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"Nothing ever exists entirely alone;

everything is in relation to everything else."

– Bukkyo Dendo Kyonkai

(The teachings of the Buddha)
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RESUMO

Investigaremos deformações do produto octoniônico advindas da torção paralelizável

sobre a 7-esfera S7, obtendo uma família de geometrias que surge como novas soluções

de equações de movimento no formalismo Lagrangiano. Isso é feito ao se considerar

a compactificação espontânea M4 × S7, onde M4 denota uma variedade Lorentziana

4-dimensional. Além da geometria Riemanniana convencional e das duas geometrias

propostas por Cartan e Schouten, soluções em geometrias com torção e em espaços de

sete dimensões mais gerais são obtidas. Tal formalismo será ulteriormente também

derivado na 7-esfera S7 com torção paralelizável, dada localmente pelas constantes

de estruturas de um loop geodésico não-associativo. Estruturas G2 em variedades de

sete dimensões serão ainda investigadas, com a introdução dos produto e fibrado

octoniônicos OM. Neste cenário, seções deste fibrado sobre tais espaços podem ser

interpretados como campos espinoriais sob uma identificação isometrica levando a

conexão espinorial à derivada covariante octoniônica relacionada ao produto definido

sobre OM.

Palavras-chave: conexões afins, loops geodésicos, octonions, estruturas G2, álgebras

não-associativas, torção
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ABSTRACT

We investigate octonion product deformations coming from the parallelizable torsion

of the 7-sphere S7, obtaining a family of geometries from solutions of the Lagrangian

formalism movement equations. This can be achieved by analyzing the spontaneous

compactification M4 × S7, where M4 is a Lorentzian 4-dimensional manifold. Besides

the usual Riemannian geometry and two others proposed by Cartan and Schouten,

solutions in geometries with torsion and more general seven-dimensional spaces are

obtained. Such formalism may by subsequently derived over the 7-sphere S7, locally

given by the structure constants of a nonassociative geodesic loop. Furthermore, G2-

structures are investigated, giving rise to the octonion product and bundle OM over a

seven-dimensional manifold M. Then, sections of this bundle over such space can be

perceived as spinor fields in an isometric identification mapping the spin connection to

an octonion covariant derivative preserving the octonion product defined over OM.

Keywords: affine connections, geodesic loops, octonions, G2-structures, non-associative

algebras, torsion
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INTRODUCTION

The emergence of modern physics in the last century with the foundations of general

relativity and quantum mechanics has enabled the coming of an unprecedented alliance

between the search of physical descriptions of nature and the development of mathe-

matical theories. The problem of unification between the two aforementioned theories

is of great relevance nowadays and has been tackled from several different points of

view over the last decades.

In the above-mentioned celebrated theory of gravity, the tools of Riemannian man-

ifolds are employed in order to describe the interactions between matter and the

underlying geometry, yielding then novel unexpected phenomena. Besides, the devel-

opment of more general connections over manifolds introduced by Élie Cartan [1] has

enabled the emergence of broader theories of gravity. This can be perceived by relaxing

the torsionless connection requirement which is usually present in Riemannian geome-

try, accommodating more geometric interpretation to such theories. For instance, the

non-vanishing of torsion when analyzing geometries over the 7-sphere S7 is well-known

to be related to the nonassociative normed division algebra of the octonions O and its

properties. Accordingly, such algebra has been prominently studied and its physical

interpretation is considered [2–11].

On these grounds, the aforementioned relations between the geometry of a more

general affinely connected manifold and related algebraic structures are examined and

connections between their respective properties are scrutinized in this work. Further-

more, the so-called G2-structures are considered in 7-dimensional manifolds and their

properties studied and related to the geometric information they extend to. In this

configuration, octonion fields can be defined upon the space and be seen to intrinsically

relate to spinor fields and its covariant derivative, a notion which extends to a vast

literature in mathematical-physics [12–27].

Chapter 1 is devoted to establishing preliminaries and notation, mainly on the theory

of vector bundles. In this context, affinely connected spaces are defined, yielding

1



2 contents

the notions of geodesics, torsion and curvature, which are seen to characterize the

underlying geometry of such spaces.

In Chapter 2 Riemannian metrics are introduced and their relations with connections

may be tackled. The inclusion of a metric in this discussion has as main goal the

emergence of normal coordinates around a point, which will be proven to be a robust

tool in what follows. The Levi-Civita connection is also considered and its relation with

a more general connection in the presence of a metric is discussed in the light of the

contorsion tensor.

Chapter 3 is devoted to developing the theory of geodesic loops. The formal defini-

tions of local loops as originally presented by Kikkawa [28] are given and the geodesic

loop construction over an affinely connected manifold can be perceived. Their funda-

mental tensors and W-algebras are also discussed and their relation with the underlying

geometry defined by the connection is given, as proved by Akivis [29].

In Chapter 4 the Kaluza-Klein mechanism of spontaneous compactification in d =

11 dimensions may be considered and geodesic loops may be employed to yield

information about the geometry of the base space in such theory [30, 31]. Besides,

solutions in the 7-sphere S7 with torsion as the Englert solution [32] may be considered

in the light of the so-called Cartan-Schouten geometries, which combined with the

aforementioned techniques yield an one-parameter family of geometries over S7.

In Chapter 5 normed division algebras are exposed so that the octonion algebra O

may be considered. Then, a brief discussion on the exceptional Lie group G2 takes

place, leading to the final section in which the linear configuration of G2-structures are

discussed.

Finally, in Chapter 6 the G2-structures over 7-dimensional manifolds are fully con-

sidered and are seen to yield an associated Riemannian metric. With the aid of such

structures an octonion product can be defined upon the 7-dimensional manifold [33].

The relation between this octonion product and the Levi-Civita connection of the associ-

ated metric is then seen to relate to the G2-structure notion of torsion. Ultimately, an

one-to-one correspondence between octonions and spinor fields in such space can be

made, prospecting the possibility of generalizing these structures in physical applica-

tions, such as the ones in [34].
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A F F I N E LY C O N N E C T E D S PA C E S





1 VECTOR BUNDLES

This chapter is devoted to setting the preliminary results and structures that shall be

used throughout this composition. In order to establish some notation, smooth manifold

theory is first presented. Then, one may investigate the notion of vector bundles, which

can be perceived as a generalization of the more usual tangent bundles. Following up,

rudiments on affinely connected spaces and Riemannian manifolds are developed, all

of which shall be extensively used subsequently. The following results have been taken

from refs. [35–39] and omitted proofs can be also found therein.

1.1 smooth manifolds

Let M be an n-dimensional manifold1. The ring of smooth real valued functions over

M shall be denoted by C∞(M), and its elements will be simply called functions over

M. The tangent space at p ∈ M shall be denoted TpM, and Xp ∈ TpM will be called

a tangent vector, or just vector. One may then perceive the tangent space TpM as the

space of derivations of functions over M and its elements will be said to differentiate or

derive a function f ∈ C∞(M) over their direction.

The functions ri : Rn → R for i ∈ {1, . . . , n} are called the standard coordinates on

Rn and are defined by

ri(a1, . . . , an) = ai. (1.1)

A local neighborhood (U, φ) around p ∈ M shall be commonly denoted by (U; x1, . . . , xn),

where xi = ri ◦ φ : U → R are called the local coordinates over U. These coordinates

define a vector (derivation) ∂/∂xi ∈ TpM, which for f ∈ C∞ is given by

∂

∂xi

∣∣∣∣∣
p

( f ) :=
∂

∂ri

∣∣∣∣∣
φ(p)

( f ◦ φ−1) ∈ R, (1.2)

1 In this text, every manifold considered is, in fact, a smooth manifold. One also writes dim M = n whenever

M is n-dimensional.

5



6 vector bundles

and is called a coordinate vector with respect to (U, φ). The point p may sometimes be

omitted and therefore ∂/∂xi may be written whenever it is clear which point is being

considered. The abbreviation

∂i = ∂/∂xi (1.3)

shall be extensively used as well and it can then be seen that the set {∂1, . . . , ∂n} is a

basis for TpM, called a coordinate basis. Also, if M is an 1-dimensional manifold, then

its local coordinates shall be denoted by (U, t) with

d
dt

∣∣∣∣∣
t0

∈ Tt0 M (1.4)

its coordinate vector at t0 ∈ U.

Example 1.1. The Euclidean n-dimensional space M = Rn is a manifold and its tangent

space at each p ∈ M may be naturally perceived as itself TpM � M = Rn

Example 1.2. The circle S1 = {(x, y) ∈ R2 : x2 + y2 = 1}, which may also be perceived

as the subset of the complex numbers C given by S1 = {e2πiθ : θ ∈ [0, 1]} is a

manifold. More generally, one may consider the n-sphere Sn = {(x1, . . . , xn+1) ∈ Rn :

(x1)2 + · · · (xn+1)2 = 1}.

Example 1.3. Given two manifolds M and N, respectively n- and k-dimensional, then

the direct product M ⊕ N = M × N is also a manifold of dimension m + n. Using the

last example, one has the n-torus Tn = S1 × · · · × S1 which is a product of n copies of

S1 circles.

Example 1.4. Denote by M(n, R) the space of n × n real matrices. The (real) general

linear group GL(n, R) of invertible n × n matrices is an n2-dimensional manifold. If

det : M(n, R) → R denotes the usual determinant function, it follows by continuity

that GL(n, R) = R\det−1({0}) is open in M(n, R) � Rn2
. Since every subset U ⊂ M of

a manifold M is a manifold itself of same dimension if and only if it is open, then it

follows that GL(n, R) is an n2-dimensional manifold.

1.2 tangent bundle

The tangent bundle associated to M is denoted by TM and is defined by

TM =
⋃

p∈M
({p} × TpM). (1.5)



1.2 tangent bundle 7

A general element of the tangent bundle is usually written as v ∈ TM and one can

endow TM with a natural projection π : TM → M given by π(v) = p if v ∈ TpM. One

may write v = (p, v) ∈ TM to explicitly show that π(v) = p.

For every open set U ⊂ M one can define TU =
⋃

p∈U TpU =
⋃

p∈U TpM. Since

{∂1, . . . , ∂n} is a basis for TpM, a vector v ∈ TU is locally given by

v =
n

∑
i=1

ai ∂

∂xi

∣∣∣∣∣
p

, (1.6)

where ai : TU → R are smooth functions.

Let now x̃i = xi ◦ π, and define the map φ̃ : TU → φ(U) × Rn by the relation

φ̃(v) = (x̃1(v), . . . , x̃n(v), a1(v), . . . , an(v)), (1.7)

which has as an inverse given by

φ̃−1(φ(p), a1, . . . , an) =
n

∑
i=1

ai ∂

∂xi

∣∣∣∣∣
p

. (1.8)

Hence, φ is a bijection and one may transfer the topology from φ(U) × Rn ⊂ R2n to

TU = π−1(U) by saying that a set A ⊂ TU is open in TM whenever φ̃(A) is open in

φ(U) × Rn.

Now, suppose that (V, ψ) = (V; y1, . . . , yn) are other local coordinates of M with

U ∩ V 	= ∅. Then a vector v ∈ T(U ∩ V) has

v =
n

∑
j=1

aj ∂

∂xj

∣∣∣∣∣
p

=
n

∑
i=1

bi ∂

∂yi

∣∣∣∣∣
p

, (1.9)

in such a way that

ak =

(
n

∑
j=1

aj ∂

∂xj

∣∣∣∣∣
p

)
xk =

(
n

∑
i=1

bi ∂

∂yi

∣∣∣∣∣
p

)
xk =

n

∑
i=1

bi ∂xk

∂yi

∣∣∣∣∣
p

, (1.10)

and analogously there holds

bk =
n

∑
j=1

aj ∂yk

∂xj . (1.11)

Then, the map

ψ̃ ◦ φ̃−1 : φ(U ∩ V) × Rn → ψ(U ∩ V) × Rn (1.12)
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for ψ̃ and φ̃ as defined before is given by

ψ̃ ◦ φ̃−1(x, a1, . . . , an) = (ψ ◦ φ−1(p), b1, . . . , bn), (1.13)

with

bk =
n

∑
j=1

= aj ∂yk

∂xj

∣∣∣∣∣
p

=
n

∑
j=1

aj ∂(ri ◦ ψ ◦ φ−1)
∂rj (φ(p)). (1.14)

Since ψ ◦ φ−1 is smooth, so is ψ̃ ◦ φ̃−1. Therefore, the atlas {T(Uα), φ̃α} = {(π−1(Uα), φ̃α)},

inherited from the smooth atlas {(Uα, φα} from M is indeed smooth and it follows that

TM is a 2n-dimensional manifold itself.

Definition 1.5. An application X : M → TM is called a vector field if X is smooth and

π ◦ X = Id, that is

X(p) ∈ TpM, (1.15)

for each p ∈ M.

Sometimes one writes X(p) = Xp or just X = Xp whenever there is no ambiguity about

the point p. If (U; x1, . . . , xn) are local coordinates, then there are n smooth functions

Xi : U → R, with i ∈ {1, . . . , n}, such that2

X =
n

∑
i=1

Xi∂i = Xi∂i, (1.16)

and the smoothness condition for X is equivalent to each Xi being smooth for every

i ∈ {1, . . . , n}. It follows that the derivation of a function f in the direction of X is

locally given by

X( f )(p) =
n

∑
i=1

Xi(p)
∂ f
∂xi (p), (1.17)

for each p ∈ U.

If F : N → M is a smooth map between two manifolds, then for each p ∈ N one

can define a linear map induced by F which generalizes for manifolds the notion of

derivative of an application.

Definition 1.6. Let F : N → M be a smooth map between the manifolds M and N. Then, the

differential of F at p ∈ N is a linear map

F∗,p : TpN → TF(p)M, (1.18)

2 The Einstein summation convention is considered throughout the text, in which one suppresses the

summation symbol and sum over identical indices in different positions, where the indices can be on the

upper (Xi) or bottom (∂i) of the terms.
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which is given by

F∗,p(Xp)( f ) = Xp( f ◦ F) ∈ R, (1.19)

For each Xp ∈ TpN and f ∈ C∞(M). The image of a vector Xp ∈ TpN under the differential

F∗,p is called the push-forward of the vector Xp by F.

Let p ∈ N and consider local coordinates (U; x1, . . . , xk) around p and (V, y1, . . . , yn)

around F(p) ∈ M. Since {∂\∂x1, . . . , ∂\∂xk} is a basis for TpN and {∂\∂y1, . . . , ∂\∂yn}
is a basis for TF(p)M there are, for each j ∈ {1, . . . , k}, n real numbers ai

j ∈ R with

i ∈ {1, . . . , n} such that

F∗,p

( ∂

∂xj

)
= al

j
∂

∂yl . (1.20)

One can see that

al
j

∂

∂yl (yi) = al
jδ

i
l = ai

j. (1.21)

On the other hand, writing Fi = yi ◦ F there holds

F∗,p

( ∂

∂xj

)
(yi) =

∂

∂xj (yi ◦ F) =
∂Fi

∂xj (p). (1.22)

Therefore, in relation to a choice of local coordinates, the matrix (ai
j) looks like the

Jacobian matrix for F, showing that the presented differential is a generalization of the

differential of applications in Rn. One may then write

F∗,p = dFp. (1.23)

A parameterized smooth curve in M is a smooth application γ : I → M, where I is

a real open interval. For simplicity, here they are just called curves.

Definition 1.7. Let γ : I → M be a curve in M. Then, its velocity vector γ′(t0) at t0 ∈ I is

defined as

γ′(t0) :== γ∗,t0

( d
dt

)
∈ Tγ(t0)M. (1.24)

Let (U, x1, . . . , xn) be local coordinates around γ(t0) in M. One can then define the

components of γ, namely

γi = xi ◦ γ : I → R. (1.25)

Then, the expression γ̇i(t0) may be used in order to denote the usual (calculus) real

derivative of γi at t0. It then follows that

γ′(t) =
n

∑
i=1

γ̇i(t)∂i, (1.26)

for every t ∈ I with γ(t) ∈ U.
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Proposition 1.8. Let M be a manifold, p ∈ M and Xp ∈ TpM. Then, there is a curve

γ : (−ε, ε) → M such that γ(0) = p and γ′(0) = Xp. Moreover, if f ∈ C∞(M) then

Xp( f ) =
d
dt

∣∣∣∣∣
t=0

( f ◦ γ). (1.27)

More generally, if F : N → M is a smooth map, p ∈ N and Xp ∈ TpN, then taking a curve

γ : (−ε, ε) → N with γ(0) = p and γ′(0) = Xp it follows that

dFp(Xp) =
d
dt

∣∣∣∣∣
t=0

(F ◦ c)(t). (1.28)

1.3 vector bundles

One may now define the more general concept of vector bundles, which is a generaliza-

tion of the tangent bundle over a manifold M, allowing more general vector spaces in

the fibers. From now on, fix the manifold dimension as dim M = n.

Definition 1.9. A (real) rank k vector bundle over a manifold M is a triple (E, π, M) such

that

(1) The set E is a manifold, called the total space;

(2) The application π : E → M is a smooth surjective map: for each p ∈ M, the set

π−1({p}) = Ep is denoted the fiber at p and is endowed with a vector space structure;

(3) There are local trivializations: for every p0 ∈ M there is an open neighborhood U ⊂ M

of p0 and a diffeomorphism

Φ : E|U = π−1(U) → U × Rk, (1.29)

called the local trivialization, with the property that π1 ◦Φ = π, where π1 : U ×Rk → U

is the natural projection in U. Moreover, for each p ∈ U the restriction Φ|Ep
is an

isomorphism (of vectors spaces) from Ep to {p} × Rk � Rk.

In an intuitive way, a vector bundle is a collection of vector spaces {Ep}p∈M, smoothly

parameterized over M. The manifold M is called the base space and π is called the

projection. Instead of using the triple notation, one shall sometimes just say that

π : E → M is a vector bundle or that E is a vector bundle over M, whenever it is clear

or unnecessary to depict the projection π.
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Example 1.10. For each natural number k the product M×Rk endowed with the first projection

π1 : M × Rk → M and the usual vector space structure on the fibers {x} × Rk is a vector

bundle, called the product bundle of rank k over M.

If there is a local trivialization of E defined all over M, then such trivialization is

called a global trivialization and E is called a trivial bundle. It follows that E is

diffeomorphic to the product bundle M × Rk. Notice that if U is an arbitrary open set

in M, then E|U := π−1(U) gives rise to a vector bundle πU : E|U → U over U which is

trivial by definition.

Proposition 1.11. Let M be an n-dimensional manifold and let TM be its tangent bundle.

Then, endowed with its natural projection π : TM → M and the vector space structure of TpM

on each fiber, TM is a rank n vector bundle.

Proof. Let (U, φ) = (U; x1, . . . , xn) be local coordinates on M and π : TM → M the

natural projection. Then, define the map Φ : π−1(U) → U × Rn by

Φ

(
vi ∂

∂xi

∣∣∣∣∣
p

)
=
(

p, (v1, . . . , vn)
)

, (1.30)

which is clearly linear on each fiber π−1({p}) = TpM and satisfies π1 ◦Φ = π. Moreover,

notice that

φ̃ = (φ × IdRn) ◦ Φ, (1.31)

and since φ̃ and (φ × IdRn) are diffeomorphisms, so is Φ. Therefore, TM is a vector

bundle of rank n.

One may investigate what happens in the overlap of two trivializations on a vector

bundle E over M. In fact, this is given by the very useful

Lemma 1.12. Let π : E → M be rank k vector bundle and let Φ : π−1(U) → U × Rk and

Ψ : π−1(V) → V × Rk be two local trivializations with U ∩ V 	= ∅. Then, there is a smooth

map τ : U ∩ V → GL(k, R) such that

Φ ◦ Ψ−1 (p, v) = (p, τ (p) v) . (1.32)

The application τ depicted in Lemma 1.12 is called the transition map between the

local trivializations Φ and Ψ. In the example of the tangent bundle TM over M, the

transition map associated with two charts is the Jacobian matrix of the coordinate

transition map.
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It is possible to construct examples of vector bundles from the gluing of a collection

of vector spaces indexed by points in M. In the following results, the properties that

such indexation must satisfy so that such gluing should indeed be a vector bundle are

presented.

Definition 1.13. A rank k discrete vector bundle E over M is a collection of (k-dimensional)

vector spaces Ep indexed by p ∈ M, endowed with a projection π : E → M. Namely

E = {Ep}p∈M = {(p, vp) : p ∈ M, vp ∈ Ep}, (1.33)

for which π(p, vp) = p.

Lemma 1.14 (Vector Bundle Chart Lemma). Let E = {Ep}p∈M be a rank k discrete vector

bundle over M and assume there is an open cover {Uα}α∈A of M for which there holds:

(1) For each α ∈ A there is a bijective map Φα : π(Uα) → Uα × Rk which restricts to each

Ep as a vector space isomorphism into {p} × Rk � Rk.

(2) For each α, β ∈ A such that Uα ∩ Uβ 	= ∅ there is a smooth map ταβ : Uα ∩ Uβ →
GL(k, R) for which the map Φα ◦ Φ−1

β has the form

Φα ◦ Φ−1
β (p, v) =

(
p, ταβ (p) v

)
. (1.34)

Then, E has an unique topology and smooth structure for which it is a manifold and a rank k

vector bundle over M, with π as projection and {(Uα, Φα} its atlas.

Lemma 1.14 guarantees that operations with vector bundles such as the ones that

can be done with respect to vector spaces produce new vector bundles, as long as

overlaps of local descriptions are smooth. Since vector bundles are gluing of vector

spaces together, this proposition formalizes the process under which one must proceed

in order to uniquely define a smooth structure over it. Namely, for E and F vector

bundles over M one may define the following vector bundles:

Example 1.15 (Direct sums). Suppose π′ : E → M and π′′ : F → M are ranks k′ and k′′

vector bundles, respectively. Then, one can construct the direct sum bundle between E and

F with fibers at p ∈ M equal to Ep ⊕ Fp. The total space is E ⊕ F =
⋃

p∈M({p} × (Ep ⊕ Fp))

endowed with the obvious projection π : E → M. Consider a neighborhood U of p ∈ M and

the local trivializations (U, Φ′) for E and (U, Φ′′) for F and define the map Φ : π−1(U) →
U × Rk′+k′′ by

Φ(v′, v′′) =
(
π′(v′),

(
π

Rk′ ◦ Φ′(v′), π
Rk′′ ◦ Φ′′(v′′)

))
. (1.35)
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If (Ũ, Φ̃′) and (Ũ, Φ̃′′) are two other local trivializations for E and F, respectively, then one

can similarly define the map Φ̃ using them. By Lemma 1.12, there are two transition maps

τ′ : U ∩ Ũ → GL(k′, R) between φ′ and φ̃′ and τ′′ : U ∩ Ũ → GL(k′′, R) between φ′′ and φ̃′′.
Then, the transition map for E ⊕ F between Φ and Φ̃ is given by

Φ̃ ◦ Φ−1(p, (v′, v′′)) =
(

p, τ(p)(v′, v′′)
)

, (1.36)

where τ(p) = τ′(p) ⊕ τ′′(p) ∈ GL(k + k′′, R), which in matrix form is given by(
τ′(p) 0

0 τ′′(p)

)
. (1.37)

Since this expression depends smoothly on p, by the Chart Lemma it follows that E ⊕ F is indeed

a vector bundle over M.

