dispersion relation for ELKO dark
spinor fields, Phys. Lett. B 717 (2012) 238-241

[21] C. Villalobos, C.H., ]. M. Hoff da Silva and R. da Rocha, Questing mass dimension
1 spinor fields, Eur. Phys. J. C 75 (2015) no.6, 266

[22] R. T. Cavalcanti, ]. M. Hoff da Silva and R. da Rocha, VSR symmetries in the DKP
algebra: the interplay between Dirac and Elko spinor fields, Eur. Phys. J. Plus 129

(2014) no.11, 246

[23] R. da Rocha and J. M. Hoff da Silva, Hawking Radiation from Elko Particles Tun-

nelling across Black Strings Horizon, EPL 107 (2014) no.5, 50001

[24] R. da Rocha and ]. G. Pereira, The Quadratic spinor Lagrangian, axial torsion current,

and generalizations, Int. . Mod. Phys. D 16 (2007) 1653-1667

[25] W. A. Rodrigues, Jr., R. da Rocha and ]. Vaz, Jr., Hidden consequence of active local
Lorentz invariance, Int. ]. Geom. Meth. Mod. Phys. 2 (2005) 305



BIBLIOGRAPHY

[26] L. Bonora and R. da Rocha, New Spinor Fields on Lorentzian 7-Manifolds, JHEP o1
(2016) 133

[27] R. Lopes and R. Rocha, The Graf Product: A Clifford Structure Framework on the
Exterior Bundle, Adv. Appl. Clifford Algebras 28 (2018) no.3, 57

[28] M. Kikkawa, On Local Loops in Affine Manifolds, J. Sci. Hiroshima Univ. Ser. A-I
Math. 28 (1964) no. 2, 199-207.

[29] M. A. Akivis, Geodesic Loops and Local Triple Systems in an Affinely Connected Space,
M.A. Sib Math ] 19 (1978) no. 2, 171-178

[30] E. K. Loginov, Spontaneous Compactification and Nonassociativity, Phys. Rev. D, 80

(2009) 124009

[31] E. K. Loginov, Englert-Type Solutions of d = 11 Supergravity, Int. J. Geom. Meth.
Mod. Phys. 10 (2013) 1320005

[32] F. Englert, Spontaneous Compactification of Eleven-dimensional Supergravity, Phys.
Lett. B119 (1982) 339-342

[33] S. Grigorian, Gy-structures and octonion bundles, Adv. Math. 308 (2017) 142-207

[34] M. Cederwall and C. R. Preitschopf, Sy and S7 (Kac-Moody Algebra), Commun.
Math. Phys. 167 (1995) 373-394

[35] J. Lee, “Riemannian Manifolds: An Introduction to Curvature", Springer, New

York, 1997
[36] J. Lee, “Introduction to Smooth Manifold", Springer, New York, 2000

[37] M. Crainic, Differential Geometry: Mastermath course 2015/2016, 139 {, class

notes
[38] L. Tu, “An Introduction to Manifolds", Springer, Berlin, 2008

[39] P. W. Michor, “Topics in Differential Geometry", American Mathematical Society,

Providence, 2008

[40] F. W. Warner, “Foundations of Differentiable Manifolds and Lie Groups",
Springer, New York, 1971

145



146

BIBLIOGRAPHY

[41] I. Agricola, The Srni lectures on non-integrable geometries with torsion, Archivum

Mathematicum (Brno) Tomus 42 (2006) Supplement, 5 - 84

[42] L. Fabbri and S. Vignolo, A modified theory of gravity with torsion and its applications
to cosmology and particle physics, Int. J. Theor. Phys. 51 (2012) 3186-3207

[43] S. Carroll, “Spacetime and Geometry: An Introduction to General Relativity",
Cambridge University Press, Cambridge, 2019

[44] M. A. Akivis, Local Algebras of a Multidimensional Three-Web, M.A. Sib Math | 17
(1976) no. 1, 3-8

[45] S. Grigorian, Smooth loops and loop bundles, [arXiv:2008.08120 [math.DG]].

[46] M. Kikkawa, Kikkawa loops and homogeneous loops, Commentationes Mathematicae

Universitatis Carolinae 45 (2004) 279-285

[47] P. Kuusk, E. Paal, Some Application of Geodesic Loops and Nonlinear Geometric
Algebra in the Theory of Gravity, Acta Applicandar Mathematicae 50 (1998) 67—76

[48] M. A. Akivis, A. M. Shlekhov, “Geometry and Algebra of Multidimensional
Three-Webs", Springer Netherlands, 1992

[49] P. G. O. Freund, M. A. Rubin, Dynamics of Dimensional Reduction, Phys. Lett. Bgy
(1980) 233-235

[50] E. Cremmer, B. Julia, J. Scherk, Supergravity in 11 Dimensions, Phys. Lett. B76
(1978) 409412

[51] E. Cartan, J. A. Schouten, On the Geometry of the Group-Manifold of Simple and
Semi-simple Groups, Proc. Akad. Wekensch 29 (1926) 803-815

[52] E. Cartan, ]J. A. Schouten, On the Riemannian Geometries Admitting an Absolute
Parallelism, Proc. Akad. Wekensch 29 (1926) 400-414

[53] R. H. Bruck, “A Survey of Binary System", Springer, Berlin, 1971
[54] E. K. Loginov, On a Class of Gauge Theories, ]. Math. Phys. 48 (2007) 073522