Example 1.16. [Dual space] Now, suppose π : E → M is a rank k vector bundle over M. One

may define its dual bundle given by E∗ =
⋃

p∈M({p} × (Ep)∗) with π∗ : E∗ → M being the

obvious projection. For each p ∈ M one may choose an isomorphism Tp : (Ep)∗ → Ep and let

(U, Φ) be a local trivialization around the point. Define Φ∗ : π∗(U) → U × Rk, by

Φ∗(ω) =
(
π∗(ω), (πRk ◦ Φ ◦ Tπ∗(ω))(ω)

)
. (1.38)

Such mapping clearly satisfies the second condition from the Chart lemma, so that one needs

only to verify condition 3. Indeed, if (Uα, Φα) and (Uβ, Φβ) are local trivializations with

Uα ∩ Uβ 	= ∅ then respectively define the applications Φ∗
α and Φ∗

β as done before. Now, if

ταβ : π(Uα ∩ Uβ) → GL(k, R) is the transition map with respect to φα and φβ then one can see

that

Φ∗
α ◦ (Φ∗

β)−1(p, v) = Φ∗
α

(
T−1

p ◦ Φ−1
β (p, v)

)
=
(

p, πRk ◦ Φα ◦ Tp ◦ T−1
p ◦ Φ−1

β (p, v)
)

=
(

p, πRk(Φα ◦ Φ−1
β (p, v))

)
=
(

p, ταβ(p)v
)

,

(1.39)

so that ταβ is the transition map between φ̃α and φ̃β as well, which completes the construction.

Definition 1.17. Let π : E → M be a vector bundle. A (smooth) map S : M → E such that

π ◦ S = Id is called a (smooth) section in E.
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Remark 1.18. The requirement that π ◦ S = Id can be more easily seen as S(p) ∈ Ep, for

every p ∈ M, that is, for each evaluation on p, the vector S(p) lies precisely on the fiber

over p, this of course just a generalization of the notion of vector fields in Definition 1.5.

From now on, smooth sections shall simply be called sections. If E is a vector bundle

over a manifold M, then one may set

Γ(E) = {S : M → E : S is a section over E}, (1.40)

whose elements can be point-wisely added and multiplied by scalars making use of the

vector space structure in each fiber. With that said, Γ(E) is endowed with a vector space

structure. Moreover, if f ∈ C∞(M) then

( f S)(p) = f (p)S(p) (1.41)

defines a section f S in such a way that the previous definition turns Γ(E) into a module

over the algebra of smooth function C∞(M).

Remark 1.19. Taking E = TM in Example 1.16 yields the cotangent bundle T∗M. Then,

for each p ∈ M the fiber is given by T∗
p M, the vector space dual to TpM. In addition,

sections of this space are given by smooth applications ω : M → T∗M which for each

p ∈ M define a linear functional ωp : TpM → R. Such elements are called the 1-forms

over the manifold M and one may denote

Γ(T∗M) = Ω1(M). (1.42)

Definition 1.20. A local section on E is a smooth application S : U → E defined over some

open subset U ⊂ M such that π ◦ S = Id. In order to emphasize the difference, sometimes

sections (defined over all of M) shall be denoted global sections.

Example 1.21. As said before, vector fields are section from the tangent bundle TM over M. A

special symbol is commonly given to the space Γ(TM) of such sections, namely

Γ(TM) = X(M). (1.43)

Example 1.22. The zero section of E is a global section Z : M → E with

Z(p) = 0 ∈ Ep, for every p ∈ M. (1.44)
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Example 1.23. Let E = M × Rk be the product bundle of rank k over M. Then, there is a

bijective correspondence between smooth applications S : M → Rk and section S̃ : M →
M × Rk, given by

S̃(x) = (x, S(x)). (1.45)

Such relation produces a natural identification between C∞(M) and the trivial line bundle

M × R.

Definition 1.24. Let (E, π, M) be a rank k vector bundle. A frame for E over M is a collection

{S1, . . . , Sk} of sections Si : M → E such that for each p ∈ M the set {S1(p), . . . , Sk(p)} is a

basis for the vector space Ep.

Remark 1.25. A local frame for E over an open set U is a collection {S1, . . . , Sk} of

sections Si : U → E for which {S1(p), . . . , Sk(p)} is a basis for Ep, whenever p ∈ U.

Analogously, one may say that a frame as given in Definition 1.24 is called a global

frame so that it is clear that its domain is the whole space M.

Example 1.26. Let E = M × Rk be a product bundle. The canonical basis {e1, . . . , ek} for Rk

produces a global frame {ẽi, . . . , ẽk} denoted the canonical frame for the product space, which

is defined by

ẽi(p) = (p, ei). (1.46)

Definition 1.27. Let π : E → M be a rank k vector bundle over M and {S1, . . . , Sk} a local

frame for E over U. If there is a local trivialization Φ : π−1(U) → U × Rk such that

Si(p) = Φ−1 ◦ ẽi(p), (1.47)

then one says the local frame {S1, . . . , Sk} is associated with Φ.

Proposition 1.28. Let π : E → M be a rank k vector bundle. Then, given a local trivialization

Φ : π−1(U) → U × Rk there is a local frame {σ1, . . . , σk} for E over U which is associated

with Φ. On the other hand, for every local frame for E over U there exists a local trivialization

Φ associated.

Proof. Let Φ : π−1(U) → U × Rk be a local trivialization over U. Then, consider the

canonical basis {e1, . . . , ek} for Rk and define

σi(p) = Φ−1(p, ei). (1.48)
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One may proceed to show that {σ1, . . . , σk} is a frame. Indeed, since Φ−1 is a diffeomor-

phism, the maps σi are smooth for every i ∈ {1, . . . , k}. Besides,

π ◦ σi(p) = π ◦ Φ−1(p, ei) = π1(p, ei) = p, (1.49)

and it follows that each σi is a section for E over U. Now, notice that Φ restricted to

Ep is an isomorphism onto {p} × Rk � Rk and it maps the canonical basis of Rk to

{σ1, . . . , σk} since

Φ(σi(p)) = (p, ei). (1.50)

It then follows that {σ1(p), . . . , σk(p)} is indeed a basis for Ep. Therefore, σ is a local

frame associated with Φ.

Conversely, suppose σ = {σ1, . . . , σk} is a smooth local frame for E over U and let

Ψ : U × Rk → π−1(U) be defined by

Ψ(p, (v1, . . . , vk)) = viσi(p). (1.51)

Notice that since {σ1(p), . . . , σk(p)} is a basis for each p ∈ M, it follows that Ψ is bijective.

Also,

Ψ ◦ ẽi(p) = Ψ(p, ei) = σi(p). (1.52)

Therefore, if it is proven that Ψ is a diffeomorphism then Ψ−1 will precisely be the

trivialization associated to the local frame σ. It suffices to show that Ψ is a local

diffeomorphism, since it is already bijective. For that end, let q ∈ U and consider a

trivialization Φ : π−1(V) → V × Rk. One can consider V ⊂ U, otherwise just take

V′ = V ∩ U and use such open set instead of V. Notice that if one shows that the map

Φ ◦ Ψ
∣∣∣
V×Rk

is a diffeomorphism, then since Φ is one itself then it must follow that Ψ

restricts to a diffeomorphism from V × Rk to π−1(V).

Now, for each i ∈ {1, . . . , k} the composite map

Φ ◦ σi

∣∣∣∣∣
V

: V → V × Rk (1.53)

is smooth, so there are k smooth functions σ1
i , . . . , σk

i : V → R such that

Φ ◦ σi(p) =
(

p,
(

σ1
i (p), . . . , σk

i (p)
))

. (1.54)

Therefore, on V × Rk there holds

Φ ◦ Ψ
(

p, (v1, . . . , vk)
)

=
(

p,
(

viσ1
i (p), . . . , viσk

i (p)
))

, (1.55)
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which is also smooth.

To show smoothness of (Φ ◦ Ψ)−1, just notice that the matrix (σj
i (p)) is invertible

for every p ∈ V, since {σ1(p), . . . , σk(p)} is a basis for Ep. If (τ j
i ) is its inverse, then

since inversion is a smooth map from GL(k, R) to itself, the functions τ
j
i are all smooth.

Finally,

(Φ ◦ Ψ)−1
(

p, (w1, . . . , wk)
)

=
(

p,
(

wiτ1
i (p), . . . , wiτk

i )
))

, (1.56)

and therefore Φ ◦ Ψ is a diffeomorphism from V × Rk to itself, which concludes the

proof.

By the last proposition, it is possible to see that the local trivializability property of a

vector bundle E over M is equivalent to the existence, for each p ∈ M, of local frames

around a neighborhood U for p. This implies the

Corollary 1.29. A vector bundle E over M is diffeomorphic to the trivial one if and only if there

is a global frame for E.

One can trace a result equivalent to Lemma 1.14 with respect to local frames using the

last proposition. Suppose E = {Ep}p∈M is a discrete vector bundle over M and consider

for an open set U ⊂ M the application S : U → E. Then, if π ◦ S = Id one says that S

is a discrete section over E. One may also define discrete global and local frames the

same way, but since E is not necessarily endowed with a smooth structure, one may not

evoke the smoothness condition.

If F = {S1, . . . , Sk} and F̃ = {S̃1, . . . , S̃k} are both local frames for a vector bundle E

over U and Ũ respectively then there are functions ai
j : U ∩ Ũ → R such that

S̃j(p) =
k

∑
i=1

ai
jSi(p), (1.57)

for every p ∈ U ∩ Ũ. One says that the frames F and F̃ are smoothly compatible if each

function ai
j is smooth over U ∩ Ũ.

Proposition 1.30. Let E = {Ep}p∈M be a discrete rank k vector bundle over M. If there is an

open cover {Uα}α∈A of M such that

(1) for every α ∈ A there is a discrete local frame Fα = {Sα
1 , . . . , Sα

k} for E over Uα;

(2) for each α, β ∈ A the local frames Fα and Fβ are smoothly compatible,
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then E is a vector bundle over M with the unique topology and smooth structure given in Lemma

1.14.

Corollary 1.31. Let E and F be vector bundles over M. The following spaces are vector bundles

over a manifold M:

(1) The tensor bundle of E and F denoted by E ⊗ F, with fibers (E ⊗ F)p = Ep ⊗ Fp.

(2) The rank k symmetric bundle over E denoted by Symk(E), with fibers (Symk(E))p =

Symk(Ep).

(3) The rank k anti-symmetric bundle over E denoted by Λk(E), with fibers (Λk(E))p =

Λk(Ep).

(4) The Hom-bundle of E and F, denoted Hom(E, F), with fibers (Hom(E, F))p = Hom(Ep, Fp).3

These constructions can obviously be made over the tangent bundle as well. One

may consider the (k
l)-tensor bundle over TM denoted by Tk

l (M), for which each fiber

at p ∈ M is given by (Tk
l (M))p = Tk

l (TpM)4. Its sections are called tensor fields over M,

which are C∞-multilinear maps

F : Ω1(M) × · · · × Ω1(M)︸ ︷︷ ︸
k times

×X(M) × · · · ×X(M)︸ ︷︷ ︸
l times

→ C∞(M), (1.58)

and one writes

F ∈ T k
l (M) = Γ(Tk

l (M)). (1.59)

Besides, if (U; x1, . . . , xn) are local coordinates around p ∈ M then there are nk+l

functions Fj1···jk
i1···il ∈ C∞(U) with indices taking values in {1, . . . , n} such that

F = Fj1···jk
i1···il ∂j1 ⊗ · · · ⊗ ∂jk ⊗ dxi1 ⊗ · ⊗ dxil (1.60)

is the local description of the tensor field F.

Moreover, the rank k symmetric bundle over TM is denoted by Symk(T∗M) with fibers

Symk(T∗M)p = Symk(T∗
p M). Its sections are the symmetric k-multilinear applications

S : X(M) × . . . ×X(M)︸ ︷︷ ︸
k times

→ C∞(M). (1.61)

3 If V and W are vector spaces, Hom(V, W) is the vector space of all linear applications from V to W. Since

Hom(V, W) � V∗ ⊗ W, this example follows directly from the ones before.

4 If V is a vector space, then Tk
l (V) = V⊗l ⊗ (V∗)⊗k

.
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The space of section for this bundle is denoted by

S ∈ Sk(M) = Γ(Symk(T∗M)). (1.62)

In addition, in order to consider more general differential forms one has the rank k

anti-symmetric bundle Λk(T∗M). Then, its sections are called k-forms over M and their

space is denoted by

Γ(Λk(T∗M)) = Ωk(M), (1.63)

such that for each ω ∈ Ωk(M) one has the C∞(M)-linear alternating mapping

ω : X(M) × . . . ×X(M)︸ ︷︷ ︸
k times

→ C∞(M), (1.64)

and introducing p ∈ M yields

ωp : TpM × · · · × TpM︸ ︷︷ ︸
k times

→ R, (1.65)

an alternating k-multilinear application. Moreover, one can define the total space

Ω(M) =
⊕
p∈N

Ωp(M) (1.66)

of differential forms over M. Such space is also an algebra with respect to the wedge

product. If ω ∈ Ωp(M) and η ∈ Ωq(M) then their wedge product ω ∧ η ∈ Ωp+q(M) is

given by

(ω ∧ η)(X1, . . . , Xp+q) =
p! q!

(p + q)! ∑
σ∈Sp+q

ε(σ)ω(Xσ(1), . . . , Xσ(p))η(Xσ(p+1), . . . , Xσ(p+q)),

(1.67)

where Sp+q is the set of permutations (bijections) of the set {1, . . . , p + q} to itself and

ε : Sp+q → {−1, 1} is the sign of σ ∈ Sp+q. If (U; x1, . . . , xn) are local coordinates, then

taking the dual coordinate basis {dx1, . . . , dxn} one has

ω = ∑
i1,...,ip

ωi1,...,ip dxi1 ∧ · · · ∧ dxip , (1.68)

where ωi1,...,ip ∈ C∞(U).

Definition 1.32. Let E be a vector bundle over M. The space of the E-valued p-differential

forms over M is defined as the set of smooth sections of the vector bundle Λp(T∗M) ⊗ E.

Namely,

Ωp(M, E) = Γ(Λp(TM) ⊗ E). (1.69)
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Remark 1.33. If E and F are vector bundles over M, and k > 0 is an integer, then one can

see that there is a bijection between Γ(Λk(E)⊗ F) and the set X = { f : Γ(E)× . . .×Γ(E) →
Γ(F)}, where each f is C∞(M)-multilinear alternating and with domain equal to k copies

of Γ(E). Indeed, let S ∈ Γ(Λk(E) ⊗ F), p ∈ M and S(p) = ω ⊗ f , with ω ∈ Λk(E) and

f ∈ F. Then, one can define a map S∗ with

(S∗(X1, . . . , Xk))p = ωp(X1(p), . . . , Xk(p)) fp, (1.70)

and analogously for the converse.

By the last Remark, it follows that an element ω ∈ Ωp(M, E) can be written as a

C∞(M)-multilinear alternating application defined in terms of

ω : X(M) × . . . ×X(M)︸ ︷︷ ︸
k times

→ Γ(E). (1.71)

Locally, with respect to the same local coordinates (U; x1, . . . , xn) and local frame

{e1, . . . , ek}, there are smooth functions f i
i1,...,ip

over U such that

ω = ∑
i1,...,ip ,i

f i
i1,...,ip

dxi1 ∧ · · · ∧ dxip ⊗ ei. (1.72)

1.4 connections

As previously seen, smooth functions can be perceived as sections of the product bundle

M × R, so that a choice of vector field X ∈ X(M) and smooth section f ∈ Γ(M × R) =

C∞(M) yields a derivation X( f ) with respect to the direction of X. Now, let E be a more

general vector bundle over M. One may wonder which properties must an operator

have so that it would be possible to make sense of the usual derivation for the sections

of such bundle along the direction of vector fields X ∈ X(M). As usual, if f , g ∈ C∞(M)

then since Xp is a derivation for each p ∈ M there holds

X( f g)(p) = Xp( f )g(p) + f (p)Xp(g), (1.73)

which is the well known Leibniz rule for derivations. It turns out that this property is

fundamental for understanding derivatives of more general sections.
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Definition 1.34. A connection on a vector bundle E over a manifold M is a map

∇ : X(M) × Γ(E) → Γ(E)

(X, S) �→ ∇XS,
(1.74)

such that

∇ f X+YS = f∇XS + ∇YS, ∇X( f S) = f∇XS + X( f )S, (1.75)

for every f ∈ C∞(M), vector fields X, Y ∈ X(M) and S ∈ Γ(E). The section ∇X(S) is denoted

the covariant derivative of S in the direction X.

Example 1.35. Let E = M × Rk be the trivial vector bundle of rank k. As seen before, a

section S̃ : M → E is given by

S̃(p) = (p, S(p)), (1.76)

where S : M → Rk has S(p) = (S1(p), . . . , Sk(p)) with each Si ∈ C∞(M). Then, one may

define a connection ∇ for X ∈ X(M) by setting

∇XS̃(p) =
(

p,
(

X(Si)(p), . . . , X(Sk)(p)
))

, (1.77)

where X(Si) is the usual derivative in the direction of X. Such connection called the

trivial connection over E.

Remark 1.36. More generally, there is an one-to-one correspondence between connec-

tions over E and 1-forms k × k matrices of the form (ωi
j). In that manner, taking a local

frame {e1, . . . , ek} for E over U one has

∇Xej =
k

∑
i=1

ωi
j(X)ei. (1.78)

If a section is locally given by S = Sjej for functions Sj : M → R, then using the Leibniz

rule comes

∇XS = ∇X(Sjej) = Sj∇Xej + X(Si)ei

= Sjωi
j(X)ei + X(Si)ei

= (Sjωi
j(X) + X(Si))ei.

(1.79)

Notice the trivial connection locally appears whenever (ωi
j) = 0.

Example 1.37. If E and E′ are vector bundles over M respectively endowed with connec-

tions ∇ and ∇′, then it is possible to consider a new connection over E ⊕ E′. Namely,

one can define the connection ∇⊕∇′ by setting

(∇⊕∇′)X(S, S′) = (∇XS,∇′
XS′). (1.80)
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One could ask if it is always possible to define a connection over a vector bundle E. It

turns out that the connection is actually a local operator, which can be glued together

by the partition of unity usual construction in order to globally define it.

Proposition 1.38. If ∇ is a connection on a vector bundle E over M and X ∈ X(M), S ∈ Γ(E)

and p ∈ M, then ∇XS(p) depends only on the values of S on an arbitrarily small neighborhood

of p and of Xp. In other words, if Xp = X̃p and S = S̃ in a neighborhood of p then

∇XS(p) = ∇X̃S̃(p). (1.81)

Proof. First, notice that by replacing S for S − S̃ it suffices to shows that ∇XS(p) = 0

whenever S vanishes in a neighbourhood U of p. In that case take a (bump) function

f ∈ C∞(M) with support inside U such that f (p) = 1. It follows that f S = 0 identically

on U and therefore

∇X( f S) = 0. (1.82)

Now, using the Leibniz rule there holds

∇X( f S) = f∇XS + X( f )S = 0, (1.83)

and by hypothesis the second term in the this equation is zero. Then, evaluating at p

yields

( f∇XS)(p) = f (p)∇XS(p) = ∇XS(p) = 0, (1.84)

as wanted.

Now, by the same reasoning one must only show that ∇XS(p) = 0 whenever Xp = 0.

Since ∇XS depends only locally on S, take local coordinates (U; x1, . . . , xn) and write

X = Xi∂i around U. It follows that

∇XS(p) = ∇Xi∂i
S(p) = Xi(p)∇∂i S(p) = 0 (1.85)

since Xi(p) = 0 for each i ∈ {1, . . . , n}.

The case of most interest in this work is when E = TM, so that it may be valuable to

explicitly name it:

Definition 1.39 (Affinely connected spaces). Let M be a manifold and consider its tangent

bundle TM. A connection

∇ : X(M) ×X(M) → X(M) (1.86)

over the tangent bundle it is called an affine connection and the pair (M,∇) is said to be an

affinely connected space.
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One may consider its local description: take a coordinate basis {∂1, . . . , ∂n} for

some neighborhood U of p ∈ M. Then, there are n3 functions Γi
jk : M → R, with

i, j, k ∈ {1, . . . , n} such that

∇∂j(∂k) = Γi
jk∂i. (1.87)

These functions are called the Christoffel symbols with respect to these local coordi-

nates. From Remark 1.36 one has that ωi
k(∂j) = Γi

jk, which gives

Proposition 1.40. Let (M,∇) be an affinely connected space and let X, Y ∈ X(M). If in

coordinate basis one has X = Xi∂i and Y = Yj∂j then

∇X(Y) = (X(Yk) + XiYjΓk
ij)∂k. (1.88)

Remark 1.41. A connection ∇ over the tangent bundle TM is the trivial one if and

only if its Christoffel symbols vanish. In the context of affine connections, the affinely

connected space (M,∇) is called a flat space.

Given an affinely connected space (M,∇), one is able to extend the connection to the

space of tensor fields over M in such a way that some useful properties come in hand.

Proposition 1.42. Let ∇ be an affine connection over M. Then, ∇ can be uniquely extended to

the (k, l)-tensor bundle Tk
l (M) over M in such a way that

(1) In T0(M) = C∞(M) one has ∇X f = X( f ), the usual differentiation for functions.

(2) There holds

∇X(T ⊗ S) = (∇XT) ⊗ S + T ⊗ (∇XS). (1.89)

(3) If F ∈ Tk
l (M), Yi ∈ X(M), ω j ∈ Ω1(M), where 1 ≤ i ≤ k and 1 ≤ j ≤ l, there holds

(∇XF)(ω1, . . ., ωl , Y1, . . . , Yk) = X(F(ω1, . . . , ωl , Y1, . . . , Yk))

−
l

∑
j=1

F(ω1. . . . ,∇Xω j, . . . , ωl , Y1, . . . , Yk)

−
k

∑
i=1

F(ω1, . . . , ωl , Y1, . . . ,∇XYi, . . . , Yk).

(1.90)
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In particular, take a 1-form ω ∈ Ω1(M) and X ∈ X(M). Considering local coordinate

(U; x1, . . . , xn) one may write

∇Xω(∂k) = ∇Xi∂i
(ωjdxj)(∂k)

= Xi(∇∂i(ω
jdxj)(∂k))

= Xi(∂i(ωjdxj(∂k)) − (ωjdxj(∇∂i ∂k)))

= Xi(∂i(ωk) − ωjΓ
j
ik),

(1.91)

which shows that in local coordinates

∇Xω = (Xi∂i(ωk) − XiωjΓ
j
ik)dxi. (1.92)

Since ∇XF is C∞(M)-linear over X, one can construct another tensor field, namely

Definition 1.43. Let (M,∇) be an affinely connected space and let F ∈ Tk
l (M). The (k+1

l )-tensor

∇F : Ω1(M) × · · · × Ω1(M) ×X(M) × · · · ×X(M) → C∞(M), given by

∇F(ω1, . . . , ωl , Y1, . . . , Yk, X) = ∇XF(ω1, . . . , ωl , Y1, . . . , Yk) (1.93)

is called the total covariant derivative for F.

Let (U; x1, . . . , xn) be local coordinates around p ∈ M and take a tensor field F ∈
Tk

l (M) which around U as seen have the local description

F = Fj1···jk
i1···il ∂j1 ⊗ · · · ⊗ ∂jk ⊗ dxi1 ⊗ · ⊗ dxil . (1.94)

Then, the m-direction derivative of the coordinate functions of F shall be denoted by

Fj1···jk
i1···il ,m = ∂m(Fj1···jk

i1···il ). (1.95)

Moreover, the components of the total covariant field ∇F may be written as

∇F = ∇mFj1···jk
i1···il ∂j1 ⊗ · · · ⊗ ∂jk ⊗ dxi1 ⊗ · ⊗ dxil ⊗ dxm. (1.96)

One can then consider a formula for the components of the total covariant derivative of

arbitrary tensor fields, which is given by direct computation:

Proposition 1.44. Let (M,∇) be an affinely connected space. Then, the components of a

(k
l)-tensor field F with respect to a coordinate system (U; x1, . . . , xn) is given by

∇mFj1···jl
i1···ik = Fj1···jl

i1···ik ,m +
l

∑
s=1

Fj1···p···jl
i1···ik Γjs

mp −
k

∑
s=1

Fj1···jl
i1···p···ikΓp

mis . (1.97)
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1.5 parallel transport

Since a connection on a vector bundle E over a manifold M is a way of differentiating

vector fields and may even be extended to more general tensor fields, as seen before,

one may be tempted to see if it is possible to describe it in any similar way to what is

already known from derivatives of functions

In differential calculus one analyzes real functions f : I ⊂ R → R defined in an

interval I. A special class of functions emerges when the so-called difference quotient

of f is considered: if t, t0 ∈ I, then the derivative of f at t0 is given by

f ′(t0) = lim
t→t0

f (t) − f (t0)
t − t0

, (1.98)

whenever the right-handed side exists. In that case, the real function f is called

differentiable. Notice that to make sense of this expression, the difference between the

real numbers f (t) and f (t0) must be defined. Since there is a natural way to take one

(namely the difference induced by the field structure of the real numbers), one gets eqn

(1.98).