[55] S. Grigorian, Deformations of Gy-structures with torsion, Asian Journal of Mathe-

matics 20 (2016) no.1, 123-156



BIBLIOGRAPHY

[56] S. Karigiannis, Flows Of Gp-Structures, I, The Quarterly Journal of Mathematics,
60 (2008) n0.4, 487-522

[57] S. Karigiannis, Deformations of Gy and Spin(7) Structures, Canadian Journal of

Mathematics 57 (2005) no.5, 1012-1055

[58] S. Karigiannis, Introduction to G, Geometry, Fields Institute Communications,

Springer US (2019), 3-50

[59] P. F. McLoughlin, When Does a Cross Product on IR Exist?, https://arxiv.org/
abs/1212.3515 (2012)

[60] Z. Kuznetsova and E. Toppan, Superalgebras of (split-)division algebras and the split
octonionic M-theory in (6,5)-signature, https://arxiv.org/abs/hep-th/0610122
(2016)

[61] E. Toppan, On the Octonionic M algebra and superconformal M algebra, Int. J. Mod.
Phys. A 18 (2003) 2135-2144

[62] F. Toppan, Exceptional structures in mathematics and physics and the role of the
octonions, https://arxiv.org/abs/hep-th/0312023 (2003)

[63] R. L. Bryant, Metrics with Exceptional Holonomy, Annals of Mathematics Second
Series 126 (1987) no.3, 525-576

[64] H. B. Lawson and M. L. Michelson, “Spin Geometry", Princeton Univ. Press,

Princeton, 1989

[65] M. Fernandez and A. Gray, Riemannian Manifolds with Structure Group G,, Ann.
Mat. Pura Appl (IV) 32 (1982) 19-45

[66] S. Chiossi and S. Salamon, The intrinsic torsion of SU(3) and Gy structures, Differ-
ential Geometry, World Sci. Publishing (2002) 115-133

[67] R. Bryant, Some remarks on Gz-structures, Proceeding of Gokova Geometry-
Topology Conference 2005 edited by S. Akbulut, T Onder, and R.J. Stern (2006),

International Press, 75-109.

[68] J. Vaz and R. da Rocha, “An Introduction to Clifford Algebras and Spinors",
Oxford Univ. Press, Oxford, 2016

147



148 BIBLIOGRAPHY

[69] L. Bonora, E. F. Ruffino and R. Savelli, Revisiting pinors, spinors and orientability,
Bollettino U. M. L. (9) IV (2012) https://arxiv.org/abs/0907.4334

[70] R. da Rocha and A. A. Tomaz, Hearing the shape of inequivalent spin structures and
exotic Dirac operators, ].Phys.A (2020) to appear https://arxiv.org/abs/2003.
03619

[71] P. Lounesto, “Clifford Algebras and Spinors", Cambridge Univ. Press, Cambridge,

2002

[72] L. Fabbri and R. da Rocha, Unveiling a spinor field classification with non-Abelian
gauge symmetries, Phys. Lett. B 780 (2018) 427—431

[73] L. Bonora, K. P. S. de Brito and R. da Rocha, Spinor Fields Classification in Arbitrary
Dimensions and New Classes of Spinor Fields on 7-Manifolds, JHEP 1502 (2015) 069

[74] R. Abtamowicz, I. Gongalves and R. da Rocha, Bilinear Covariants and Spinor
Fields Duality in Quantum Clifford Algebras, ]. Math. Phys. 55 (2014) 103501

[75] L. Fabbri, A generally-relativistic gauge classification of the Dirac fields, Int. ]J. Geom.
Meth. Mod. Phys. 13 (2016) 1650078

[76] R. A. Mosna and ]. Vaz, Quantum tomography for Dirac spinors, Phys. Lett. A 315
(2003), 418

[77] J. P. Crawford, On The Algebra Of Dirac Bispinor Densities: Factorization And
Inversion Theorems, ]. Math. Phys. 26 (1985) 1439

[78] D. Beghetto and J. M. Hoff da Silva, The (restricted) Inomata-McKinley spinor
representation and the underlying topology, EPL 119 (2017) 40006

[79] L. Bonora, J. M. Hoff da Silva and R. da Rocha, Opening the Pandora’s box of
quantum spinor fields, Eur. Phys. J. C 78 (2018) no.2, 157

[80] K. P. S. de Brito and R. da Rocha, New fermions in the bulk, J. Phys. A 49 (2016)
415403

[81] C. I. Lazaroiu, E. M. Babalic and I. A. Coman, The geometric algebra of Fierz

identities in arbitrary dimensions and signatures, JHEP 1309 (2013) 156



BIBLIOGRAPHY 149

[82] F. Gursey and H. C. Tze, Octonionic Torsion on S(7) and Englert’s Compactification
of D = 11 Supergravity, Phys. Lett. B 127 (1983) 191

[83] L Agricola, S. G. Chiossi, T. Friedrich and J. Holl, Spinorial description of SU(3)-and
Gp-manifolds, ]. Geom. Phys. 98 (2015) 535-555

[84] R. da Rocha and ]. Vaz, Jr., Clifford algebra-parametrized octonions and generalizations,
J. Algebra 301 (2011) no. 459

[85] A. Y. Martinho and R. da Rocha, Additional Fermionic Fields onto Parallelizable
7-spheres, Prog. Theor. Exp. Phys. 2018 (2018) no.6, 063Bog

[86] M. Cederwall and C. R. Preitschopf, S(7) current algebras, [arXiv:hep-th/9403028
[hep-th]].