However, if one was to do the same with sections S ∈ Γ(E) of a vector bundle E,

then this would be impossible at first. Indeed, take two points p, p0 ∈ M both in an

arbitrarily small open set. Even so, the expression

S(p) − S(p0) (1.99)

makes no sense, since S(p) ∈ Ep and S(p0) ∈ Ep0 , which are intrinsically different vector

spaces. In order to connect them, a new structure is then required. This structure is

called the parallel transport and one may see that there is an one-to-one correspondence

between such structures and connections as follows.

Fix a vector bundle E over M from now on and let γ : I → M be a curve over M. The

velocity of γ at a point t0 ∈ I is given by the push-forward

γ′(t0) = γ∗
( d

dt

∣∣∣∣∣
t0

)
, (1.100)

which acts as a derivation on a function f : M → R as

γ′(t0)( f ) = γ∗
( d

dt

∣∣∣∣∣
t0

)
( f ) =

d( f ◦ γ)
dt

∣∣∣∣∣
t0

. (1.101)
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Also, given local coordinates (U; x1, . . . , xn) one may write the coordinate representation

of γ as

γ(t) = (γ1(t), . . . , γn(t)), (1.102)

or even sometimes γ(t) = (γi(t)). Its velocity in the coordinate basis {∂1, . . . , ∂n} at t0 ∈ I

is then given by

γ′(t0) = γ̇i(t0)∂i. (1.103)

Definition 1.45. Let γ : I → M be a curve over M. Then, a curve V : I → E on a vector

bundle E over M is said to be a section along γ if there holds

V(t) ∈ Eγ(t), ∀t ∈ I. (1.104)

Moreover, the set of all such section is denoted by Γ(E, γ).

Remark 1.46. In general, given a section S ∈ Γ(E) and a curve γ : I → M, one can

produce such sections by composition, namely

S ◦ γ : I → E. (1.105)

Definition 1.47. Let γ : I → M be a curve over M and suppose V : I → E is a section along

γ. Then, if there is S ∈ Γ(E) such that

V(t) = S(γ(t)), (1.106)

then V is said to be extendible over E and S is called an extension of V.

Remark 1.48. Notice that not every section V along γ needs to be extendible: if γ has

t0, t1 ∈ I with γ(t0) = γ(t1) but such that V(t0) 	= V(t1), then V is not extendible.

Lemma 1.49. Let E be a vector bundle over M and consider a connection ∇ over E. Then, for

each curve γ : I → M there is an unique operator

Dt : Γ(E, γ) → Γ(E, γ), (1.107)

with the property that if V, W ∈ Γ(E, γ) then:

(1) Dt is linear over R, that is

Dt(λV + μW) = λDtV + μDtW, ∀λ, μ ∈ R. (1.108)
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(2) Let f ∈ C∞(I). Then, a Leibniz rule holds:

Dt( f V) = f DtV + ḟ V (1.109)

(3) If V is extendible then, for every extension S : I → E of V,

DtV = ∇γ′S. (1.110)

The operator DtV is called the covariant derivative of V along γ.

Proof. To show uniqueness, suppose there is such operator Dt and fix t0 ∈ I. Proposition

1.38 shows that the value of DtV depends only on a neighbourhood near t0. Therefore,

one may proceed locally: let (U; x1, . . . , xn) be local coordinates around γ(t0) and let

{∂1, . . . , ∂n} be the coordinate basis around this system. Then,

V(t) = Vi(t)∂i

∣∣∣
γ(t)

, (1.111)

which shows that V is extendible around U. Then,

DtV(t0) = V̇k(t0)∂k + Vj(t0)∇γ′(t0)∂j

= (V̇k(t0) + Vj(t0)γ̇i(t0)ωk
j (∂i))∂k,

(1.112)

where ωk
j ∈ Ω1(M) are the connection 1-forms. Therefore, Dt is locally unique. Since

γ(I) is a compact subset of M, one may realize the same procedure to a finite number

of neighborhoods, and since these relations must agree on overlaps, it follows that Dt is,

in fact, unique all over γ, if it exists. Now, just take eqn (1.112) as the definition of DtV

and it follows that it automatically satisfies all wanted relations.

Definition 1.50. Let E be a vector bundle over M and ∇ a connection on E. If V : I → E is a

section along a curve γ : I → M such that

DtV = 0, (1.113)

then V is said to be parallel with respect to γ.

Lemma 1.51. Let E be a vector bundle over M and ∇ a connection on E. Consider a curve

γ : I → M and t0 ∈ I. Then, for any fixed V0 ∈ Eγ(t0) there is an unique parallel path

V : I → E above γ such that V(t0) = V0.
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Proof. As discussed before, one may proceed locally: aiming to find a section V : I → E

along γ satisfying the definition of parallel path and eqn (1.112), there follows

V̇i(t) = −
k

∑
j=1

Vj(t)ωi
j(γ

′(t)), V(t0) = V0. (1.114)

Defining the matrix A(t) = −ω(γ′(t)), where now ω = (ωi
j) is the connection 1-form

matrix, then the last equation can be translated to

V′(t) = A(t)V(t), V(t0) = V0, (1.115)

and its existence and uniqueness is a direct result of ODE5 theory.

Definition 1.52. Let E be a vector bundle over M, ∇ a connection over E, γ : I → M a curve

and t0, t1 ∈ I. Then, the parallel transport along γ (with respect to ∇) from t0 to t1 is the

map

Tt0,t1
γ : Eγ(t0) → Eγ(t1), (1.116)

which sends V0 ∈ Eγ(t0) to the unique vector V(t1) ∈ Eγ(t1) such that V(t) is the parallel curve

above γ with V(t0) = V0.

Remark 1.53. From the uniqueness property, and the linear dependence of the ODE

on its initial condition, it is straightforward to see that Tt0,t1
γ is a well-defined linear

transformation. Moreover, it follows from uniqueness that

Tt1,t2
γ ◦ Tt0,t1

γ = Tt0,t2
γ , (1.117)

and taking t0 = t2 it follows that T is an isomorphism of vector spaces. It so happens

that the parallel transport completely defines the connection and vice-versa, as one

can see in the following result. The parallel transport manages to connect the different

fibers around a neighborhood of a point p ∈ M, so that the usual (calculus) notion of

derivatives can be perceived, as previously stated.

Theorem 1.54. Let γ : I → M be a smooth curve over M with γ(t0) = p and γ′(t0) = X0 ∈
TpM. Then, it follows that for every section S ∈ Γ(E) there holds

∇X0S(p) = lim
t→t0

=

(
Tt0,t

γ

)−1
(S (γ(t))− S(γ(t0))

t − t0
. (1.118)

5 Ordinary Differential Equations.
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Proof. Let {e1, . . . , ek} be a basis for Ep and define ei(t) = Tt0,t
γ (ei). Since Tt0,t

γ is an

isomorphism, the set {e1(t), . . . , ek(t)} is a basis for Eγ(t). Therefore, there are smooth

functions ai : U → R in some neighborhood of p such that S(γ(t)) = ai(t)ei(t). Since the

parallel transport is linear, it follows that(
Tt0,t

γ

)−1
(S (γ(t))) = ai(t)ei. (1.119)

Then,

lim
t→t0

=

(
Tt0,t

γ

)−1
(S (γ(t))− S(γ(t0))

t − t0
= lim

t→t0

ai(t)ei − ai(t0)ei

t − t0
= ȧi(t0)ei. (1.120)

On the other hand, the definition of parallel transport yields ∇γ′(t)(ei(t)) = 0. Since

γ′(t0) = X0, one may calculate the expression ∇γ′(t)S = DtV and then set t = t0. It

follows that

∇γ′(t)(S) = ȧi(t)ei + ai(t)∇γ′(t)(ei(t)) = ȧi(t)ei, (1.121)

as wanted.





2 RIEMANNIAN MANIFOLDS

In this chapter some elementary results on Riemannian manifolds are presented. A

vector bundle E over a manifold M may be endowed with a smooth parameterized

choice of metrics on the fibers Ep, yielding the concept of a metric over the manifold

M. This more general case may be considered in detail but the case E = TM is focused

herein, as follows.

2.1 riemannian metrics

Generally, metrics over vector spaces V are functions which allow one to define the

notions of sizes and angles of vectors, as well as the concept of orthogonality. One may

consider the basic example of V = Rn endowed with the canonical Euclidean metric

〈·, ·〉 given by

〈u, v〉 =
n

∑
i

uivi, (2.1)

where u = (u1, . . . , un) and v = (v1, . . . , vn) are vector in Rn. Further on, the Euclidean

norm may be defined by

‖u‖=
√
〈u, u〉, (2.2)

which precisely measures the Euclidean size of a vector u ∈ Rn. In addition, the angle θ

between two vectors u, v ∈ Rn can be seen to be given by

θ = arccos
〈u, v〉
‖u‖‖v‖ , (2.3)

in such a way that this notion may be generalized as follows.

Definition 2.1. A metric over a vector space V is a function

g : V × V → R, (2.4)

satisfying the following properties:

31



32 riemannian manifolds

(1) Symmetry: g(u, v) = g(v, u) for every u, v ∈ V.

(2) Bilinearity: g(u, λv + w) = λg(u, v) + g(u, w) for every u, v, w ∈ V and λ ∈ R.

(3) Positive-definiteness: g(u, u) ≥ 0 for every u ∈ V; g(u, u) = 0 if and only if u = 0.

One says that the pair (V, g) is a vector space endowed with a metric.

It is straightforward to see that the Euclidean metric satisfies the above conditions.

Moreover, in the context of manifolds M one may endow the tangent bundle TM with

a metric in such a way enabling the possibility of measuring these quantities in each

tangent space TpM. A choice of metric gp for each tangent space produces a collection

{gp}p∈M. However, as one might expect, such indexation shall be required to be smooth.

Definition 2.2. Let M be a manifold and consider its tangent bundle TM. A metric over M

is a family {gp}p∈M of metrics gp : TpM × TpM → R, which vary smoothly with p ∈ M.

Namely, if X, Y ∈ X(M), then the function g(X, Y) : M → R defined by

g(X, Y)(p) = gp(Xp, Yp), (2.5)

is smooth. In such case, the pair (M, g) is called an Riemannian manifold.

As in the case of affine connections over TM, one may see that every manifold M

admits a metric by the usual partition of unity argument. In what follows some of

the properties and classical constructions related to Riemannian manifold (M, g) are

presented.

Remark 2.3. An important notion in geometry is that of symmetries. Namely, whenever

one has two vector spaces endowed with metrics (V, g) and (Ṽ, g̃), one may look for an

isomorphism T : V → Ṽ preserving this structure in such a way that for every u, v ∈ V

there holds

g̃(T(u), T(v)) = g(u, v). (2.6)

An analogous notion can be considered for Riemannian spaces. Namely, given (M, g)

and (M̃, g̃) two Riemannian spaces, an isometry between them is a diffeomorphism

F : M → M̃ such that for every p ∈ M and Xp, Yp ∈ TpM there holds

g̃(dFp(Xp), dFp(Yp)) = g(Xp, Yp). (2.7)
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One may now look at some elementary properties and constructions that can be

considered over a Riemannian manifold (M, g). Let (U; x1, . . . , xn) be local coordinates

and let {∂1, . . . , ∂n} be the associated coordinate basis. Then, note that g ∈ S2(M) =

Γ(Sym2(TM)). Therefore, one may write

g = gijdxi ⊗ dxj, (2.8)

where in this case it follows that

gij = gji, (2.9)

since g is symmetric. In addition, since g is positive-definite, it follows that the matrix

(gij) defines an isomorphism. Therefore, there exists an inverse matrix which shall be

denoted by (gij). Then, it follows that

gikgkj = gikgkj = δi
j =

⎧⎨⎩1, if i = j,

0, if i 	= j.
(2.10)

One elementary but interesting property of metrics over manifolds is that they allow one

to convert vectors to covectors and the opposite. Namely, given a vector field X ∈ X(M),

one can define the 1-form X� by the relation

X�(Y) = g(X, Y), (2.11)

for every vector field Y ∈ X(M). Then, (·)� is called the flat isomorphism and in local

coordinates one has

X� = g(Xi∂i, ·) = gijXidxj. (2.12)

Putting it in coordinates with X� = Xjdxj it reads

Xj = gijXi. (2.13)

In the same manner, if ω is an 1-form then the vector field ω� may be defined in terms

of the inverse metric gij by setting ω� = ωi∂i and taking

ωi = gijωj. (2.14)

The map (·)� is called the sharp isomorphism and together with the flat one these

are called the musical isomorphisms with respect to g. It is also clear that one is the

inverse of the other. Another important notion when working with metric is that of

orthogonality.
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Definition 2.4. Let (M, g) be a Riemannian manifold and fix p ∈ M. Then, two vectors

Xp, Yp ∈ TpM are said to be orthogonal if

g(Xp, Yp) = 0. (2.15)

Moreover, if a collection of vectors X1
p, . . . , Xk

p ∈ TpM are pair-wise orthogonal and unitary,

that is

g(Xi
p, Xi

p) = 1, ∀i ∈ {1, . . . , k}, (2.16)

then the set {Xi
p}k

i=1 is said to be orthonormal.

Remark 2.5. Let (M, g) be a Riemannian space and suppose that {e1, . . . , en} is a local

frame for p ∈ M in some open neighbourhood U. Then, if for some q ∈ U the basis

{e1(q), . . . , en(q)} for TqM is orthonormal then it is called an orthonormal basis. In

addition, if this property holds for every point in U then {e1, . . . , en} is called an

local orthonormal frame. By the usual Gram-Schmidt orthonormalizing process it is

straight-forward to prove the

Proposition 2.6. Let (M, g) be a Riemannian manifold. Then, for every p ∈ M there is a local

orthonormal frame {E1, . . . , En} over a neighbourhood U of p.

Now, just like connections it is possible to extend the metric g for all of the tensor

bundle Tk
l (M). Of course, a metric for a more general vector bundle E over M is given

by a smooth parameterization of metrics gp : Ep × Ep → R over the fibers satisfying the

properties given in Definition 2.1.

Proposition 2.7. Let (M, g) be a Riemannian manifold. Then, one may uniquely extend the

metric g to the tensor bundle Tk
l (M) with the property that if {E1, . . . , En} is an orthonormal

basis for TpM with {E1, . . . , En} its dual basis, then the usual tensor basis for Tk
l (TpM)

associated with them is also orthonormal.

Proof. Let Rp, Sp ∈ Tk
l (TpM). Then, taking local coordinates (U; x1, . . . , xn) one may see

by direct computation that such metric must be given by

g(R, S) = gi1r1 · · · gikrk gj1s1 · · · gjlsl R
j1···jl
i1···ik Ss1···sl

r1···rk . (2.17)

Remark 2.8. In particular, notice that for α, ω ∈ Ω1(M) there holds in local coordinates

g(α, ω) = gijαiωj, (2.18)
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and on the other hand

g(α�, ω�) = g(gijωj∂i, glmαm∂l) = gijglmωjαigil = gijαiωj, (2.19)

so that the musical isomorphisms preserve the metric defined by means of Proposi-

tion 2.7. Such metric can be naturally extended to the space of k-forms, where for

homogeneous α = α1 ∧ · · · ∧ αk and β = β1 ∧ · · · ∧ βk the metric is given by

g(α, β) = det (g(αi, β j)). (2.20)

Remark 2.9. Let F ∈ T k
l (M) be a (k

l)-tensor field. Locally one has

F = Fj1···jk
i1···il ∂j1 ⊗ · · · ⊗ ∂jk ⊗ dxi1 ⊗ · ⊗ dxil (2.21)

so that one can define a (k−1
l+1 ) tensor called the lowering of an upper index as follows:

choose one of the contravariant entries of F, say 1 ≤ m ≤ k. Then, with respect to those

local coordinates one may define the symbols

Fj1...jm−1 jm+1...jk
jmi1...il

= Fj1···jm−1njm+1...jk
i1···il gnjm (2.22)

where the dummy index n sums over all values {1, . . . , k}. Analogously it is possible

to define the raising of a lower index of the tensor F by again choosing 1 ≤ m ≤ l and

setting

Fj1···jkim
i1···im−1im+1···il = Fj1···jk

i1···im−1nim+1···il g
nim . (2.23)

These operations shall be used in several occasions to come.

One may consider the case when M is oriented and perceive the relations with the

Riemannian metric.

Lemma 2.10. Let (M, g) be a Riemannian manifold with M oriented. Then, there is an unique

n-form volg such that for every oriented orthonormal basis {E1(p), . . . , En(p)} for TpM there

holds

volg(E1, . . . , En) = 1, (2.24)

which is called the Riemannian volume element for (M, g).

Proof. Fix p ∈ M and let (U; x1, . . . , xn) be local coordinates around it. Then, take a

(positively) oriented orthonormal basis {E1, . . . , En} for TpM and consider its dual basis

{E1, . . . , En}. Define

volg = E1 ∧ · · · ∧ En. (2.25)
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Obviously this n-form satisfies eqn (2.24) for the chosen orthonormal basis. In addition,

if {Ẽ1, . . . , Ẽn} is another oriented orthonormal basis for the dual space T∗
p M then,

denoting by T the transition matrix between such basis, there follows

E1 ∧ · · · ∧ En = (det T)Ẽ1 ∧ · · · ∧ Ẽn. (2.26)

However, since both of them and orthonormal and positively oriented one has det T = 1,

which gives the desired result.

Remark 2.11. Let volg be the Riemannian volume form for (M, g), written in terms of

an orthonormal basis as

volg = E1 ∧ · · · ∧ En. (2.27)

Then, taking the local coordinates (U; x1, . . . , xn) one may denote by A the matrix with

∂i in its i-th column with respect to this orthonormal basis. It follows that

‖dx1 ∧ · · · ∧ dxn‖= |det A|=
√

det(AT A). (2.28)

Since by construction AT A = (gij), one has the relation

volg =
√

det(gij)dxi ∧ · · · ∧ dxn. (2.29)

Remark 2.12. Given an n-dimensional Riemannian manifold (M, g) with M oriented,

one may consider the Hodge star operation

� : Ωk(M) → Ωn−k(M), (2.30)

which is defined by the relation

〈ω, α〉volg = ω ∧ �α = α ∧ �ω, (2.31)

where ω ∈ Ωk(M) and α ∈ Ωn−k(M). There holds

�2 = (−1)k(n−k). (2.32)

In addition, consider the interior product

� : X(M) × Ωk(M) → Ωk−1(M), (2.33)

which for X, X1, . . . , Xk−1 ∈ X(M) and ω ∈ Ωk(M) is given by

(X � ω) (X1, . . . , Xk−1) = ω(X, X1, . . . , Xk−1). (2.34)

One can then prove the important relation
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Lemma 2.13. Let (M, g) be a Riemannian manifold with M oriented, ω ∈ Ωk(M) and X a

vector field. There holds

�(X � ω) = (−1)k+1(X� ∧ �ω). (2.35)

In particular, when ω = volg one has

X � volg = �Xb. (2.36)

Proof. Let α ∈ Ωk−1(M). Then, there follows

α ∧ �(X � ω) = 〈α, X � ω〉volg

= (X � ω)(α�)volg

= ω(X ∧ α�)volg

= 〈ω, X� ∧ α〉volg

= (X� ∧ α) ∧ �ω

= (−1)k−1α ∧ (X� ∧ �ω).

(2.37)

2.2 geodesics and normal coordinates

The important notion of geodesic curves may now be presented, being those the curves

with no acceleration over an affinely connected space (M,∇). With the aid of the

covariant derivative along curves developed in the last chapter, one may be able to

define what acceleration means in a rigorous way in this case. Then using these entities

and a metric over M one may be able to present normal coordinates around a point.

Definition 2.14. Let (M,∇) be an affinely connected space and γ : I → M a curve over M.

Its acceleration is defined as the vector field Dtγ
′ along γ.

Example 2.15. It is possible to see that this definition is compatible with the usual

notion of acceleration on for curves in Rn. Let γ : I → Rn be a curve and assume ∇
to be the flat affine connection on E = T(Rn) � Rn. Then, taking the canonical (global)

frame {ẽ1, . . . , ẽn} for E there holds for t0 ∈ I

Dtγ
′(t0) = (γ̈k(t0) + γ̇j(t0)γ̈i(t0)ωk

j (ẽi))ẽk = γ̈k(t0)ẽk = γ′′(t0). (2.38)
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Definition 2.16. Let (M,∇) be an affinely connected space and γ : I → M a curve over M. If

its acceleration is zero for all t ∈ I, that is

Dtγ
′ = 0, (2.39)

then γ is said to be a geodesic with respect to ∇.

Theorem 2.17. [Existence and Uniqueness of Geodesics] Let (M,∇) be an affinely connected

space, take p ∈ M, X0 ∈ TpM and t0 ∈ R. Then, there is an open interval I ⊂ R with t0 ∈ I

and a geodesic γ : I → M such that γ(t0) = p and γ′(t0) = X0. Also, two such geodesics agree

on their common domain.

The last result can be used in order to define a relation between the tangent space

TpM and points in a neighbourhood of p. Namely, each X ∈ TM encompasses a

point π(X) = p and vector Xp, which by Theorem 2.17 yields a geodesic γX such that

γX(t0) = 0 and γ′
X(t0) = Xp for some t0 ∈ R. Then, one may define the subset E of TM

E = {X ∈ TM : the maximal geodesic γX : I → M has [0, 1] ⊂ I}. (2.40)

The exponential map exp : E → M is then given by

exp(X) = γX(1). (2.41)

Lemma 2.18 (Rescaling lemma). Let X ∈ TM and let c, t ∈ R. Then there holds

γcX(t) = γX(ct). (2.42)

Proposition 2.19. The exponential map exp : E → M has the following properties:

(1) E is an open subset of the tangent bundle TM containing the zero section.

(2) The geodesic γX is given by

γX(t) = exp(tX), (2.43)

for all t ∈ I and all X ∈ TM.

(3) The exponential map is smooth.

It is also possible to consider for each p ∈ M the restriction Ep = E∩ TpM and then

define

expp : Ee → M. (2.44)
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Lemma 2.20 (Normal Neighborhood Lemma). For every p ∈ M there is a neighborhood N0

of the origin in TpM and Np of p in M such that expp : N0 → Np is a diffeomorphism.

Proof. One might see that the push-forward

d(expp)p : T0(TpM) = TpM → TpM (2.45)

is, in fact, the identity and therefore an isomorphism. Hence, the result follows from the

Inverse Mapping Theorem. Indeed, let Xp ∈ TpM and γ : I → TpM given by γ(t) = tXp.

Then,

d(expp)p(Xp) =
d
dt

∣∣∣
t=0

(
expp ◦γ

)
(t) =

d
dt

∣∣∣
t=0

expp(tXp) =
d
dt

∣∣∣
t=0

γXp(t) = Xp. (2.46)

Now, it is in our interest to introduce coordinates related to the exponential diffeomor-

phism containing desired properties to work with. Remarkably, the normal coordinates

are extensively used in Riemannian geometry but cannot be presented without the

presence of a metric g.

Definition 2.21. An affinely connected Riemannian space is given by a triple (M, g,∇)

for which M is a manifold endowed with a metric g and an affine connection ∇.

Consider then the affinely connected Riemannian space (M, g,∇). If {E1, . . . , En} is

an orthonormal basis for TpM then there is a natural isomorphism E : TpM → Rn given

by

E(xiEi) = (x1, . . . , xn), (2.47)

which in turn defines a coordinate chart

φ = E ◦ exp−1
p : Np → Rn, (2.48)

called the normal coordinates centered at p.

Proposition 2.22 (Properties of Normal Coordinates). Let (Np, φ) = (Np; x1, . . . , xn) be

normal coordinates centered at p. Then,

(1) For any vector field X = Xi∂i ∈ TpM, the geodesic γX at p is represented in normal

coordinates by the radial line segment

φ(γX(t)) = (tX1, . . . , tXn) (2.49)
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whenever γX(t) is inside of Np. Moreover, there is a neighbourhood N′
p of p called the

restricted normal neighborhood at p ∈ M for which every pair of points a, b ∈ N′
p has

an unique geodesic between them.

(2) φ(p) = (0, . . . , 0).

(3) The components of the metric at p are gij = δij.

Remark 2.23. Fix dim M = n. Then, since in normal coordinates there holds gij = δij at

the point p, this in turn makes

gijgij = δijδ
ij = Tr(Id) = n (2.50)

where Tr denotes the trace of a square matrix.

Remark 2.24. In the next section, a notion of compatibility between a connection ∇ and

metric g over the manifold M will be considered, yielding the notions of torsion and

metric-compatibility. In that case, it also follows that if ∇ is metric-compatible then the

partial derivatives gij,k vanish and if ∇ is torsionless then the Christoffel symbols Γk
ij

also vanish at p. It is important to note that these properties hold only on the "central"

point p. The description, even in normal coordinates, of geodesics between other points,

as well as the properties of the partial derivatives and Christoffel symbols vanishing do

not hold in all of Np in general.

Remark 2.25. Notice that the second property in the Proposition 2.22 shows that for

each p ∈ M the metric gp over the tangent space in normal coordinates is given by the

Euclidean one. There is a generalization of this concept (structures over a manifold

that locally look like a fixed system in the tangent space) called G-structures. Their

more general formal theory will not be presented, but the specific case of the so-called

G2-structures will be perceived further on.

2.3 metric-compatibility and torsion

As said before, it may be the case when M is endowed with both a connection ∇ and a

metric g. In this section, the relations between these structures are investigated and a

sense of compatibility between them can be considered.
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Definition 2.26. Let M be a manifold. If ∇ is an affine connection and g a metric over M then

the triple (M, g,∇) is called an affinely connected Riemannian space.

Definition 2.27 (Metric compatibility). Let (M, g,∇) be an affinely connected Riemannian

space. Then, the connection ∇ is said to be metric-compatible or compatible with g if

X(g(Y, Z)) = g(∇X(Y), Z) + g(Y,∇XZ), (2.51)

for every X, Y, Z ∈ X(M).

Remark 2.28. The condition in definition 2.27 can be put in the following manner: let

γ : I → M be a curve in M and X, Y : I → TM sections along γ. Then, the connection

∇ is compatible with g if and only if

d
dt

g(X, Y) = g(DtX, Y) + g(X, DtY). (2.52)

Proposition 2.29. Let (M, g,∇) be an affinely connected Riemannian space. The following

statements are equivalent:

(1) The connection ∇ is compatible with g.

(2) For any curve γ : [t0, t1] → M with γ(t0) = p and γ(t1) = q, the parallel transport Tt0,t1
γ

with respect to ∇ is an isometry between (TpM, gp) and (TqM, gq).

(3) The total covariant derivative ∇g ≡ 0

Now, one may recall the Lie bracket operation

[·, ·] : X(M) ×X(M) → X(M), (2.53)

which, for a function f ∈ C∞(M), is given by

[X, Y] f = X(Y( f )) − Y(X( f )). (2.54)

Taking a coordinate basis {∂1, . . . , ∂n} for TpM, it follows that

[Xi∂i, Yj∂j]( f ) = Xi∂i(Yj∂j( f )) − Yj∂j(Xi∂i( f ))

= Xi∂i(Yj)∂j( f ) − Yj∂j(Xi)∂i( f ) + XiYj(∂i∂j)( f ) − YjXi(∂j∂i)( f )

=
(

Xi∂i(Yj) − Yi∂i(Xj)
)

∂j,

(2.55)

where the relation ∂i∂j = ∂j∂i (by Schwarz’s Theorem) was used. The Lie bracket is

intrinsically related to Lie algebras and groups (more details on refs. [35, 39, 40]). It
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measures the failure of the commutation of the global derivations spanned by the vector

fields X, Y ∈ X(M). Note that the relation

[∂i, ∂j] = 0, (2.56)

was used in the previous calculation. Such identity always holds for coordinate bases,

but not necessarily in more general ones. Besides, for any X, Y, Z ∈ X(M) one may see

the so-called Jacobi identity

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 (2.57)

holds.

Definition 2.30. Let (M,∇) be an affinely connected space and define the operator

T : X(M) ×X(M) → X(M), (2.58)

called the torsion with respect to ∇ by the relation

T(X, Y) = ∇X(Y) −∇Y(X) − [X, Y]. (2.59)

Remark 2.31. It is an easy task to verify that the torsion T for a connection ∇ is a C∞(M)-

linear alternating operator. Therefore, there holds T ∈ Γ(Λ2(TM) ⊗ TM) = Ω2(M, TM).

In addition, a connection is called torsionless or torsion-free whenever T = 0.

Remark 2.32. Let p ∈ M and choose local coordinates (U; x1, . . . , xn) with such the

coordinate vectors are given by {∂1, . . . , ∂n}. Then, one can define the torsion symbols

Ti
jk by

Ti
jk = dxi (T(∂i, ∂j)

)
= dxi(Γi

jk∂i − Γi
kj∂i) = Γi

jk − Γi
kj. (2.60)

Notice that by definition the symbols satisfy

Ti
jk = −Ti

kj, (2.61)

and the connection is torsionless if and only if Γi
[jk] = 0. One may as well lower the

upper index, yielding

Tijk = gilTl
jk. (2.62)

The metric-compatibility and the torsion of a connection ∇ are related, in the sense

that given a metric g these properties uniquely define a connection over M.
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Lemma 2.33 (Fundamental Lemma of Riemannian Geometry). Let (M, g) be a Riemannian

manifold. Then, there is an unique torsionless connection ∇ compatible with g. Such connection

is called the Levi-Civita connection of (M, g).

Proof. Suppose first that ∇ is indeed a connection compatible with g and let X, Y, Z ∈
X(M) be arbitrary vector fields. Using the compatibility relation, it follows that

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ),

Yg(Z, X) = g(∇YZ, X) + g(Z,∇YX),

Zg(X, Y) = g(∇ZX, Y) + g(X,∇ZY).

(2.63)

Since ∇ is torsionless, there holds ∇XZ = ∇ZX + [X, Z] and similar relations with

respect to ∇YX and ∇ZY, yielding

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇ZX) + g(Y, [X, Z]),

Yg(Z, X) = g(∇YZ, X) + g(Z,∇XY) + g(Z, [Y, X]),

Zg(X, Y) = g(∇ZX, Y) + g(X,∇YZ) + g(X, [Z, Y]).

(2.64)

One may add the two first equations and subtract the third, resulting in

Xg(Y, Z) + Yg(Z, X) − Zg(X, Y) = 2g(∇XY, Z) + g(Y, [X, Z]) + g(Z, [Y, X]) − g(X, [Z, Y]).

(2.65)

Rearranging the terms comes

g(∇XY, Z) =
1
2
(Xg(Y, Z) + Yg(Z, X) − Zg(X, Y) − g(Y, [X, Z]) − g(Z, [Y, X]) + g(X, [Z, Y])) .

(2.66)

Now, since the right-hand side of eqn (2.66) does not depend on the connection ∇, if

∇1 and ∇2 are both torsionless connection, then it follows that

g(∇1
XY −∇2

XY, Z) = 0, (2.67)

for every X, Y, Z ∈ X(M). Since g is non-degenerate, it follows that ∇1
XY = ∇2

XY, for

every X, Y ∈ X(M). This proves uniqueness.

In order to prove existence one may show that such connection exists locally, then by

uniqueness this must be the only possible connection. A local chart (U, x1, . . . , xn) may

be considered and applying eqn (2.66) on the coordinate vectors {∂1, . . . , ∂n} yields

g(∇∂i ∂j, ∂l) =
1
2
(∂ig(∂j, ∂l) + ∂jg(∂l , ∂i) − ∂l g(∂i, ∂j)). (2.68)
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It then follows in index notation that

Γm
ij gml =

1
2

(gjl,i + gil,j − gij,i). (2.69)

Using the metric inverse of glk, there holds

Γk
ij =

1
2

gkl(gjl,i + gil,j − gij,i). (2.70)

Since Γk
ij = Γk

ji, it follows that ∇ is torsionless. By Lemma 2.29, to prove that ∇ is

compatible with g it suffices to prove that ∇g = 0. In components, one has

∇kgij = gij,k − Γl
kiglj − Γl

kjgil . (2.71)

One may use eqn (2.69) to conclude that

Γl
kiglj + Γl

kjgil =
1
2

(gij,k + gkj,i − gki,j) +
1
2

(gji,k + gki,j − gkj,i)

= ∂kgij.
(2.72)

Therefore, ∇g = 0 and so ∇ is indeed compatible with g.

Remark 2.34. Since the Levi-Civita connection for a Riemannian manifold (M, g) is

unique, one may sometimes denote it by ∇g to make explicit its dependence on the

metric g. Moreover, another tensor which shall be of great importance is the contorsion

or the Cartan torsion1 of a connection ∇ as follows.

Definition 2.35. Let (M, g,∇) be an affinely connected Riemannian space and consider its

Levi-Civita connection ∇g. Then, the contorsion is an application S : X(M) ×X(M) → X(M)

measuring the difference between ∇ and the Levi-Civita connection. It is given by the relation

S(X, Y) + ∇XY = ∇g
XY. (2.73)

It is straightforward to see that the contorsion is a (1
2)-tensor field, since by definition

it is C∞(M)-linear on the first entry and for f ∈ C∞(M)

S(X, f Y) = ∇g
X( f Y) −∇X( f Y)

= f
(∇g

XY −∇XY
)

+ X( f )Y − X( f )Y

= f S(X, Y).

(2.74)

Additionally, it encompasses a considerable amount of information about the original

connection ∇. For the next result, fix the affinely connected Riemannian space (M, g,∇)

with contorsion S as in eqn (2.73).

1 This tensor is sometimes simply referred as torsion in the literature, although there are some differences

between them in the general case.
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Proposition 2.36. The connection ∇ is torsion-free if and only if the contorsion tensor S is

symmetric.

Proof. By a straight-forward computation, one has

T(X, Y) = ∇XY −∇YX − [X, Y]

= ∇g
XY −∇g

YX − [X, Y] + S(Y, X) − S(X, Y)

= S(Y, X) − S(X, Y),

(2.75)

hence the result.

One may explicitly define the tensor obtained by lowering the contorsion upper index

given by

A : X(M) ×X(M) ×X(M) → R, (2.76)

where, as usual, there holds

A(X, Y, Z) = g(S(X, Y), Z). (2.77)

Proposition 2.37. The connection ∇ is metric-compatible if and only if the tensor A(X, Y, Z) =

g(S(X, Y), Z) is anti-symmetric in Y and Z.

Proof. The connection ∇ is metric-compatible if and only if

X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ), (2.78)

for every X, Y, Z ∈ X(M). On the other hand,

g(∇XY, Z) + g(Y,∇XZ) = g(∇g
XY, Z) + g(Y,∇g

XZ) − g(S(X, Y), Z) − g(Y, S(X, Z)), (2.79)

and since ∇g is metric-compatible, it follows that

g(S(X, Y), Z) + g(S(X, Z), Y) = 0. (2.80)

Definition 2.38. Given two affine connections ∇ and ∇̃ over M, one says that they have the

same set of geodesics over M whenever a geodesic γ : I → M for ∇ is also a geodesic for ∇̃
and vice-versa.

Proposition 2.39. The connection ∇ has the same set of geodesics as ∇g if and only if

A(X, Y, Z) = g(S(X, Y), Z) is anti-symmetric in X and Y. Equivalently, if and only if S

is alternating.
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Proof. Indeed, let X be any vector field and p ∈ M. Then, let γ be a geodesic with

γ(0) = p and γ′(0) = Xp. If ∇ and ∇g share the same geodesics, then

S(Xp, Xp) = ∇g
γ′γ

′ − ∇γ′γ′ = 0 (2.81)

and then it follows that S is alternating. Conversely, let γ be any curve. If S is alternating

then

∇γ′γ′ = ∇g
γ′γ

′, (2.82)

and therefore a curve γ is a solution of the geodesic equation for ∇ if and only if it is a

solution of the geodesic equation for ∇g.

Remark 2.40. Notice that, by means of eqn (2.75), if S is alternating (hence anti-

symmetric), then,

T(X, Y) = −S(X, Y) + S(Y, X) = −2S(X, Y), (2.83)

which, in coordinates, may be seen as

Si
jk = −1

2
Ti

jk = −Γ[jk]. (2.84)

In conclusion

Theorem 2.41. Let (M, g,∇) be an affinely connected Riemannian space and denote by ∇g its

Levi-Civita connection and by S the associated contorsion. Then, ∇ is metric-compatible and

shares the same geodesics as ∇g if and only if the tensor A(X, Y, Z) = g(S(X, Y), Z) is totally

anti-symmetric. In addition, in that case there holds

T = −2S. (2.85)

Remark 2.42. We believe that Theorem 2.41 may provide a good explanation on why

the contorsion of an affine connection ∇ is simply denoted by "torsion" in some of the

literature. Firstly, because in many applications (one of which shall be presented in

the next chapter) one considers an affinely connected Riemannian space (M, g,∇), for

which the contorsion is assumed to be totally anti-symmetric, so that all the desired

properties listed in Theorem 2.41 may hold for the original connection ∇. Besides, since

in that case the torsion and the contorsion are multiples, there might be some confusion.

The contorsion is an important object in the so-called Einstein-Cartan theory (of

gravity), where one considers the nonvanishing of torsion in the underlying space.

More details on the contorsion and its applications to physics can be found in [41, 42].
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2.4 curvature

In this section, the notion of curvature for more general affinely connected spaces

(M,∇) is analyzed and its local properties are investigated. The Riemannian geometric

interpretation of the curvature in the context of Riemannian manifolds (M, g) may be

considered (see e.g [35]) but is for now left aside. Whenever a metric is needed (and its

Levi-Civita connection by extent) their emergence shall be explicitly made clear, so that

results here may be presented as generally as possible.

Definition 2.43. Let (M,∇) be an affinely connected space. The curvature tensor is the map

R : X(M) ×X(M) ×X(M) → X(M) given by

R(X, Y)Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y]Z. (2.86)

By straight-forward calculations one may see that the curvature tensor is indeed a

(1
3)-tensor field. By proceeding locally, if (U; x1, . . . , xn) are local coordinates around a

point p ∈ U then there are 4n smooth functions Ri
jkl : U → R such that

R = Ri
jkl∂i ⊗ dxj ⊗ dxk ⊗ dxl , (2.87)

where the convention2

R(∂k, ∂l)∂j = Ri
jkl∂i (2.88)

is taken. One can also compute the curvature tensor in terms of the Christoffel symbols,

namely

R(∂k, ∂l)∂j = ∇∂k
∇∂l

∂j −∇∂l
∇∂k

∂j −∇[∂k ,∂l]∂j, (2.89)

and since locally [∂k, ∂l] = 0, there holds

R(∂k, ∂l)∂j = ∇∂k
∇∂l

∂j −∇∂l
∇∂k

∂j

= ∇∂k
(Γm

lj ∂m) −∇∂l
(Γm

kj∂m)

= Γm
lj Γ

i
km∂i − Γm

kjΓ
i
lm∂i + Γi

l j,k∂i − Γi
kj,l∂i,

(2.90)

so that

Ri
jkl = Γm

lj Γ
i
km − Γm

kjΓ
i
lm + Γi

l j,k − Γi
kj,l . (2.91)

Whenever the manifold M is endowed with a Riemannian metric g one may also take

the lowering of the first index and get a covariant curvature 4-tensor given by

Rijkl = gimRm
jkl . (2.92)

2 One must be extremely careful about the curvature tensor convention, as it changes depending on the

literature.
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Theorem 2.44 (Generalized Bianchi Identities [39]). Let (M,∇) be an affinely connected

space, X, Y, Z ∈ X(M) and let T denote its torsion tensor. Then, there holds

(1) R(X, Y)Z = −R(Y, X)Z,

(2) ∑
cyclic

R(X, Y)Z = ∑
cyclic

(
(∇XT)(Y, Z) + T(T(X, Y), Z)

)
(first Bianchi identity),

(3) ∑
cyclic

(
(∇XR)(Y, Z) + R(T(X, Y), Z)

)
= 0 (second Bianchi identity).

Remark 2.45. Notice that Theorem 2.44 is, in fact, a generalization of the more well-

known Bianchi identities seen in Riemannian geometry introductory courses. In such

background, this is due to considering the Levi-Civita connection of a metric defined

upon the manifold M instead of a more general connection. Indeed, consider now the

Riemannian manifold (M, g) and endow it with the unique torsionless metric-compatible

connection ∇g. Its curvature tensor shall be denoted by

R̊(X, Y)Z = ∇g
X∇

g
YZ −∇g

Y∇
g
XZ −∇g

[X,Y]Z (2.93)

which will be called the Riemannian curvature tensor. By definition, the torsion for

∇g vanishes and therefore the Bianchi identities (2) and (3) in Theorem 2.44 take the

more well-known forms

∑
cyclic

R̊(X, Y)Z = 0 (first Riemannian Bianchi identity).

∑
cyclic

(∇XR̊)(Y, Z) = 0 (second Riemannian Bianchi identity).
(2.94)

When a Riemannian metric is present, one may moreover consider the following also

well-known symmetries.

Proposition 2.46. Let (M, g,∇) be an affinely connected Riemannian space. Then,

(1) If ∇ is metric-compatible then

g(R(X, Y)Z, W) = −g(R(X, Y)W, Z). (2.95)

(2) If ∇ = ∇g then

g(R(X, Y)Z, W) = g(R(Z, W)X, Y). (2.96)
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It is often useful to consider the index notation which in general summarizes, at least

in the local setting, the information contained in the curvature tensor. Let (M, g,∇) be

an affinely connected Riemannian space and take the local coordinates (U; x1, . . . , xn).

Then, (i1 · · · in) denotes the symmetrization of the indices i1, . . . , in whereas [i1 · · · ik]

denote their alternation. The first equation in Theorem 2.44 reads

Ri
jkl = −Ri

jlk. (2.97)

Following up, the generalized Bianchi identities can be perceived by the relations

Ri
(jkl) − Ti

(jk;l) − Ti
m(jT

m
kl) = 0,

Ri
j(mk;l) + Rij

n(mTn
kl) = 0,

(2.98)

with their well-known counterparts when T = 0. Considering now a metric-compatible

connection ∇, one may now lower/raise indices. Equation (2.95) reads

Rijkl = −Rjikl , (2.99)

and moreover assuming that ∇ is torsionless (so that ∇ = ∇g) yields

Rijkl = Rklij. (2.100)

A few contractions may be considered, as follows, in order to make the curvature

tensor easier to manipulate. Sometimes, the following notions carry enough information

so that one may consider them as constraints in geometrical problems. This introductory

chapter is then concluded with a brief application of the developed theory, with the

Einstein field equations in general relativity being presented along with the notion of

Einstein spaces.

Definition 2.47. Let (M, g,∇) be an affinely connected space. The Ricci curvature tensor is

defined as the contraction of the curvature tensor using the metric g in the first and third indices.

Its components are denoted Rij and satisfy

Rij = Rk
ikj = gkmRmikj. (2.101)

Further contracting the Ricci tensor gives the scalar curvature R, given by

R = Ri
i = Rijgij. (2.102)

Remark 2.48. Notice that from eqn (2.100) it follows that whenever ∇ = ∇g, then the

Ricci curvature is a symmetric 2-tensor.
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The geometric theory of Riemannian manifolds (M, g) is remarkably prominent in the

general relativity theory of gravity, in which one considers the Einstein field equations

Rμν − 1
2

Rgμν = 8πGTμν − Λgμν, (2.103)

where G is the gravitational constant, Λ is called the cosmological constant and Tμν the

energy-momentum tensor, which describes the mass distribution of a given phenomenon.

In this background, M is considered to be a 4-dimensional manifold, called the space-

time, which is endowed with a (to be determined) metric3 g over M and one considers

the Levi-Civita connection. Intuitively, since g depends on the observed phenomenon

(the data given by Tμν), this equation describes how mass, and therefore gravity, is

connected to the underlying geometry of space-time, here encompassed by the unknown

metric which in turn defines the unique connection ∇g. A thorough exposition on

general relativity with many examples can be seen in [43].

Now, in order to determine the metric one may consider the elementary case, namely

the vacuum-state of this theory (T = 0). Contracting the field equations with gμν gives

R − 2R = −4Λ, (2.104)

that is,

R = 4Λ. (2.105)

Then, inserting this relation back to the equations yields

Rμν = Λgμν. (2.106)

Equation 2.106 then motivates the

Definition 2.49. An affinely connected Riemannian space (M, g,∇) is called an Einstein

space if the metric g is a scalar multiple of the Ricci curvature, that is, there is a function

λ : M → R such that

Rij = λgij (2.107)

all over M. Besides, whenever λ = 0 identically then M is called Ricci-flat.

3 To the well-aware reader, this shall be, in fact, a pseudo-Riemannian metric over the manifold M.
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3 GEODES IC LOOPS

This chapter is devoted to establishing the theory of the so-called geodesic loops over an

affinely connected space (M,∇). The construction and basic notions of such structure

shall be considered and one shall be able to see that they are intrinsically related to the

geometry produced by the connection ∇.

It is subdivided in the following way: the first section is devoted to the aforementioned

basic constructions over geodesic loops as given by [28]; in the second one, the algebraic

aspects of these structures are studied, such as their fundamental tensors and W-

algebras; subsequently, a metric over the manifold M is considered in order to depict

some of the relations between the fundamental tensors of a geodesic loop in an affinely

connected Riemannian space and its underlying geometry, which are results developed

in [29, 44]; finally, in the last section an introduction to applications of this theory

is provided, for instance in the context of supergravity, namely the Kaluza-Klein

spontaneous compactification theory, following the work presented in [30, 31].

3.1 local loops

In this section, the more general notion of local loops is considered, as originally

presented in [28]. The word ’loop’ here is, in fact, related to the algebraic definition of a

loop, as follows.

Definition 3.1 (Quasi-group). Let A be a non-empty set and ∗ : A × A → A a binary

operation. If, for every x, y ∈ A, there are unique z1, z2 ∈ A such that

x ∗ z1 = y and z2 ∗ x = y, (3.1)

then the pair (A, ∗) is called a quasi-group.

Definition 3.2 (Loop). Let (A, ∗) be a quasi-group. If there is an element e ∈ A such that

x ∗ e = e ∗ x = x (3.2)

53
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for every x ∈ A, then (A, ∗) is called a loop. Such element e is called an identity element (or

unity) in the loop (A, ∗).

Remark 3.3. Notice that, in a loop (A, ∗), the unity e must be unique. Indeed, if there is

another element ẽ ∈ A with such property, then

ẽ = e ∗ ẽ = e, (3.3)

so that one may call e the unity in the loop (A, ∗). Moreover, taking y = e in the

quasi-group relation (3.1) produces the elements x−1
L , x−1

R ∈ A such that

x ∗ x−1
R = e and x−1

L ∗ x = e, (3.4)

respectively called the right and left inverses in the loop (A, ∗). It is straightforward

to see that an associative loop is a group, since there the right and left inverses agree.

Indeed,

x−1
L = x−1

L ∗ (x ∗ x−1
R ) = (x−1

L ∗ x) ∗ x−1
R = x−1

R . (3.5)

The notion of local loops in a topological space M may now be introduced. In what

follows, whenever x ∈ U ⊂ M, one denotes U1
x = {x} × U and U2

x = U × {x} in M × M.

Definition 3.4 (Local Loop). Let M be a topological space. If there is an open set U ⊂ M and

a continuous map

μ : U × U → U (3.6)

such that, for every x ∈ U, there holds

(1) μ|U1
x

and μ|U2
x

are homeomorphisms onto U;

(2) There is e ∈ U such that μ(e, x) = μ(x, e) = x,

then the pair L(U, μ) is called a local loop over M.

Remark 3.5. For simplicity, the juxtaposition product notation

μ(x, y) = xy (3.7)

may be used. It is clear that property (2) in Definition 3.4 guarantees the existence of a

unity for this product. In addition, given x ∈ U condition (1) shows that μ restricted to

{x} × U or U × {x} is bijective onto U, so that given y ∈ U there are unique z1, z2 ∈ U

such that

μ(x, z1) = xz1 = y and μ(z2, x) = z2x = y, (3.8)

which is precisely relation (3.1) in the definition of a quasi-group. Hence, U endowed

with this juxtaposition product is a loop as given in Definition 3.2.
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The main example analyzed here is due to Kikkawa [28] where an affinely connected

space (M,∇) is considered. Since now one deals with a smooth structure, consider the

Definition 3.6 (Differentiable Local Loop). A local loop L(U, μ) over a manifold M is called

a differentiable local loop whenever μ is smooth.1.

In that setting, a differentiable local loop may be defined when considering the affinely

connected space (M,∇). Indeed, take e ∈ M and consider its normal neighbourhood

Ne, over which the exponential map

expe : N0 → Ne (3.9)

is a diffeomorphism. One may moreover assume that Ne is the restricted normal

neighborhood for e so that every point in Ne is connected by an unique geodesic.

Now, fix x, y ∈ Ne and consider the unique geodesic γ between e and y in Ne with

γ(t0) = e and γ(t1) = y, so that the parallel transport Tt0,t1
γ over this curve can be taken

into consideration. One may then define the geodesic loop product between the point

x and y by means of the expression [46]

μ(x, y) = expy ◦Tt0,t1
γ ◦ exp−1

e (x). (3.10)

It is also straightforward to see that μ(x, e) = μ(e, x) = x for every x ∈ Ne so that

condition (2) in Definition 3.4 is already satisfied.

Figure 1: The geodesic loop product, as given in eqn 3.10.

Theorem 3.7. Let (M,∇) be an affinely connected space. Then, for every e ∈ M eqn (3.10)

defines a differentiable local loop L(Ne, μ) around a restricted normal neighbourhood Ne.
1 More details on smooth loops as a generalization of Lie groups and other constructions regarding loops

may be seen in [45].
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Proof. In order to see that μ is smooth, consider the local coordinates (Ne; x1, . . . , xn)

centered at e and let Γi
jk be the Christoffel symbols for the connection ∇ with respect to

the coordinate basis {∂1, . . . , ∂n}. For the sake of simplicity, let Te,p denote the parallel

transport over the unique geodesic joining e and p ∈ Ne.

Consider x, y ∈ Ne and denote by γx(t) and γ(s) the unique geodesics between e and

each of x and y respectively, with

γx(0) = γ(0) = e, γx(1) = x, γ(1) = y. (3.11)

Then of course γ′
x(0) = exp−1

e (x). Moreover, letting

X(s) = Xγ(s) = Te,γ(s)(Xe) = Te,γ(s)(γ
′
x(0)) (3.12)

it follows that X(s) is the unique parallel vector field over γ(s) with X(0) = γ′
x(0) so that

it is completely determined in Ne by the differential equation

Ẋi(s) + γ̇j(s)Xk(s)Γi
jk(γ(s)) = 0, i, j, k = 1, . . . , n, (3.13)

and the initial condition Xi(0) = γ̇i
x(0). Notice that by construction

X(1) = T0,1
γ ◦ exp−1

e (x). (3.14)

Consider now the geodesic γy(t) such that γy(0) = y and γ′
y(0) = X(1). It follows that

γy(t) is uniquely determined inside of Ne as the solution of

γ̈i
y(t) + Γi

jk(γ(t))γ̇j
y(t)γ̇k

y(t) = 0, i, j, k = 1, . . . , n. (3.15)

Since γy is a geodesic and Ne is the restricted normal neighbourhood of all of its points,

then it is defined for t = 1 so that

γy(1) = expy(γ′
y(0)) = expy(X(1)) = expy ◦T0,1

γ ◦ expe(x), (3.16)

which is precisely eqn (3.10). The application μ may then be defined by

μ : Ne × Ne −→ Ne

(x, y) � −→ μ(x, y) = γy(1).
(3.17)

Now, it is known that the Christoffel symbols Γi
jk are smooth functions over Ne in such a

way that for two points x, y ∈ Ne, the solutions γi
y(t) of eqn (3.15) are differentiable with

respect to the parameter t and initial values y1, . . . , yn; X1(1), . . . , Xn(1). Using the same
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argument for eqn (3.13) it follows that there are uniquely determined differentiable

functions μi(x1, . . . , xn, y1, . . . , yn) such that

γi
y = μi(x1, . . . , xn, y1, . . . , yn), (3.18)

so that μ is, in fact, a differentiable map in Ne × Ne.

Finally, in order to show property (1) in Definition 3.4 one can take x ∈ Ne and

consider the restriction of μ over Ne × {x}, which shall be denoted by μx. It is given by

the expression

μx(z) = μ(z, x) = expx ◦Te,x ◦ exp−1
e (z), (3.19)

which is clearly continuous with inverse given by

μ−1
x (z) = expe ◦Tx,e ◦ exp−1

x (z). (3.20)

It follows that μx is a homeomorphism onto Ne. Conversely, one may study the

restriction of μ over {x} × Ne. Setting x = e yields, in local coordinates, the relation

μi(0, . . . , 0, z1, . . . , zn) = zi, (3.21)

since μ(e, z) = z and e = (0, . . . , 0) in such coordinates. It then follows that

∂μi

∂zj

∣∣∣∣∣
z=e

=
∂μi(0, . . . , 0, z1, . . . , zn)

∂zj

∣∣∣∣∣
z=e

= δi
j. (3.22)

Hence, by the Inverse Mapping Theorem μ can be restricted to a (possibly) smaller

open set N′
e ⊂ Ne which restricts to a diffeomorphism over {x} × Ne for x ∈ N′

e. Since

such neighbourhood is still restricted normal, one may just denote it by the initial Ne.

Therefore, L(Ne, μ) is a differentiable local loop.

Definition 3.8. Let (M,∇) be affinely connected space. The differential local loop L(Ne, μ)

from Proposition 3.7 is called a geodesic loop around the point e ∈ M.

Remark 3.9. From now on, the application μ is dropped and the juxtaposition product

is employed. For simplicity, the notation x ∈ Le is taken to mean that x ∈ Ne, whenever

it is clear which geodesic loop is being considered.

3.2 algebraic realizations

As previously seen, the geodesic loop is an algebraic structure which is defined via

an affine connection over a manifold M. One may therefore analyze if information on
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the loop level may be related to the underlying geometry defined by the connection.

The simplest case may be considered, namely an affinely connected Riemannian space

(M, g,∇), where ∇ is a flat Levi-Civita connection [47]. In that scenario, it is known

that the geodesic curves are just straight lines in local coordinates.

Lemma 3.10. Let (M,∇) be a flat affinely connected space and consider the geodesic loop Le

around e ∈ M. Supposing that e = (e1, . . . , en) in local coordinates then for every x, y ∈ Le

there holds

(xy)i = yi + xi − ei. (3.23)

Proof. Indeed, since the connection is flat, geodesics are given by straight lines in

coordinates. Then, the geodesic between e and x is locally given by

γi
x(t) = ei + t(xi − ei), (3.24)

and notice that indeed γi
x(t0) = xi if and only if t0 = 1. The parallel transport of the

vector γ′
x(0) = x − e to y does not change coordinates, which in turn yields

(xy)i = γi
y(1) = yi + xi − ei, (3.25)

as desired.

Corollary 3.11. Let (M,∇) be a flat affinely connected space. Then, the geodesic loop Le is an

abelian group for all e ∈ M.

Proof. Let x, y, z ∈ Le. It suffices to prove that the geodesic loop is commutative and

associative. Indeed, using the local coordinates one has

(xy)i − (yx)i = (yi + xi − ei) − (xi + yi − ei) = 0. (3.26)

In addition,

((xy)z)i − (x(yz))i = zi + (xy)i − ei − (yz)i − xi + ei

= zi + xi + yi − ei − zi − yi + ei − xi = 0.
(3.27)

Therefore, Le is an abelian group.

Remark 3.12. All geodesic loops of flat vector spaces are isomorphic, since the product

μ consists on the vector sum inherited from the space. In general, geodesic loops may

be neither commutative nor associative. To investigate such properties, fix for now on

a general affinely connected space (M,∇) and consider the geodesic loop Le around

e ∈ M.
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The so-called fundamental tensors may then be discussed, which shall be proven to

be one of the most exceptional tools when analyzing geodesic loops. The following

results can be found in [44, 48]. As seen before, if x, y ∈ Le, then one may perceive the

equation xy = μ(x, y) by means of local coordinates centered at e. Namely

(xy)i = μi(x1, . . . , xn, y1, . . . , yn) = μi(x, y). (3.28)

By construction, one has μi(x, 0) = xi and μi(0, y) = yi. Because of this, one can see that

the Taylor expansion centered at e = (0, 0) has the special form

(xy)i = xi + yi + λi
jkxjyk +

1
2

(μi
jklx

jxkyl + νi
jklx

jykyl) + o(ρ3), (3.29)

where

λi
jk =

∂2(x, y)i

∂xj∂yk

∣∣∣
x=y=0

(3.30)

and

μi
jkl =

∂3(x, y)i

∂xj∂xk∂yl

∣∣∣
x=y=0

, (3.31)

νi
jkl =

∂3(x, y)i

∂xj∂yk∂yl

∣∣∣
x=y=0

. (3.32)

These coefficients do not define tensors on M (considering the local description in Rn),

since a change of coordinates does not factor through the derivatives in eqns (3.31, 3.32).

In order to define one, let

Λ : Np × Np → Np (3.33)

be the map given in coordinates by

Λi(x, y) = λi
jkxjyk. (3.34)

Then, one may define the application

A : Np × Np → Np (3.35)

given by the relation

A(x, y) =
1
2
(Λ(x, y) − Λ(y, x)) , (3.36)

which in turn has the local description

Ai(x, y) = αi
jkxjyk =

1
2

(λi
jk − λi

kj)x
jyk = λi

[jk]x
jyk. (3.37)
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Therefore, one may consider the symbols

αi
jk = λ[jk] (3.38)

which by construction are anti-symmetric. Namely,

αi
jk = −αi

kj. (3.39)

In a similar way, consider the following maps locally given by

Mi(x, y, z) = μi
jklx

jykzl ,

Ni(x, y, z) = νi
jklx

jykzl .
(3.40)

These allow one to construct the following application:

B(x, y, z) = 2 (N(x, y, z) − M(x, y, z) + Λ(x, Λ(y, z)) − Λ(Λ(x, y), z)) , (3.41)

which in coordinates is given by

Bi(x, y, z) = βi
jklx

jykzl , (3.42)

where by eqn (3.41) yields

βi
jkl = 2(νi

jkl − μi
jkl + λm

klλ
i
jm − λm

jkλi
ml). (3.43)

Definition 3.13. Let (M,∇) be an affinely connected space. The tensors αi
jk and βi

jkl defined by

eqns (3.38, 3.42) are respectively called first and second fundamental tensors of the geodesic

loop Le.

Remark 3.14. Notice that alternating eqn (3.41) gives

B(u, v, w) + B(v, w, u) + B(w, u, v) − B(v, u, w) − B(w, v, u) − B(u, w, v)

=A(u, A(v, w)) + A(v, A(w, u)) + (w, A(u, v)),
(3.44)

which can be seen using the symmetries

μi
jkl = μi

jlk,

νi
jkl = νi

jlk.
(3.45)

Then, in index notation, eqn (3.44) reads

βi
[jkl] = αm

[jkαi
l]m], (3.46)

which is called the generalized Jacobi Identity. The relation with the usual Jacobi

identity (2.57) shall be shortly unveiled.
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These tensors’ symbols are intimately related to the commutativity and associativity

of the geodesic loop Le, as follows. As mentioned before, if x ∈ Le then x−1
L and x−1

R

are the left and right inverses of x, respectively. Also, one may define the left and right

commutators of the geodesic loop product, respectively given by

αL(x, y) = (xy)−1
L (xy),

αR(x, y) = (xy)(xy)−1
R .

(3.47)

Proposition 3.15. Up to second order terms, the left and right commutators of the geodesic loop

Le are equal and determined by the first fundamental tensor αi
jk.

Proof. From the equalities z−1
L z = e = zz−1

R , one can see that in local coordinates centered

at e there holds

(z−1
L )i = −zi + λi

jkzjzk + σi
jklz

jzkzl + o(ρ3),

(z−1
R )i = −zi + λi

jkzjzk + τi
jklz

jzkzl + o(ρ3),
(3.48)

where

σi
jkl = −1

2
(μi

(jkl) − νi
(jkl)) − λi

p(jλ
p
kl), (3.49)

τi
jkl =

1
2

(μi
(jkl) − νi

(jkl)) − λi
(j|p|λ

p
kl). (3.50)

As usual, parentheses denote symmetrization in the indexes. Notice that the difference

between the left and right inverses begin to appear only in the third-order term of the

Taylor expansion. Using eqn (3.48), one can then calculate

((xy)−1
L )i = −xi − yi − λi

jkxjyk + λi
jk(xj + yk)(xk + yj) + o(ρ2), (3.51)

which in turn with eqn (3.29) yields

αi
L(x, y) = 2αi

jkxjyk + o(ρ2). (3.52)

Following the same reasoning it is possible to obtain

αi
R(x, y) = 2αi

jkxjyk + o(ρ2), (3.53)

which concludes the proof.

In order to investigate associativity one may define the left and right associators,

namely

βL(x, y, z) = (x(yz))−1
L ((xy)z)),

βR(x, y, z) = ((xy)z)(x(yz))−1
R .

(3.54)

Using a similar procedure as in Proposition 3.15, one may prove the
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Proposition 3.16. Up to second order terms, the left and right associators of the geodesic loop

Le are equal and determined by the second fundamental tensor βi
jkl .

Remark 3.17. In conclusion, Propositions 3.15 and 3.16 assert that αi
jk and βi

jkl are rough

approximations for the failure of commutativity and associativity in the geodesic loop

Le. It directly follows that

Corollary 3.18. Let (M,∇) be an affinely connected space and consider the geodesic loop Le

around e ∈ M. The following statements hold:

(1) If Le is commutative then the first fundamental tensor αi
jk vanishes.

(2) If Le is associative then the second fundamental tensor βi
jkl vanishes.

Remark 3.19. The fundamental tensors of a geodesic loop may be further used in order

to endow vector spaces with multilinear operations. The notion of W-algebras, which

are vector spaces equipped with certain kinds of multilinear operations are now briefly

presented.

Definition 3.20. Let V be a vector space and let the two multilinear operations

[·, ·] :V × V → V,

[·, ·, ·] :V × V × V → V,
(3.55)

with [·, ·] anti-symmetric, be related by

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = [X, Y, Z] + [Y, Z, X] + [Z, X, Y] + [Z, X, Y]

− [X, Z, Y] − [Z, Y, X] − [Y, X, Z].
(3.56)

Then, the triple (V, [·, ·], [·, ·, ·]) is called a W-algebra over V.

Given any affinely connected space (M,∇) and a geodesic loop Le around e ∈ M

one is able to define a W-algebra over an n-dimensional vector space by means of the

fundamental tensors of Le. Namely, the geodesic commutator

[·, ·] : V × V → V (3.57)

may be defined by the relation

[u, v] = 2αi
jkujvkei, (3.58)
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where {e1, . . . , en} is a basis for V for which u = ujej and v = vkek. It follows directly

from the anti-symmetry of the first fundamental tensor that this operation is also

anti-symmetric.

Similarly, one may use the second fundamental tensor in order to define the geodesic

associator, given by

[u, v, w] = βi
jklu

jvkwl , (3.59)

where w = wkek. It follows directly from eqn (3.46) that the relation (3.56) is satisfied.

Notice that when the right-hand side of the same equation vanishes, one is left with

the usual Jacobi identity. In that case, the geodesic commutator [·, ·] satisfies all the

properties of the Lie bracket and therefore (V, [·, ·]) is isomorphic to a Lie algebra. The

more natural vector space over which one may consider this construction is the tangent

space TeM and then clearly (TeM, [·, ·], [·, ·, ·]) is a W-algebra.

Remark 3.21. If one is already given a more general algebra (A, ∗) over a vector space

A, it is possible to define the commutator and associator operations, namely

[u, v] = u ∗ v − v ∗ u

[u, v, w] = (u ∗ v) ∗ w − u ∗ (v ∗ w).
(3.60)

Whenever these operations satisfy the generalized Jacobi identity, the triple (A, [·, ·], [·, ·, ·])
is called the W-algebra associated to (A, ∗).

3.3 geometric realizations

One may now proceed to investigate connections between the developed algebraic

properties of the geodesic loop with the geometry of its underlying space. More

explicitly, one may ask at what extent does commutativity and associativity of the

product heretofore discussed intervene in geometric structures.

Theorem (3.23), proved by Kikkawa [28], is a direct application of the geodesic loop

construction. It shows that one can indeed expect that the algebraic information about

the geodesic loop would give relevant information about the connection ∇.

Definition 3.22. A loop (A, ∗) is called left diassociative if, for every x, y ∈ A,

x ∗ (x ∗ y) = (x ∗ x) ∗ y. (3.61)
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Theorem 3.23. Let (M,∇) be an affinely connected space and suppose ∇ is torsionless. If the

geodesic loop Le around e ∈ M is left diassociative, then the curvature tensor R vanishes at the

point e.

Proof. Let Xe ∈ TeM and consider the vector field

X(p) = Te,p(Xe), (3.62)

for each p ∈ Le called the vector field adapted to Xe. One may then consider x(t) to

be the geodesic through e with x′(t) = Xx(t). By construction, the geodesic curve y(t)

through a point y ∈ Le with tangent vector equal to Xy at y is given by the geodesic

loop product

y(t) = x(t)y. (3.63)

Notice that each geodesic arc through e gives rise to a 1-parameter local subgroup, that

is, there holds x(t1)x(t2) = x(t1 + t2). Then, by applying the diassociative hypothesis,

y(s + t) = x(s + t)y = (x(s)x(t))y = x(s)(x(t)y). (3.64)

Therefore, there holds y′(t) = Xy(t) and since y is arbitrary in Le, it follows that all

trajectories of the vector field X are geodesic arcs. It follows that

∇XX = 0 (3.65)

all over Le for every adapted field X.

One may then take two vectors Xe and Ye tangent to e and consider their adapted

fields X and Y. It follows that X + Y is adapted to Xe + Ye, and therefore it satisfies eqn

(3.65). Then, there holds

∇XY + ∇YX = 0. (3.66)

It follows that

R(X, Y)X =∇X∇YX −∇Y∇XX −∇[X,Y]X

= −∇X∇XY −∇Y∇XX −∇[X,Y]X.
(3.67)

By assumption one has a torsionless affine connection, which implies that

T(X, Y) = ∇XY −∇YX − [X, Y] = 0, (3.68)

where T is the torsion tensor. Using eqn (3.66) one gets

∇XY =
1
2

[X, Y]. (3.69)
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From the above equation and using that Y is adapted to Ye there holds ∇XY = 0 all over

the trajectory x(t) of X. Then,

[X, Y]e = 0 (3.70)

and

(∇X∇XY)e = 0. (3.71)

Using eqns (3.65, 3.70, 3.71) it follows that

Re(Xe, Ye)Xe = −(∇X∇XY)e − (∇Y∇XX)e − (∇[X,Y]X)e = 0. (3.72)

Therefore,

Re(Xe, Ye)Ze = −Re(Ze, Ye)Xe, for every Xe, Ye, Ze ∈ TeM, (3.73)

which comes from the linear expansion of Re(Xe + Ze, Ye)(Xe + Ze) = 0. Since T = 0, one

can then use the first Riemannian Bianchi identity, which can be further modified by

the anticommutation relation in the first two entries, yielding

0 = Re(Xe, Ye)Ze + Re(Ze, Xe)Ye − Re(Ze, Ye)Xe

= Re(Xe, Ye)Ze − Re(Ye, Xe)Ze + Re(Xe, Ye)Ze

= 3Re(Xe, Ye)Ze,

(3.74)

which finally gives

Re(Xe, Ye)Ze = 0, for all Xe, Ye, Ze ∈ TeM. (3.75)

Therefore, Re = 0.

One of the most powerful results on geodesic loops so far may now be presented.

To that end, however, normal coordinates will be required, so that in this proof one is

obliged to consider a metric g over M. Hence, an affinely connected Riemannian spaces

(M, g,∇) must be at hand. Additionally consider respectively T, S and R the torsion,

contorsion and curvature tensors for the connection ∇.

In the light of all that was previously discussed, the following result gives a local

relation between the fundamental tensors of the geodesic loops (algebraic information)

and the geometry of the underlying space. Some complementary results are considered

in what follows, before presenting the main theorem due to Akivis [29].
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Consider an affinely connected Riemannian space (M, g,∇) and let Le be a geodesic

loop around the point e ∈ M. The local equation of a geodesic γ(t) through the restricted

normal neighbourhood Ne is given as the solution of the differential equation

γ̈i(t) + Γi
jk(γ(t))γ̇j(t)γ̇k(t) = 0. (3.76)

In normal coordinates (Ne; x1, . . . , xn), the geodesics through e are straight lines, so that

a point in Ne is connected to e by a geodesic, which is locally given by

γ(t) = (λit), (3.77)

for some fixed λi ∈ R. In particular, eqn (3.76) reads

Γi
jk(γ(t))λjλk = 0. (3.78)

Now, considering e itself, eqn (3.78) holds for every choice of λi ∈ R, so that taking

λi = δi
j, it yields

Γi
jj(e) = 0. (3.79)

Then, using (3.79) and taking now λi = δi
j + δi

k one has

Γi
(jk)(e) = 0. (3.80)

In order to simplify the notation, let

Γ̊i
jk = Γi

jk(e). (3.81)

Since, by definition,

Γi
[jk] =

1
2

Ti
jk, (3.82)

or using the contorsion tensor S,

Γi
[jk] = −Si

jk, (3.83)

adding together eqns (3.80, 3.83) and evaluating at e, it comes

Γ̊i
jk = −Si

jk(e) = −S̊i
jk. (3.84)

Remark 3.24. As a quick note, see how eqn (3.84) shows that considering normal

coordinates around a point e ∈ M in an affinely connected space (M, g,∇), then the

Christoffel symbols at the point e are precisely given by the contorsion tensor. In the

case ∇ = ∇g, the contorsion vanishes and, therefore, so do the Christoffel symbols.
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Now, let us once more analyze the geodesic loop construction. Take x, y ∈ Ne and

respectively denote by γx(t) and γ(s) the geodesics joining e to x and to y. Also, let

ξ = (ξ i) be the parallel transport of the vector γ′
x(0) to the point y through γ. As before,

denote by γy(t) the geodesic with initial conditions

γi
y(0) = yi, γ̇i

y(t0) = ξ i. (3.85)

Such geodesic at t = 1 gives the expression of the geodesic loop product xy = γy(1)

by the construction depicted before. Since γy(t) is also a geodesic, then one may

differentiate eqn (3.76) yielding

γ̈i
y(t) = −Γi

jkγ̇
j
y(t)γ̇k

y(t),
...
γ i

y(t) = −(Γi
jk,l − Γi

mjΓ
m
kl − Γi

jmΓm
kl)γ̇

j
y(t)γ̇k

y(t)γ̇k
y(t).

(3.86)

Evaluating at the point y comes

γ̈i
y(0) = −Γi

jk(y)ξ jξk,
...
γ i

y(0) = −(Γi
jk,l − Γi

mjΓ
m
kl − Γi

jmΓm
kl)(y)ξ jξkξ l .

(3.87)

Now one can Taylor expand at y in order to see that

γi
y(t) = yi + ξ it − 1

2
(Γi

jk)(y)ξ jξkt2 − 1
6

(Γi
jk,l − Γi

mjΓ
m
kl − Γi

jmΓm
kl)(y)ξ jξkξ l t3 + o(t3). (3.88)

Then, using eqn (3.84) and supposing that the geodesic γ from e to y is given in normal

coordinates by γi(s) = yis (since γ(1) = y), one can Taylor expand the coefficients in eqn

(3.88) around e to get

Γi
jk(γ(s)) = −S̊i

jk + Γ̊i
jk,ly

ls + o(s), (3.89)

which produces in eqn (3.88), with respect to the variable ρ =
√

t2 + s2, the expansion

γi
y(t) = yi + ξ it − 1

2
(Γ̊i

jk,l)ξ
jξkylt2s + o(ρ3). (3.90)

One may now rewrite eqn (3.90) taking into account the Taylor expansion of the

coordinates of the vector ξ. If one takes X(s) = τe,γ(s)(γ′
x(0)) as before, then the parallel

transport equation reads

Ẋi(s) = −Γi
jkXjγ̇k(s) (3.91)

It then follows that

Ẍi(s) = (−Γi
jk,l − Γi

mkΓm
jl )(γ(s))Xjγ̇k(s)γ̇l(s). (3.92)
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This yields, similarly as before, the expansion around e (s = 0) given by

Xi(s) = xi + S̊i
jkxjyks − 1

2
(−Γ̊i

jk,l − S̊i
mkS̊m

jl )xjykyls2 + o(s2). (3.93)

One can then prove the

Theorem 3.25. Let (M, g,∇) be an affinely connected Riemannian space and let Ti
jk and Ri

jkl

denote the torsion and curvature tensors of this space in normal coordinates. If αi
jk and βi

jkl are

the fundamental tensors of a geodesic loop Le, then{
2αi

jk = −Ti
jk,

4βi
jkl = −∇lTi

jkl − Ri
jkl .

Proof. Set s = 1 in eqn (3.93) and insert it in eqn (3.90). Then, setting t = 1 and observing

that

Xi(1) = ξ i,

γi
y(1) = (xy)i,

(3.94)

it follows that

(xy)i = γi
y(1) = xi + yi + S̊i

jkxjyk − 1
2

(Γ̊i
jk,l − S̊i

mkS̊m
jl )xjykyl − 1

2
Γ̊i

jk,lx
jxkyl + o(ρ3), (3.95)

where ρ = max(|xi|, |yi|). But since eqn (3.29) reads

zi = xi + yi + λi
jkxjyk +

1
2

(μi
jklx

jxkyl + νi
jklx

jykyl) + o(ρ3), (3.96)

one gets the relations

λi
jk = S̊i

jk, μi
jkl = −Γ̊i

jk,l ,

νi
jkl = −(Γ̊i

jk,l − S̊i
mkS̊m

jl ).
(3.97)

Moreover, since μi
jkl = μi

kjl and νi
jkl = νi

kjl, there holds

μi
jkl = −Γ̊i

(jk),l , νi
jkl = −(Γ̊i

(j(k,l) − S̊i
m(kS̊m

|j|l)). (3.98)

One can then calculate the fundamental tensors αi
jk and βi

jkl in terms of eqns (3.97).

For the first fundamental tensor, using the anti-symmetry of the torsion tensor one

can see that

αi
jk = S̊i

[jk] = S̊i
jk = −1

2
Ti

jk. (3.99)
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On the other hand, for the second fundamental tensor there holds by definition

−2βi
jkl = −Γ̊i

(jk),l + Γ̊i
j(k,l) − S̊i

m(kS̊m
|j|l) + S̊m

jkS̊i
ml − S̊m

kl S̊
i
jm

=
1
2

(Γ̊i
jl,k − Γ̊i

kj,l) −
1
2

S̊i
mkS̊m

jl −
1
2

S̊m
mlS̊

m
jk + S̊m

jkS̊i
ml − S̊m

kl S̊
i
jm

=
1
2

(Γ̊i
jl,k − Γ̊i

kj,l) + S̊m
j[kS̊i

|m|l] − S̊m
kl S̊

i
jm.

(3.100)

Now, one may use the local relations

Si
jk = −1

2
Ti

jk = −Γi
[jk],

1
2

Ri
jkl = −Γi

j[k,l] − Γm
j[kΓi

|m|l].
(3.101)

Differentiating the first equation at e yields

Γ̊i
[jk],l = −S̊i

jk,l , (3.102)

whereas the second one reads

Γ̊i
j[k,l] = −1

2
R̊i

jkl − S̊m
j[kS̊i

|m|l], (3.103)

where R̊i
jkl = Ri

jkl(e). Subtracting, it comes

1
2

(Γ̊i
jl,k − Γ̊i

kj,l) =
1
2

R̊i
jkl + S̊m

j[kS̊i
|m|l] − S̊i

jk,l (3.104)

and it follows that

−2βi
jkl =

1
2

Ri
jkl − S̊i

jk,l − 3S̊m
[jkS̊i

l]m]. (3.105)

Further on, since

∇lSi
jk = Si

jk,l − Si
mkΓm

lj − Si
jmΓm

lk + Sm
jkΓi

lm, (3.106)

then it is possible to see that at e the expression above has the form

∇lSi
jk(e) = S̊i

jk,l + 3S̊m
[jkS̊i

l]m, (3.107)

which finally implies that

βi
jkl =

1
2

(∇lSi
jk)e − 1

4
R̊i

jkl . (3.108)

Since this construction can be made upon any point e in the manifold, it finally reads

αi
jk = Si

jk, (3.109)

βi
jkl =

1
2
∇lSi

jk −
1
4

Ri
jkl , (3.110)

which gives the desired result.





4 SPONTANEOUS

COMPACTIF ICAT ION

The search for an unifying theory of everything has been central in theoretical physics

for years now. The so-called supergravity, which encompasses general relativity and

supersymmetry, may offer a possibility to perceive such objective in a theoretical view.

In such configuration, the maximal dimension for which one can balance bosonic

and fermionic degrees of freedom with highest spin is eleven [31]. Therefore, one

can consider spontaneous compactifications in such theory, that is, solutions of the

11-dimensional equation of motion over a space which is a product of a 4-dimensional

spacetime and a compact 7-dimensional space.

A mechanism to achieve such goal is to consider the so-called Kaluza-Klein spon-

taneous compactification, as follows [30, 31]. The ground state is a product M4 × K,

where M4 is a maximally symmetric 4-dimensional space (de Sitter space, anti-de Sitter

space or Minkowski spacetime) and K is a compact manifold called the internal space,

which is assumed to be an Einstein space. Maximally symmetric space here means

that no point in such space can be distinguished one from another, apart from the

information of it being either time-like, space-like or light-like. A metric gMN on M4 × K

is considered in the form

gMN =

(
gμν 0

0 gmn

)
, (4.1)

where gμν is the metric on M4 and gmn on K (greek letter denote spacetime indices

whereas roman letters denote the internal space indices). Such representation of gMN is

compatible with the Einstein equation

RMN − 1
2

RgMN = TMN − ΛgMN , (4.2)

where the energy-momentum tensor of matter fields is given by

Tμν = k1gμν,

Tmn = k2gmn.
(4.3)

71
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One may consider (M4, gμν) to be the 4-dimensional Riemann spacetime of signature

(+, +, +,−). The Christoffel symbols shall be taken as

Γijk = Γ̊ijk + Sijk, (4.4)

where Γ̊i
jk are the Christoffel symbols for Levi-Civita connection taken with respect

to gMN. It is also assumed that Sijk is a fully anti-symmetric tensor, and therefore ∇
is metric-compatible and its geodesics are the same as the ones for the Levi-Civita

connection. Notice that the sign in eqn (4.4) is the opposite as ours when defining the

contorsion S.

One can then analyze the Freund-Rubin-Englert mechanism [32, 49] of spontaneous

compactification for d = 11 supergravity. The equations of motion of this theory, which

encompass the Einstein field equations and equation for the anti-symmetric gauge field

strength F, have the form [50]

RMN − 1
2

gMNR = 12
(

8FMPQRF PQR
N − gMN FSPQRFSPQR

)
, (4.5)

FMNPQ
,M = −

√
2

24
εNPQM1...M8 FM1 M2 M3 M4 FM5 M6 M7 M8 , (4.6)

where εM1...Ms is a fully anti-symmetric covariant constant tensor and ε1...s = ‖g‖ 1
2 . The

Freund-Rubin solution [49] for this mechanism is given by

Fμνσλ = ρεμνσλ, (4.7)

where ρ is a real number and all other FMNPQ vanish (namely, the ones in the internal

space). One can nonetheless obtain other solutions with non-vanishing components

in the internal space. Such solutions, such as the Englert solution [32], were first

constructed in the 7-sphere S7 with torsion. They read

Fμνσλ = ρεμνσλ, (4.8)

Fmnpq = λ∂[qSmnp]. (4.9)

One may analyze, using the tools developed so far, the restrictions such solutions force

over the space M4 × K and its geometry.

As seen in [30], this may be done by considering geodesic loops around points

e ∈ M4 × K and analyzing its algebraic information in the light of the last section. As
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said before, in [30, 31] the contorsion is taken with the opposite sign, so that these

changes turn Theorem 3.25 equations into

αi
jk = −Si

jk, (4.10)

4βi
jkl = −2∇lSi

jk − Ri
jkl . (4.11)

Besides, the generalized Bianchi identities read

Ri
[jkl] + 2∇[jSi

kl] + 4Sm
[jkSi

l]m = 0 (4.12)

∇[kRij
lm] − 2Rij

n[kSn
lm] = 0. (4.13)

The first constraint to a geodesic loop in the previously set background is presented

in this section, as seen in [30]. Namely, one may see that geodesic loops around points

e ∈ M4 × K must be nonassociative in order to guarantee the Einstein space property

for M4 × K.

Indeed, if for every e ∈ M4 or K its geodesic loop Le is associative, then since β = 0

the generalized Jacobi identity reads

αm
[jkαi

l]m = 0 (4.14)

so that the W-algebra defined over the tangent space of e is isomorphic to a compact

Lie algebra. Such algebras may be classified depending on the underlying space (M4

or K) and then the first fundamental tensor αi
jk and therefore the contorsion Si

jk are

determined by the structure constants of these algebras. Moreover, in that case, it

follows from eqn (4.11) and from the total anti-symmetry of the contorsion that

Rijkl = −2Sijk,l = −2S[ijk],l , (4.15)

and since the curvature is anti-symmetric in the last two indices, it follows that Rijkl is

totally anti-symmetric. Then, writing

Ri
jkl = R̊i

jkl + (Si
jl,k − Si

jk,l + Sm
jl Si

mk − Sm
jkSi

ml), (4.16)

where R̊i
jkl is the curvature with respect to the Levi-Civita connection, it follows that

R̊ij = Sm
ikSk

mj, (4.17)

so that it is possible to show that the space M4 × K cannot be an Einstein space unless

the metric g is degenerate [30]. This is because the right-hand side of eqn (4.17) depends



74 spontaneous compactification

only on the Lie algebras’ structure constants, so that a case by case inspection shows

that it indeed vanishes. Therefore, the geodesic loop for this space cannot be associative.

Furthermore, it can be seen that the Freund-Rubin solution

Fμνσλ = ρεμνσλ (4.18)

does not impose restrictions on the spacetime M4 and neither do the geodesic loop

relations in that case. One may therefore analyze the Englert solution.

4.1 englert solutions

Since the geodesic loop Le around e ∈ M must be nonassociative, one might look for

examples of such structure. One may consider the octonion algebra O [2] which is a

real division algebra over R8 with canonical basis {1, e1, . . . , e7}, such that

ej ◦ ek = −δjk + ci
jkei, (4.19)

where ◦ is the octonion product and the structure constants cijk are totally anti-

symmetric and equal to the unity for the cycles

(ijk) = (123), (145), (167), (246), (275), (374), (365). (4.20)

The basis elements {e1, . . . , e7} are called the imaginary units and are easily seen to sat-

isfy e2
i = −1. Each choice of cycles in (4.20) yields a different

Figure 2: The projective Fano plane. [2]

(but isomorphic) octonion product. The octo-

nion algebra is not associative but alternative,

meaning that every 2-dimensional subspace is

associative and is therefore endowed with a

group structure. Equivalently, the associator

[x, y, z] = (x ◦ y) ◦ z − x ◦ (y ◦ z) (4.21)

is totally anti-symmetric in x, y, z ∈ O. The

octonion product may also be condensed in

the so called Fano plane in Fig. 2. Therein,

each triple of basis elements determines a
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quaternionic-like product given by the direction of the arrows. As an example, the line

segment containing the triple {e6, e2, e4} encodes the octonion product by the relation

e6 ◦ e2 = e4, e2 ◦ e4 = e6, e4 ◦ e6 = e2, (4.22)

and e2 ◦ e6 = −e4 and so on for the other commutations. Additionally, one can define an

involution x �→ x, satisfying x + x ∈ R (the conjugation) and a function N(x) = xx ∈ R.

Then, N may be seen to be a norm in O which is precisely given by the Euclidean

norm. In the next Chapter the rigorous definitions and results on more general normed

division algebras, such as the octonions, are presented and some of them are deliberately

used here.

The unit octonion set can be defined by

SO = {x ∈ O : N(x) = 1}, (4.23)

which is closed relative to multiplication and is, therefore, a loop. The tangent algebra

at each x ∈ SO is given by the commutator algebra of pure imaginary octonions,

Im O = {x ∈ O : x + x = 0}. (4.24)

Of course, it has the canonical basis {e1, . . . , e7} and the commutator and associator

with respect to the octonion product can be perceived by means of

[ej, ek] = 2ci
jkei,

[ej, ek, el] = 2ci
jklei,

(4.25)

where cijkl is a completely anti-symmetric nonzero tensor, equal to the unity for the

cycles

(ijkl) = (4567), (2345), (2367), (1357), (1364), (1265), (1274). (4.26)

One may then suppose that the geodesic loop Le around a point e ∈ M is locally

isomorphic to the 7-dimensional unit octonion space SO. Since its tangent algebra is

given by the commutator algebra Im O, the fundamental tensors satisfy

αijk = cijk,

βijkl = cijkl .
(4.27)

Besides, cijkl is fully anti-symmetric and then it follows that

βi
[jkl] = βi

jkl , (4.28)
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so that the generalized Jacobi identity reads

βi
jkl = αm

[jkαi
l]m. (4.29)

Now, it follows from eqn (4.16) that

1
2

R[ijk]l = Sm
[ijSk]m − Sijk,l . (4.30)

Hence, βijkl and Sijk,l are fully anti-symmetric. It follows from (4.11) that Rijkl is also

fully anti-symmetric. Conversely, if Rijkl is fully anti-symmetric, then

1
2

Rijkl = Sm
[ijSkl]m − Sijk,l (4.31)

and therefore Sijk,l is fully anti-symmetric. Then again, from eqn (4.11) one has that βijkl

is totally anti-symmetric, giving eqn (4.29). In terms of the W-algebra, it reads

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 6(x, y, z) (4.32)

which is called the Malcev identity. Now, there is only one compact simple non-Lie

Malcev algebra satisfying this relation, which is precisely the commutator algebra

Im O [30].

In order to generalize such construction, take a basis {e1, . . . , e7} for Im O such that

[ei, ej] = 2kcijkek, (4.33)

[ei, ej, ek] = 2k2cijklel , (4.34)

where k is a real constant. It follows that

αijk = kcijk, (4.35)

βijkl = k2cijkl . (4.36)

The tensors cijk and cijkl are connected by self-duality relations, which can be therefore

extended to the fundamental tensors. Such identities read

εnpqlijkkαijk = 6βnpql , (4.37)

εnpqlijkβijkl = 24kαnpq. (4.38)

Additionally, there holds

αijmαijn = 6k2δn
m, (4.39)

βmijkβnijk = 24k2δn
m, (4.40)

α
j
imαk

jnαi
kp = 3k2αmnp. (4.41)
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These identities are proven in the next Chapter, namely by means of Theorem 6.8. One

can then see that using such identities and the ones depicted in the last session, and

assuming the Englert solution

Fμνσλ = ρεμνσλ,

Fmnpq = λ∂[q]Smnp],
(4.42)

it follows that the equation of motion reads

Fmnpq
,m =

√
2ρεnpqijkl Fijkl . (4.43)

Now, from the second Bianchi identity and from eqn (4.31) there holds

1
2

R ,m
mnpq = Stm[nSt ,m

pq] − S ,m
mnp,q

= Sl
m[nSmt

pSq]tl − Sl
m[nSm

pq],l ,
(4.44)

which together with relations (4.39) and (4.41) results in

S ,m
npq,m + 4k2Snpq = 0. (4.45)

In addition, eqn (4.31) yields

Snpq,m = ∂[mSnpq]. (4.46)

Since Fmnpq = ∂[mSnpq] over K, there holds

4k2Snpq +
√

2ρεnpqijklSijk,l = 0, (4.47)

and a solution in the form

Smnp,q = hSt[mnSt
pq] (4.48)

can be perceived as an ansatz. One can work out the parameter h from

Smnp,qSrnp,q = h2βmnpqβrmnpq = 24h2k4δr
m, (4.49)

whereas from (4.45) comes

Smnp,qSrnp,q = −SmnpSrnp,q
,q = 24k4δr

m. (4.50)

It follows that h = ±1 and then inserting the ansatz in (4.47) yields

k = ±6
√

2ρ. (4.51)
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From eqn (4.31) it comes that

Rijkl = 0, if h = 1, (4.52)

Rijkl 	= 0, if h = −1. (4.53)

Condition (4.52) is not obligatory and therefore, one can choose

Fmnpq = ±λSt[mnSt
pq]. (4.54)

It is then possible to understand the constraints imposed in the space M4 × K by this

solution. Namely, inserting (4.54) in the Einstein equations one gets

R̊μν = −10k2gμν, (4.55)

R̊mn = 6k2gmn, (4.56)

so that 2λ2 = (12k)−2. Therefore, K is indeed an Einstein space and M4 is the anti-de

Sitter space.

4.2 cartan-schouten geometries

As seen in [31], the above construction can be generalized, as follows. Cartan and

Schouten are credited to construct 3 connections over the 7-sphere S7 [51, 52] and a

generalization to an one parameter family was presented by Akivis [29], which may

be investigated in order to derive geometric information using the results heretofore

developed. The 7-sphere S7 may be perceived as the set SO of unit octonions, where

the octonion product defines a parallel displacement, resulting in an affine connection,

as follows.

Let e ∈ S7 and Ne be its normal neighbourhood. Such a parallel displacement can

be defined by means of the octonionic right multiplication Rx(y) = y ◦ x for x, y ∈ O,

in such a way that if u, v ∈ Ne, then the geodesic γ(e, u) from e to u can be translated

into the geodesic γ(v, w), where v = Rx(e) and w = Rx(u) for some x ∈ S7. This defines

a product

u • v = u ◦ (e−1 ◦ v). (4.57)

Such equation defines a local loop Le with unity e. Such loop is nonassociative (since it

makes use of the octonion multiplication in S7) and is locally isomorphic to S7 [53, 54].
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One can further define an one-parameter family of loops Lα
e with multiplication given

by

u ∗ v = vα • u • v1−α, (4.58)

where α is a real constant. Note that when α = 0, one has (4.57). By the above

observation, such loops are isomorphic to the loop Lα, which is defined by the following

multiplication rule, denoted by juxtaposition:

uv = vα ◦ u ◦ v1−α = Rv(vα ◦ u ◦ v−α). (4.59)

Now, let v be a fixed point in S7 and let u denote a point in an one-parameter subgroup

from e. It follows that the point u′ = vα ◦ u ◦ v−α runs an one-parameter subgroup and

the point w = uv runs through a line obtained by translating u′ by Rv. Therefore, if

e and v are fixed and u describes the geodesic γ(e, u), then the point w describes the

geodesic γ(v, w). Therefore, all loops Lα
e are geodesic loops of affine connections on S7

which share the same set of geodesics generated by one-parameter subgroups of the

loop on the unit octonions.

Therefore, by means of the fundamental tensors one can find the curvature and

torsion tensors of affine connections generated on S7 by the geodesic loops Lα
e . Since

two elements in a loop generate a group, it follows that one can make use of the

Campbell-Hausdorff series

(xy)i = xi + yi +
1
2

ci
jkxjyk +

1
12

ci
jmcm

kl(x
jxkyl + yjykxl) + . . . , (4.60)

where ci
jk are the structure constants of the octonion algebra. Since (vα)i = αvi, from eqn

(4.59) one gets

(xy)i = ui + vi +
1
2

(1 − 2α)ci
jkujvk +

1
12

ci
jmcm

kl[u
jukvl + (1 − 6α + 6α2)vjvkul] + . . . (4.61)

On the other hand, in the geodesic loop Lα there holds

(xy)i = ui + vi + λi
jkujvk +

1
2

[μi
jklu

jukvl + νi
jklv

jvkul] + . . . (4.62)

Which yields the relations for the fundamental tensors

2αi
jk = (1 − 2α)ci

jk, (4.63)

−4βi
jkl = α(1 − α)ci

jmcm
kl + (1 + 3α + 3α2)ci

m[jc
m
kl]. (4.64)
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It follows that αi
jk = kci

jk, where k is a real constant depending on the real parameter

α. Since αi
jk = −Si

jk and ci
jk is fully anti-symmeteric, it follows that for each fixed α the

geodesic loop Lα
e generates a metric-compatible affine connection on S7 given by

Γijk = Γ̊ijk + Sijk, (4.65)

where Γ̊ijk is the Riemannian symmetric connection and Sijk is a fully anti-symmetric

torsion. Using the full anti-symmetry of Sijk one can rewrite the tensor βi
jkl by means of

Theorem 3.25 and equations

αi
jk = −Si

jk,

4βi
jkl = −2∇lSi

jk − Ri
jkl .

(4.66)

By eqn (4.63) one can see that if α = 1/2 then the connection yields a torsionless

Riemannian geometry. If α 	= 1/2 then by eqn (4.63) it follows that the new solution

depends on α with

Sijk,l = hSm
[ijSkl]m, h =

1
1 − 2α

. (4.67)

Finally, using eqn (4.67) one can find the Riemann curvature tensor of the affine

connection given by the parallel translation considered in Lα
e . Namely,

Rijkl = 4α(1 − α)Sm
ij Sklm − 4α(2 − 3α)Sm

[ijSkl]m. (4.68)

If α = 0 then the curvature vanishes and if α = 1 it is fully anti-symmetric, and these

correspond to the solutions in (4.48). The geodesic loops L0
e and L1

e are therefore also

locally isomorphic to the loop S7. Using the same ideas as before, but now considering

the parameter h one gets

S ;m
npq;m + (2hk)2Snpq = 0. (4.69)

Inserting in the equation of motion yields

(2hk)2Snpq +
√

2ρεnpqijklSijk;l = 0. (4.70)

Then, using again the self-duality relations gives

h = 6
√

2ρk−1. (4.71)

Likewise, using the Einstein equations one gets

RμσηλF σηλ
ν = −6ρ2gμν, (4.72)

FmrpqF rpq
n = 24k4h2λ2gmn, (4.73)
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which yield

R̊μν = −10(hk)2gμν, (4.74)

R̊mn = 6(hk)2gmn, (4.75)

with

2λ2 = (12k)−2. (4.76)

Therefore, the constants h and k are determined by ρ and λ which are arbitrary in this

construction. Therefore, one obtains a family of geometries in the internal space K

which come from solutions of the spontaneous compactification mechanisms for d = 11.





Part III

G 2 - S T R U C T U R E S A N D D E F O R M AT I O N S





5 THE OCTONIONS

In this Chapter the main results on G2-structures over 7-dimensional manifolds, which

may be subsequently used to define the so-called octonion bundle OM, are established.

With such structures, one can rigorously define the octonion product over M which can

be seen to connect with the torsion of the underlying G2-structure. The main results are

extracted from [33, 55] and the computational results come from [56, 57].

5.1 division algebras

In this section division algebras are analyzed from the ground up, having as final

goal the definition of the octonion algebra O and further understanding its elementary

properties. The ref. [58] is followed and omitted proofs can be found therein. For more

information on octonions and division algebras, one can see for instance [2].

Throughout this composition the vector spaces D = Rn are considered and endowed

with the usual Euclidean inner product 〈·, ·〉. Define then the binary product

∗ : D × D −→ D

(A , B) �→ A ∗ B.
(5.1)

Definition 5.1. The pair (D, ∗) is called a normed division algebra if it is a real algebra

over R with unity 1 ∈ D such that

‖A ∗ B‖= ‖A‖‖B‖, ∀A, B ∈ D, (5.2)

where as usual ‖A‖2= 〈A, A〉.

The first obvious examples are the real R and complex C division algebras, which

satisfy eqn (5.2). As it may be seen there are only two other examples, namely the quater-

nions H � R4 and octonion O � R8 algebras, the latter being of greater importance for

the work to be discussed afterwards.

85
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Remark 5.2. For now on, whenever a normed division algebra D is introduced its

product shall be denoted by juxtaposition, namely

A ∗ B = AB. (5.3)

Therefore, whenever D is normed division algebra then this product is automatically

considered. In addition, the notation for the unity may be fixed as 1 ∈ D.

Definition 5.3. Let D be a normed division algebra. The real and imaginary parts of D,

respectively denoted by Re(D) and Im(D), are defined by the relations

Re(D) = span({1}) = {λ1 : λ ∈ R},

Im(D) = (Re(D))⊥ � Rn−1,
(5.4)

where the orthogonal complement is taken with respect to the Euclidean inner product over

D = Rn.

Remark 5.4. It follows that for each A ∈ D there are unique Re(A) ∈ Re(D) and

Im(A) ∈ Im(D) such that

A = Re(A) + Im(A). (5.5)

These are respectively called the real and imaginary parts of A. One can then follow to

define the linear map A �→ A called the conjugation given by

A = Re(A) − Im(A). (5.6)

The conjugation is an involution over D, which means that A = A. By construction, it is

also an isometric reflection across the hyperplane Im(D). Moreover, notice that

Re(A) =
1
2

(A + A) Im(A) =
1
2

(A − A). (5.7)

This description gives a characterization for the real Re(D) and imaginary Im(D) parts

as

A ∈ Im(D) ⇐⇒ A = −A,

A ∈ Re(D) ⇐⇒ A = A,
(5.8)

Lemma 5.5. For every A, B, C ∈ D there holds

AB = BA, (5.9)

〈A, BC〉 = 〈AC, B〉, (5.10)

〈A, CB〉 = 〈CA, B〉, (5.11)

〈AC, BC〉 = 〈CA, CB〉 = 〈A, B〉‖C‖2. (5.12)
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Proof. Each identity from eqn (5.12) upwards may be considered. By straightforward

calculations there holds

‖(A + B)C‖2= ‖AC + BC‖2= ‖AC‖2+2〈AC, BC〉 + ‖BC‖2. (5.13)

On the other hand,

‖A + B‖2‖C‖2=
(
‖A‖2+2〈A, B〉 + ‖B‖2

)
‖C‖2. (5.14)

Now, since

‖(A + B)C‖2= ‖A + B‖2‖C‖2, (5.15)

one arrives at both equalities in (5.12). Besides, eqns (5.11, 5.10) are obviously satisfied

when C ∈ Re(D), since the inner product is bilinear and C = C in this case. One may

hence assume C ∈ Im(D) and so C = −C. Notice then that by definition C is orthogonal

to 1, which makes

‖1 + C‖2= 1 + ‖C‖2. (5.16)

It follows that

〈A, B〉
(

1 + ‖C‖2
)

= 〈A, B〉‖1 + C‖2= 〈A (1 + C) , B (1 + C)〉
= 〈A + AC, B + BC〉 = 〈A, B〉 + 〈AC, BC〉 + 〈A, BC〉 + 〈AC, B〉
= 〈A, B〉 + 〈A, B〉‖C‖2+〈A, BC〉 + 〈AC, B〉
=
(

1 + ‖C‖2
)
〈A, B〉 + 〈A, BC〉 + 〈AC, B〉,

(5.17)

which in turn implies

〈A, BC〉 = −〈AC, B〉 = 〈AC, B〉, (5.18)

as wanted. For the remaining equation, using the previous ones and the fact that the

conjugation is an isometry (and therefore self-adjoint) one gets

〈AB, C〉 = 〈AB, C〉 = 〈B, AC〉 = 〈BC, A〉 = 〈C, BA〉 = 〈BA, C〉, (5.19)

which proves eqn (5.9) since the previous relation holds for all C ∈ D.

Corollary 5.6. For every A, B, C ∈ D there holds

A
(

BC
)

+ B
(

AC
)

= 2〈A, B〉C, (5.20)(
AB

)
C +

(
AC

)
B = 2〈B, C〉A, (5.21)

AB + BA = 2〈A, B〉1. (5.22)
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Proof. Indeed, taking D ∈ D it follows from eqn (5.12) that

〈A, B〉‖C + D‖2 = 〈A (C + D) , B (C + D)〉
= 〈AC, BC〉 + 〈AD, BC〉 + 〈AC, BD〉 + 〈AD, BD〉
= 〈A, B〉

(
‖C‖2+‖D‖2

)
+ 〈AD, BC〉 + 〈AC, BD〉,

(5.23)

on the other hand

〈A, B〉‖C + D‖2 = 〈A, B〉
(
‖C‖2+2〈C, D〉 + ‖D‖2

)
= 〈A, B〉

(
‖C‖2+‖D‖2

)
+ 2〈A, B〉〈C, D〉.

(5.24)

Therefore, one can see that

〈AD, BC〉 + 〈AC, BD〉 = 2〈A, B〉〈C, D〉. (5.25)

With the aid of eqns (5.11, 5.10) it becomes

〈D, A (BC)〉 + 〈B (AC) , D〉 = 2〈A, B〉〈C, D〉, (5.26)

which holds for every D ∈ D. Finally, one gets the relation

A (BC) + B (AC) = 2〈A, B〉C. (5.27)

Making A �→ A and B �→ B gives eqn (5.20). In addition, eqn (5.21) is obtained from

(5.20) by making A �→ C, B �→ B and taking the conjugate on both sides. Ultimately,

eqn (5.22) is just (5.20) with C = 1.

Corollary 5.7. If A, B, C ∈ Im(D) then there holds

A (BC) + B (AC) = −2〈A, B〉C, (5.28)

(AB)C + (AC) B = −2〈B, C〉A, (5.29)

AB + BA = −2〈A, B〉1. (5.30)

Corollary 5.8. If A, B ∈ D then it follows that

〈A, B〉 = Re
(

AB
)

= Re
(

BA
)

= Re
(

BA
)

= Re
(

AB
)

(5.31)

and

‖A‖2= AA = AA. (5.32)

In addition, if either A or B is imaginary then there holds

〈A, B〉1 = −Re(AB). (5.33)
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Proof. From eqn (5.10) it follows that

〈A, B〉 = 〈AB, 1〉 = Re
(

AB
)

, (5.34)

and the other equalities come from the symmetry of the inner product and from the

conjugation being isometric. Finally, notice that

AA = AA = AA, (5.35)

so that AA is real (and similarly for AA). Therefore, eqn (5.32) follows. Now, using the

previous identities and supposing B = −B yields

〈A, B〉 = Re
(

AB
)

= −Re (AB) . (5.36)

Corollary 5.9. The element A ∈ D has the property A2 ∈ Re(D) if and only if A ∈ Re(D) or

A ∈ Im(D).

Proof. One can set A = Re(A) + Im(A) and note that since −Im(A) = Im(A) there holds

Im(A)2 = Im(A)
(
−Im(A)

)
= −‖Im(A)‖2, (5.37)

where eqn (5.32) was used. Then,

A2 = (Re(A) + Im(A)) (Re(A) + Im(A)) =
(

Re(A)2 − ‖Im(A)‖2
)

1 + 2Re(A)Im(A).

(5.38)

Since A2 is real, it follows that its imaginary part vanishes, namely

2Re(A)Im(A) = 0, (5.39)

which implies that Re(A) = 0 or Im(A) = 0.

Corollary 5.10. For every A, B ∈ D there holds

(AB) B = A
(

BB
)

= ‖B‖2A = A
(

BB
)

=
(

AB
)

B,

A
(

AB
)

=
(

AA
)

B = ‖A‖2B =
(

AA
)

B = A (AB) .
(5.40)

Proof. Using the identities proven so far, one has

〈(AB) B, C〉 = 〈AB, CB〉 = 〈A, C〉‖B‖2= 〈A‖B‖2, C〉 = 〈A
(

BB
)

, C〉, (5.41)

which holds for every C ∈ D. The other identities follows similarly.
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As it is well-known, the real and complex normed division algebras R and C are both

commutative and associative. However, this may not hold for every normed division

algebra D. With that in mind, one may define the usual operators measuring the failure

for the product over D to be commutative or associative.

Definition 5.11. Let D be a normed division algebra. Then, one can define a bilinear map

[·, ·] : D × D → D by the relation

[A, B] = AB − BA, ∀A, B ∈ D. (5.42)

Such map is called the commutator of D. Furthermore, the trilinear map (·, ·, ·] : D × D ×
D → D given by

[A, B, C] = (AB)C − A(BC), ∀A, B, C ∈ D (5.43)

can be defined and is called the associator of D.

Proposition 5.12. The commutator and associator operators over a normed division algebra D

are both alternating multilinear applications.

Proof. Notice that whenever one of the arguments is purely real, the associator vanishes.

Therefore, one may exclusively consider the imaginary case. If A, B ∈ Im(D) then as

usual A = −A and B = −B. It then follows from eqn (5.40) that

−[A, A, B] = [A, A, B] =
(

AA
)

B − A
(

AB
)

= 0. (5.44)

In the same way one may see that −[A, B, B] = [A, B, B] = 0. Therefore, the associator

is alternating in the first two arguments. Hence, [A, B, A] = −[A, A, B] = 0 and it

follows that [·, ·, ·] is totally anti-symmetric, as wanted. The commutator is alternating

by definition.

Proposition 5.13. For every A, B, C ∈ Im(D) there holds [A, B] ∈ Im(D) and [A, B, C] ∈
Im(D).

Proof. It suffices to show that [A, B] and [A, B, C] are both orthogonal to 1. As usual,

one has A = −A for every A ∈ Im(D), yielding

〈[A, B], 1〉 = 〈AB − BA, 1〉 = 〈B, A〉 − 〈A, B〉
= −〈B, A〉 + 〈A, B〉 = 0.

(5.45)
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For the associator, one has

〈[A, B, C], 1〉 = 〈(AB)C − A (BC) , 1〉 = 〈AB, C〉 − 〈BC, A〉
= −〈AB, C〉 + 〈BC, A〉 = −〈A, CB〉 + 〈BC, A〉
= 〈A, CB + BC〉 = 〈A, BC + BC〉 = 2〈A, Re(BC)〉 = 0,

(5.46)

where in the last line one uses the relation BC = CB = (−C)(−B) = CB.

Proposition 5.14. The mappings (A, B, C) �→ 〈A, [B, C]〉 and (A, B, C, D) �→ 〈A, [B, C, D]〉
are multilinear and alternating.

Proof. Since these are compositions of multilinear maps, it is straightforward that they

also are multilinear. Moreover, since the commutator and associator are already anti-

symmetric one must only show that 〈A, [A, B]〉 and 〈A, [A, B, C]〉 both vanish. It follows

that

〈A, [A, B]〉 = 〈A, AB − BA〉 = 〈AA, B〉 − 〈AA, B〉
= ‖A‖2〈1, B〉 − ‖A‖2〈1, B〉 = 0

(5.47)

and

〈A, [A, B, C]〉 = 〈A, (AB)C − A (BC)〉 = 〈AC, AB〉 − ‖A‖2〈1, BC〉
= ‖A‖2〈C, B〉 − ‖A‖2〈C, B〉 = 0.

(5.48)

5.2 ϕ and ψ

Maintaining the notation, consider D � Rn a normed division algebra and Im(D) �
Rn−1 its imaginary part. The restriction of its product over the imaginary part may be

then analyzed, defining the following well-known operation:

Definition 5.15. Let D be a normed division algebra. Then, the vector cross product × over

Im(D) is the operation × : Im(D) × Im(D) → Im(D) defined by

A × B = Im(AB). (5.49)

Lemma 5.16. Suppose that A, B ∈ Im(D). Then,

A × B = −B × A, (5.50)

〈A × B, A〉 = 〈A × B, B〉 = 0. (5.51)
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Proof. As usual one has A = −A and B = −B and then, since 2Im(A) = A − A, it follows

that

2A × B = 2Im(AB) = AB − AB = AB − BA = [A, B], (5.52)

which proves the first identity by the anti-symmetry of the commutator. Now, since

A ∈ Im(D) there holds 〈Re(AB), A〉 = 0 and therefore

〈A × B, A〉 = 〈Im(AB), A〉 = 〈Re(AB) + Im(AB), A〉 = 〈AB, A〉. (5.53)

But then, since B ∈ Im(D) one has

〈A × B, A〉 = 〈AB, A〉 = ‖A‖2〈B, 1〉 = 0, (5.54)

as wanted. By the same reasoning one gets 〈A × B, B〉 = 0, which proves the statement.

Remark 5.17. Notice that by eqn (5.33) there holds Re(AB) = −〈A, B〉1 and by definition

A × B = Im(AB) so that one gets

AB = −〈A, B〉1 + A × B. (5.55)

Besides, eqns (5.50, 5.51) respectively show that × is anti-symmetric and that the vector

A × B is orthogonal to both A and B. Remarkably, these are all properties of the usual

vector product × over R3 and one may see that it is indeed connected to the notion of

normed division algebra here presented. In order to do that, by Propositions 5.13 and

5.14 one may naturally define the following applications

Definition 5.18. Let D be a normed division algebra and define the 3- and 4- forms ϕ and ψ

over Im(D) by the relations

ϕ(A, B, C) =
1
2
〈[A, B], C〉 =

1
2
〈A, [B, C]〉, (5.56)

ψ(A, B, C, D) =
1
2
〈[A, B, C], D〉 = −1

2
〈A, [B, C, D]〉, (5.57)

for every A, B, C, D ∈ Im(D).

Remark 5.19. Notice that eqn (5.52) shows that [A, B] = 2A× B. Therefore, by definition

there follows

ϕ(A, B, C) = 〈A × B, C〉, (5.58)

for every A, B, C ∈ Im(D). In addition, since from eqn (5.55) AB and A × B differ only

by a real part, one has

ϕ(A, B, C) = 〈AB, C〉. (5.59)
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Lemma 5.20. If A, B, C ∈ Im(D) then

A(BC) = −1
2

[A, B, C] − ϕ(A, B, C)1 − 〈B, C〉A + 〈A, C〉B − 〈A, B〉C. (5.60)

Proof. Using each of the identities in Corollary 5.7 one has

A (BC) = −B (AC)− 2〈A, B〉C
= −B (−CA − 2〈A, C〉1)− 2〈A, B〉C
= B (CA) + 2〈A, C〉B − 2〈A, B〉C
= −C (BA)− 2〈B, C〉A + 2〈A, C〉B − 2〈A, B〉C.

(5.61)

Now with eqn (5.22) it is possible to see that

C (BA)− (AB)C = C
(

AB
)

+ (AB)C = 2〈AB, C〉1 = 2ϕ(A, B, C)1. (5.62)

Hence, it follows that

A (BC) = − (AB)C − 2ϕ(A, B, C)1 − 2〈B, C〉A + 2〈A, C〉B − 2〈A, B〉C. (5.63)

Finally, using [A, B, C] = (AB)C − A (BC) in the last equation gives the desired result.

Proposition 5.21. Let A, B, C ∈ Im(D) and × the vector cross product defined over Im(D).

There holds

‖A × B‖2 = ‖A‖2‖B‖2−〈A, B〉2 = ‖A ∧ B‖2, (5.64)

A × (B × C) = −〈A, B〉C + 〈A, C〉B − 1
2

[A, B, C] (5.65)

= −〈A, B〉C + 〈A, C〉B − ψ(A, B, C, ·)�. (5.66)

Proof. There holds

4‖A × B‖2 = 〈AB − BA, AB − BA〉 = ‖AB‖2+‖BA‖2−2〈AB, BA〉
= 2‖A‖2‖B‖2−2〈AB, BA〉.

(5.67)

Now, since AB = −〈A, B〉1 + A × B and BA = −〈A, B〉1 + B × A, one has

〈AB, BA〉〈−〈A, B〉1 + A × B,−〈A, B〉 − A × B〉 = 〈A, B〉2 − ‖A × B‖2. (5.68)

Combining the two previous expression yields the first identity. Similarly, there follows

A × (B × C) = 〈A, B × C〉1 + A (B × C)

= ϕ(A, B, C)1 + A (〈B, C〉 + BC)

= A (BC) + ϕ(A, B, C)1 + 〈B, C〉A.

(5.69)
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Then, inserting eqn (5.60) into A (BC) yields the second identity. Finally, it follows

directly from (5.57) that

A × (B × C) = −〈A, B〉C + 〈A, C〉B − ψ(A, B, C, ·)�, (5.70)

where the sharp operation is defined via the Euclidean metric 〈·, ·〉.

Corollary 5.22. Let A, B, C ∈ Im(D). Then, it follows that

A × (A × C) = −‖A‖2C + 〈A, C〉A. (5.71)

In addition, suppose {A, B, C} is an orthonormal set with respect to the Euclidean metric. It

follows that if A × B = C then B × C = A and C × A = B.

Proposition 5.23. Let A, B, C, D ∈ Im(D). Then, there holds

〈A × B, C × D〉 = 〈A ∧ B, C ∧ D〉 − 1
2
〈A, [B, C, D]〉 (5.72)

= 〈A ∧ B, C ∧ D〉 + ψ(A, B, C, D). (5.73)

Proof. As previously seen, one has

〈A ∧ B, C ∧ D〉 = det

(
〈A, C〉 〈A, D〉
〈B, C〉 〈B, D〉

)
= 〈A, C〉〈B, D〉 − 〈A, D〉〈B, C〉. (5.74)

Using eqn (5.58) it follows that

〈A × B, C × D〉 = ϕ(A, B, C × D) = −ϕ(A, C × D, B) = −〈A × (C × D) , B〉. (5.75)

Then, using (5.65) it comes

〈A × B, C × D〉 = 〈−〈A, C〉D + 〈A, D〉C − 1
2

[A, C, D], B〉

= 〈A, C〉〈B, D〉 − 〈A, D〉〈B, C〉 +
1
2
〈B, [A, C, D]〉

= 〈A, C〉〈B, D〉 − 〈A, D〉〈B, C〉 − 1
2
〈A, [B, C, D]〉.

(5.76)

Then since ψ(A, B, C, D) = − 1
2〈A, [B, C, D]〉 it follows that

〈A × B, C × D〉 = 〈A ∧ B, C ∧ D〉 + ψ(A, B, C, D). (5.77)
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Remark 5.24. These results show that given a normed division algebra D one can

define a vector cross product over the imaginary part Im(D) satisfying some identities.

Conversely, one can make the following definition:

Definition 5.25. Consider I � Rn−1 endowed with the usual Euclidean inner product. One

says that I has a vector cross product if there exists an alternating bilinear map

× : I × I → I (5.78)

such that for every α, β, γ ∈ I there holds

〈α × β, α〉 = 〈α × β, β〉 = 0, (5.79)

‖α × β‖2 = ‖α‖2‖β‖2−〈α, β〉2 = ‖α ∧ β‖2. (5.80)

Remark 5.26. What has so far been developed is that if one has a normed division

algebra D then setting I = Im(D) it follows that the vector cross product × as defined

in eqn (5.49) satisfy properties (5.79, 5.80). In fact, one may prove the

Theorem 5.27. There is an one-to-one correspondence between normed division algebras D =

Rn and spaces I = Rn−1 admitting vector cross products.

Proof. As stated before, given a normed division algebra D one can construct a vector

cross product over Im(D). Let now I = Rn−1 be endowed with a vector cross product

×. Set D = R ⊕ I and equip it with the usual Euclidean metric, namely

〈(a, α) , (b, β)〉 = ab + 〈α, β〉, (5.81)

where a, b ∈ R and α, β ∈ I. Then, one can define the following product over D:

(a, α) (b, β) = (ab − 〈α, β〉, aβ + bα + α × β〉) . (5.82)

Such product is clearly bilinear with (1, 0) its identity. Therefore, for D to be a normed

division algebra, one must only check if eqn (5.2) holds. Calculating comes

‖(a, α)(b, β)‖2 =
(

ab − 〈α, β〉 + ‖aβ + bα + α × β‖2
)

= a2b2 − 2ab〈α, β〉 + (〈α, β〉)2 + a2‖β‖2+b2‖α‖2+‖α × β‖2

+ 2ab〈α, β〉 + 2a〈β, α × β〉 + 2b〈α, α × β〉.
(5.83)

Using the defining identities (5.79, 5.80) of the vector cross product it follows that

‖(a, α) (b, β) ‖2 = a2b2 + a2‖β‖2+b2‖α‖2+‖α‖2‖β‖2

=
(

a2 + ‖α‖2
) (

b2 + |β‖2
)

= ‖(a, α) ‖‖(b, β) ‖,
(5.84)

as wanted.
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Since a vector product can only the defined over a space of dimension 0, 1, 3 or 7

(see e.g [59] for a concise self-contained algebraic proof), then it follows that normed

division algebras can only exist in dimensions 1, 2, 4 and 8. This result is commonly

called Hurwitz Theorem and these four normed division algebras are precisely the

real R, complex C, quaternion H and octonion O algebras. Each of these algebras is a

subalgebra of the next one and their description can also be visualized from the standard

Cayley-Dickson doubling construction point of view [2]. Namely, such construction

depicts the algebraic properties lost from each step to the other. For instance, C loses

the real property (a = a) and the field ordering property. In addition, from C to H

the commutative property is lost and finally when one arrives at the octonions O

associativity is dropped giving place to alternativity. The automorphism group of the

octonion algebra will be of great importance to what follows. For now on, consider the

octonion algebra O as given in the last Chapter. Namely, take an orthonormal basis

{1, e1, . . . , e7} and define the octonion product by the relation

ejek = −δjk + ci
jkei, (5.85)

where the structure constants cijk are totally anti-symmetric and equal to the unity for

the cycles

(ijk) = (123), (145), (167), (246), (275), (374), (365). (5.86)

Furthermore, the octonion algebra is deeply considered in the literature and several

applications may come forth, for instance in [60–62] one may perceive the relation

between (split-)division algebras and super-symmetry and the emergence of exceptional

structures in for physical theories.

5.3 the exceptional group G2

In order to establish the basic results on G2-structures over 7-dimensional manifolds

M one may first analyze the group G2 itself. Consider the vector space R7 endowed

with the usual Euclidean metric go, the orthonormal basis {e1, . . . , e7} and the volume

form volo = e1 ∧ · · · ∧ e7 associated with go. In the light of eqns (5.56, 5.57), a 3-form ϕo,
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4-form ψo and vector cross product ×o related to these structures can be considered. By

the identification R7 � Im(O), one can set

ϕo(α, β, γ) =
1
2
〈[α, β], γ〉 = 〈α ×o β, γ〉,

ψo(α, β, γ, δ) =
1
2
〈[α, β, γ], δ〉,

(5.87)

for every α, β, γ, δ ∈ R7. These are the 3- and 4- forms given in Definition (5.18).

Explicitly, letting ei ∧ ej ∧ ek = eijk where {e1, . . . , e7} is the associated dual basis one has

ϕo = e123 + e145 + e167 + e246 − e257 − e347 − e356, (5.88)

ψo = e4567 + e2367 + e2345 + e1357 − e1346 − e1256 − e1247. (5.89)

Remark 5.28. Note that depending on the choice of octonion product, the descriptions

of ϕo and ψo may vary from text to text. In [58] a different definition is taken, whereas

in [33, 63] the ones used here can be found.

Let �o be the Hodge-star operation induced by go and volo. Then, it is straightforward

to see that

ψo = �o ϕo. (5.90)

Also, notice that

ψo ∧ ϕo = 7volo, (5.91)

so that

‖ϕo‖2= ‖ψo‖2= 7. (5.92)

Definition 5.29. The group G2 ⊂ GL(7, R) is defined by

G2 = {T ∈ GL(7, R) : T∗(go) = go, T∗(volo) = volo, T∗(ϕo) = ϕo}, (5.93)

where T∗ denotes the pull-back by T ∈ GL(7, R).

Remark 5.30. Definition 5.29 is one of the (many) possible for the exceptional group G2.

Note that G2 ⊂ SO(7) since it preserves the metric go and orientation vol0. Hence, it also

preserves the Hodge star �o and ψo, and since ×o is completely defined by the metric

and ϕo then it preserves the vector cross product as well. Nevertheless, the following

result shows that an application T ∈ GL(7, R) only needs to preserve the 3-form ϕo in

order to be in G2 [63].

Theorem 5.31. G2 = {T ∈ GL(7, R) : T∗ϕo = ϕo}.
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Proof. In terms of the standard dual basis {e1, . . . , e7} it is easy to show that

(u � ϕo) ∧ (v � ϕo) ∧ ϕo = 6go(u, v)volo. (5.94)

Now, one may take T ∈ GL(7, R) such that T∗ϕo = ϕo. It follows from this relation that

(T∗go)(u, v)g∗volo = go(T(u), T(v)) det(T)volo = go(u, v)volo. (5.95)

This implies that

det(T)go(T(u), T(v)) = go(u, v). (5.96)

Taking the determinant of the previous relation gives

det(T)9 det(go) = det(go) (5.97)

so that det(T) = 1 and then T∗(volo) = volo. But then, by eqn (5.95) there also holds

T∗(go) = go, which proves the claim.

Corollary 5.32. The group G2 is equal to the automorphism group Aut(O) of the octonion

algebra O.

Proof. Let T ∈ Aut(O) and α ∈ Im(O). As before, there holds α2 = −αα = −‖α‖2
o. Then,

it follows that

T (α)2 = T
(

α2
)

= T
(
−‖α‖2

o

)
= −‖α‖2

o , (5.98)

since T(a) = a, for every a ∈ R. It follows from Corollary 5.9 that T(α) is either real or

imaginary. Nonetheless, if it is real, say T(α) = a ∈ R, then T(α) = T(a) and since T is an

automorphism there holds α = a, which contradicts α being imaginary. Then, it follows

that T(α) = −T(α) whenever α is imaginary.

Now, take A = Re(A)1 + Im(A) ∈ O. Notice that

T(A) = Re(A)1 + T(Im(A)), (5.99)

since T is linear and is the identity over Re(O). Therefore, T(A) = T(A) and it follows

that

‖T(A)‖2
o= T(A)T(A) = T(A)T(A) = T(AA) = T(‖A‖2

o) = ‖A‖2
o . (5.100)

Hence, ‖T(A)‖o= ‖A‖o. Now, since T(Im(O)) ⊂ Im(O) and T(1) = 1 one has T ∈ O(7).

This implies that

(T∗ϕo)(α, β, γ) = ϕo(T(α), T(β), T(γ)) = 〈T(α)T(β), T(γ)〉
= 〈T(αβ), T(γ)〉 = 〈αβ, γ〉 = ϕo(α, β, γ),

(5.101)
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for every α, β, γ ∈ Im(O) = R7. Therefore, T ∈ G2.

Conversely, if T ∈ G2 then it preserves the cross product and inner product over

R7 � Im(O). Then, extending T to R ⊕ Im(O) � O with T(1) = 1 it follows from eqn

(5.82) that T(AB) = T(A)T(B), for every A, B ∈ O, so that T ∈ Aut(O).

Remark 5.33. Notice here that if α, β, γ ∈ R7 are such that ϕo(α, β, γ) = 0 then in the

light of eqn (5.58) it follows that the cross product of any two elements in {α, β, γ} is

orthogonal with respect to the other. In fact, a choice of a triple of vectors in R7 with

such property can be seen to completely define the group G2.

Lemma 5.34. Let {h1, h2, h4} be a triple of orthonormal vectors in R7 such that ϕo(h1, h2, h4) =

0. One may define

h1 ×o h2 = h3, h1 ×o h4 = h5, h2 ×o h4 = h6 h4 ×o h3 = h4 ×o (h1 ×o h2) = h7. (5.102)

It follows that {h1, . . . , h7} is an oriented orthonormal basis for R7.

Proof. It is tedious but straightforward to see that 〈hi, hj〉 = δi
j for every 1 ≤ i, j ≤ 7. Now,

notice that if hj = ej for j ∈ {1, 2, 4} then the same relation is true for all j ∈ {1, . . . , 7}
by the octonion multiplication table. Since e1, e2 and e4 are orthonormal to each other,

there is T ∈ SO(7) such that T(ej) = hj for each j ∈ {1, 2, 4}. But then the pull-back T∗

takes the identity matrix in SO(7) to

A = (h1|h2|h3|h4|h5|h6|h7), (5.103)

which is the matrix with columns given by the elements of {h1, . . . , h7}. It follows then

that A ∈ SO(7) and, hence, {h1, . . . , h7} is oriented, which concludes the proof.

Corollary 5.35. The exceptional group G2 can be perceived as the subgroup of SO(7) consisting

of elements T ∈ SO(7) of form

T = (h1|h2|h1 ×o h2|h4|h1 ×o h4|h2 ×o h4|(h1 ×o h2) ×o h4), (5.104)

where {h1, h2, h4} is an orthonormal triple such that ϕo(h1, h2, h4) = 0. Furthermore,

dim G2 = 14. (5.105)

Proof. As previously seen, a matrix T ∈ SO(7) is in G2 is and only if it preserves the

cross product ×o. Now, since T(ei) = hi, the result follows from the definition of the

octonion product and its cross products. Furthermore, since an element in G2 is fully
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characterized by a triple (h1, h2, h4) of orthonormal vectors in R7 with ϕo(h1, h2, h4) = 0

then in order to choose the first vector for such triple one must take h1 ∈ S6, since it

must have unit norm. Then, choosing an unitary h2 orthogonal to h1 means choosing h2

in the 5-sphere orthogonal to h1. Finally, the unitary h4 must be orthogonal to h1, h2

and h1 ×o h2, therefore lying in a 3-sphere. It follows

dim G2 = dim S6 + dim S5 + dim S3 = 14. (5.106)



6 G 2 - STRUCTURES

As seen in the first Chapter, given a Riemannian manifold (M, g) one may consider

the normal coordinates at p ∈ M, which have the property that the metric gp over

the tangent space TpM is precisely the Euclidean one in the n-dimensional vector

space Rn in these coordinates. This property may be condensed as follows: consider

the Frame bundle Fr(M) defined as a (principal GL(7, R)) bundle with the projection

π : Fr(M) → M for which a fiber at p ∈ M consists of all frames (bases) for TpM,

namely

π−1({p}) = {T : Rn → TpM : T is a linear isomorphism}. (6.1)

Then, for a Riemannian manifold (M, g), the property that in normal coordinates there

holds gij(p) = δij can be stated as follows: for every p ∈ M, there is T ∈ π−1({p}) such

that

T∗gp = 〈·, ·〉, (6.2)

where 〈·, ·〉 is the Euclidean metric in Rn. Notice that the choice of isomorphism

T ∈ π−1({p}) is exactly the choice of basis by means of eqn (2.47). Moreover, note how

if g ∈ S2(T∗M) is just a symmetric 2-tensor over M with the property in eqn (6.2), then g

would necessarily be a Riemannian metric over M. Moreover, in that case the subgroup

G ⊂ GL(n, R) preserving that relation is precisely the orthogonal group G = O(n), so

that one may say that g is an O(n)-structure.

Let now M be a 7-dimensional manifold. It is then possible to endow such manifold

with the octonionic structure discussed heretofore. The natural way to do this is to

consider the G2-structure over M, given in terms of

Definition 6.1. A G2-structure over a 7-dimensional manifold M is a 3-form ϕ ∈ Ω3(M)

such that for each p ∈ M there is a linear isomorphism T : R7 → TpM with the property that

T∗ϕ = ϕo. (6.3)

In that case, for simplicity the pair (M, ϕ) is also called a G2-structure.

101
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To make more sense of the last definition, as seen in [63] one may let π : Fr(M) → M

be the Frame Bundle projection as previously defined. Then, define the map

π̃ : Fr(M) → Λ3(T∗M) (6.4)

by the relation

π̃(T) =
(

T−1
)∗

(ϕo), (6.5)

where T : R7 → TM is a linear isomorphism. Then, if π̃(T1) = π̃(T2) let G ∈ GL(7, R)

be such that T1 = G ◦ T2. It follows that(
G−1

)∗
(ϕo) = ϕo (6.6)

and hence G ∈ G2. Therefore, the fibers over the bundle map π̃ are exactly the G2-orbits

in Fr(M), that is,

π̃(Fr(M)) � Fr(M)/G2. (6.7)

One may denote π̃(Fr(M)) = Λ3
+(T∗M). Then, for p ∈ M the elements in the fiber

Λ3
+(T∗

p M) are 3-forms ϕp ∈ Λ3(T∗
p M) such that there is T : TpM → R7 with ϕp = T∗(ϕo).

Notice now that since dim GL(7, R) = 49 and dim G2 = 14, it follows that

dim Fr(M)/G2 = 49 − 14 = 35 = dim Λ3(T∗M), (6.8)

and hence Λ3
+(T∗

p M) is open in Λ3(T∗
p M). The local sections of such bundle over an open

set U ⊂ M may be denoted Ω3
+(U) and are called positive (or definite) 3-forms and by

Definition 6.1 this is precisely the space of G2-structures over U. Now, the existence of

a (global) G2-structure over a 7-dimensional manifold M is purely topological. More

specifically, M admits a G2-structure if an only if it admits a spin structure and if M

is orientable [33, 64]. Overall, a G2-structure is in one-to-one correspondence with the

open subset Ω3
+(M) ⊂ Ω3(M) of positive 3-forms over M.

Remark 6.2. Following [56, 57], given a G2-structure ϕ over a 7-dimensional manifold

M, then by definition, for every point p ∈ M, there is an isomorphism T : TpM → Rn

for which

ϕp(u, v, w) = 〈T(u) ×o T(v), T(w)〉, (6.9)

for every u, v, w ∈ TpM, where 〈·, ·〉 is the usual Euclidean inner product and ×o the

cross vector product as given in the previous section. Then, one may look for a metric g

that globally describes this local behaviour for a fixed G2-structure ϕ over M. In what
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follows, 〈·, ·〉 shall denote the desired metric, with ‖·‖2= 〈·, ·〉. In addition, since M is

oriented, one may take the volume form vol with respect to this metric, which in turn

defines a Hodge star denoted by �.

Lemma 6.3. [56, 57] For every 1-form α and vector field X over M the following identities

hold:

‖ϕ‖2 = 7, ‖ψ‖2 = 7, (6.10)

‖ϕ ∧ α‖2 = 4‖α‖2, ‖ψ ∧ α‖2 = 3‖α‖2 (6.11)

�(ϕ ∧ �(ϕ ∧ α)) = −4α, �(ψ ∧ �(ψ ∧ α)) = 3α (6.12)

ψ ∧ �(ϕ ∧ α) = 0, ϕ ∧ �(ψ ∧ α) = 2ψ ∧ α (6.13)

�(ϕ ∧ X�) = X � ψ, �(ψ ∧ X�) = X � ϕ (6.14)

ϕ ∧ (X � ϕ) = 2 � (X � ϕ), ψ ∧ (X � ϕ) = 3 � X� (6.15)

ϕ ∧ (X � ψ) = −4 � X�, ψ ∧ (X � ψ) = 0. (6.16)

Proof. Every identity can be straightforwardly calculated using the pointwise description

of ϕ and ψ given by eqns (5.88, 5.89) and Lemma 2.13.

Proposition 6.4. Let X be a vector field over M. Then,

(X � ϕ) ∧ (X � ϕ) ∧ ϕ = 6‖X‖2vol. (6.17)

Proof. By eqn (2.35), there holds

∗(X� ∧ ψ) = X � ϕ, (6.18)

which with eqns (6.13, 6.11) yield

(X � ϕ) ∧ ϕ = 2(X� ∧ ψ) (6.19)

and then

(X � ϕ) ∧ (X � ϕ) ∧ ϕ = 2‖X� ∧ ψ‖2vol = 6‖X‖2vol. (6.20)

Polarizing eqn (6.17) in X yields, for another vector field Y over M

(X � ϕ) ∧ (Y � ϕ) ∧ ϕ = 〈X, Y〉vol. (6.21)
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Lemma 6.5. Let {e1, . . . , e7} be a choice of local frame for the tangent bundle TM over some

neighbourhood of M. Then, if locally X = Xkek then the expression

((X � ϕ) ∧ (X � ϕ) ∧ ϕ) (e1, . . . , e7)(
det

((
(ei � ϕ) ∧ (

ej � ϕ
) ∧ ϕ

)
(e1, . . . , e7)

)) 1
9

(6.22)

does not depend on the choice of frame {e1, . . . , e7}.

Proof. Let {e′1, . . . , e′7} be another frame and let

e′i = Aj
iej. (6.23)

There holds (
e′i � ϕ

) ∧ (e′j � ϕ) ∧ ϕ = Ak
i Al

j (ek � ϕ) ∧ (el � ϕ) ∧ ϕ, (6.24)

and then the denominator of eqn (6.22) changes by a factor of(
det(A)2 det(A)7

) 1
9 = det(A). (6.25)

Since the numerator also changes by a factor of det(A) by eqn (6.17), the proof is

finished.

Theorem 6.6. Let Xp ∈ TpM and {e1, . . . , e7} be a basis for the tangent space. Then,

‖Xp‖2= 6−
2
9

((X � ϕ) ∧ (X � ϕ) ∧ ϕ) (e1, . . . , e7)(
det

((
(ei � ϕ) ∧ (

ej � ϕ
) ∧ ϕ

)
(e1, . . . , e7)

)) 1
9

(6.26)

Proof. Fix det(g) = det(gij), where gij = 〈ei, ej〉. Then, from eqn (6.17) there follows(
(ei � ϕ) ∧ (

ej � ϕ
) ∧ ϕ

)
= 6gijvol

= 6gij
√

det(g)e1234567,
(6.27)

hence

det
((
(ei � ϕ) ∧ (

ej � ϕ
) ∧ ϕ

)
(e1, . . . , e7)

)
= 67 det(g) det(g)

7
2

= 67 det(g)
9
2 .

(6.28)

Finally, calculating the numerator of eqn (6.26) comes(
Xp � ϕ

) ∧ (
Xp � ϕ

) ∧ ϕ = 6‖Xp‖2vol

= 6‖Xp‖2
√

det(g)e1234567,
(6.29)

and then ((
Xp � ϕ

) ∧ (
Xp � ϕ

)∧) (e1, . . . , e7) = 6‖Xp‖2det(g)
1
2 , (6.30)

which combined with the denominator calculation yields the desired result.
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In the light of the last result, polarizing the expression (6.26) comes

〈Xp, Yp〉 = 6−
2
9

((
Xp � ϕ

) ∧ (
Yp � ϕ

) ∧ ϕ
)

(e1, . . . , e7)(
det

((
(ei � ϕ) ∧ (

ej � ϕ
) ∧ ϕ

)
(e1, . . . , e7)

)) 1
9

. (6.31)

Remark 6.7. In conclusion, for every G2-structure ϕ over M there is a 7-form valued

bilinear form Bϕ given by

Bϕ(X, Y) =
1
6
(X � ϕ) ∧ (Y � ϕ) ∧ ϕ (6.32)

for which there are an unique Riemannian metric gϕ and volume form volϕ such that

gϕ(X, Y)volϕ = Bϕ(X, Y), (6.33)

for every vector field X and Y. In local coordinates there holds

(gϕ)ij =
1

6
2
9

(Bϕ)ij

det(Bϕ)
1
9

. (6.34)

One then says that gϕ and volϕ are respectively the metric and volume form associated

with ϕ. The 3-form subscript is usually lost whenever it is clear which G2-structure is

being considered. Then, eqn (5.58) can be generalized over the manifold M. Namely,

for vector fields X, Y, Z ∈ X(M) the vector cross product

× : X(M) ×X(M) → X(M) (6.35)

is defined be the relation

ϕ(X, Y, Z) = 〈X × Y, Z〉. (6.36)

Then, it follows from eqn (5.66) that

X × (Y × Z) = −〈X, Y〉Z + 〈X, Z〉Y − ψ(X, Y, Z, ·)�, (6.37)

where the sharp isomorphism is taken with respect to the associated metric. Addition-

ally, from (5.73) it comes

〈X × Y, Z × W〉 = 〈X ∧ Y, Z ∧ W〉 + ψ(X, Y, Z, W). (6.38)

The following result, which depicts several important relations between the ϕ and ψ

tensors handled so far, may then be perceived as being direct consequences of these

previous equations.
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Theorem 6.8. Let ϕ be a G2-structure over a 7-dimensional manifold M with associated metric

g. Then, there holds

ϕijk ϕabcgck = giagjb − gibgja + ψijab, (6.39)

ϕijk ϕabcgbjgck = 6gia, (6.40)

ϕijkψabcdgdk = −gia ϕjbc − gib ϕajc − gic ϕabj + gaj ϕibc + gbj ϕaic + gcj ϕabi, (6.41)

ϕijkψabcdgcjgdk = 4ϕiab, (6.42)

ψijklψabcdgckgdl = 4giagjb − 4gibgja + 2ψijab, (6.43)

ψijklψabcdgbjgckgdl = 24gia. (6.44)

Proof. One may consider the volume form vol, Hodge star �, vector cross product ×
and as usual ψ = �ϕ. Fixing the notation, one may take local coordinates (U; x1, . . . , x7)

for which

ϕ =
1
6

ϕijkdxi ∧ dxj ∧ dxk, (6.45)

ψ =
1
24

ψijkldxi ∧ dxj ∧ dxk ∧ dxl . (6.46)

As usual, set gij = g(∂i, ∂j) and let

∂i × ∂j = Ak
ij∂k. (6.47)

Then, by eqn (6.36) it follows that

ϕijk = Al
ijglk (6.48)

ϕijkgkl = Al
ij. (6.49)

Now, from eqn (6.37) one can see that

∂i × (∂j × ∂k) = −gij∂k + gij∂j − ψijkl(dxl)�

Am
il A

l
jk∂m = −gij∂k + gik∂j − ψijklglm∂m.

(6.50)

Then, inserting this expression in the metric with ∂n yields

Am
il Al

jkgmn = −gijgkn + gikgjn − ψijklgmngml

ϕilpgpmgmn ϕjkbgbl = −gijgkn + gikgjn − ψijkn

ϕinl ϕjkbgbl = −gikgin + gijgkn + ψinjk,

(6.51)

where ϕiln = −ϕinl was used. This proves the first equation. The second equation is

then straightforwardly derived by contraction with gbj.
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For the third and fourth equations (where again the latter is obtained by contracting

the former with gcj), one may calculate g(∂a × ∂b, ∂i × (∂j × ∂k)). First, by eqn (6.38) there

holds

g(∂a × ∂b, ∂i × (∂j × ∂k)) = g(∂a ∧ ∂b, ∂i ∧ (∂j × ∂k)) + ψ(∂a, ∂b, ∂i, ∂j × ∂k)

= g(∂a, ∂i)g(∂b, ∂j × ∂k) − g(∂a, ∂j × ∂k)g(∂b, ∂i) + ψabil Al
jk

= gaigbl Al
jk − galgbi Al

jk + ψabil Al
jk

= gai ϕbjk − gbi ϕajk + ψabil ϕnjkgnl .

(6.52)

On the other hand, using (6.50) there follows

g(∂a × ∂b, ∂i × (∂j × ∂k) = g(Am
ab∂m,−gij∂k + gik∂j − ψijklgln∂n)

= −gijgmk Am
ab + gmjgik Am

ab − ψijklgln Am
abgmn

= −gij ϕkab + gik ϕjab − ψijklgln ϕnab.

(6.53)

Hence, one may write the expression

Tijkab = gia ϕjkb − gib ϕjka + gij ϕabk − gik ϕabj + ϕjknψabilgnl + ϕabnψijklgln = 0 (6.54)

It is not enlightening to present explicitly but one can see that from

Tijkab + Tajkbi + Tbijka − Tkijab − Tjkabi = 0 (6.55)

it follows the desired result.

By a similar a reasoning, calculating

g(∂a × (∂b × ∂c), ∂i × (∂j × ∂k)) (6.56)

first using eqn (6.50) and then (6.38) yields

ψabcdψijklgdl = −ϕajk ϕibc − ϕiak ϕjbc − ϕija ϕkbc

+ giagjbgkc + gbigakgjc + gcigjagbk

− giagjcgkb − gbigjagck − gcigakgjb

+ gjaψbcki + gaiψjkbc + gakψijbc

− gabψijkc + gacψijkb,

(6.57)

which can be further contracted with gck and gbj, resulting in the two last identities.
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6.1 G2-splittings of Ω( M)

Let (M, ϕ) be a G2-structure and fix g its associated metric. In this section, an orthogonal

G2-splitting of the space of differential forms

Ω(M) =
7⊕

k=1

Ωk(M) (6.58)

the over the 7-dimensional manifold M is analyzed. Such decomposition shall be

G2-invariant and will be proven to be a great tool to what follows. These results are

extracted from [56, 58].

Any tensor defined by means of ϕ shall be G2-invariant and, therefore, also will the

ones defined by ψ, � and the associated metric g. When k = 0, 1, 6 or 7, then Ωk(M) is

irreducible, but when k = 2, 3, 4 or 5, there exist non-trivial decompositions. Since there

holds

Ωk(M) = �Ω7−k(M), (6.59)

it suffices to understand the decompositions of Ω2(M) and Ω3(M) and then take the

Hodge star to understand their 4 and 5 dimensional counterparts. In what follows, one

writes Ωk
l to mean the l-dimensional part of Ωk(M) according to this splitting.

Theorem 6.9. Let (M, ϕ) be a G2-structure. There is a G2-invariant splitting of the space of

2-forms given by

Ω2(M) = Ω2
7 ⊕ Ω2

14, (6.60)

where

Ω2
7 = {β ∈ Ω2(M) : �(ϕ ∧ β) = 2β} = {X � ϕ : X ∈ X(M)} (6.61)

Ω2
14 = {β ∈ Ω2 : �(ϕ ∧ β) = −β} = {β ∈ Ω2 : β ∧ ψ = 0}. (6.62)

The proof is presented in what follows: indeed, one may define a map

R : Ω2(M) → Ω2(M) (6.63)

by setting

R(β) = �(ϕ ∧ β). (6.64)
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Then, in local coordinates one may write β = 1
2 βijdxi ∧ dxj and R(β) = 1

2(R(β))abdxa ∧ dxb.

Calculating, it comes

R(β) = �(ϕ ∧ β) =
1
2

βij � (dxi ∧ dxj ∧ ϕ) =
1
2

βijgil∂l � �(dxj ∧ ϕ)

= −1
2

βijgilgjm∂l � ∂m � ψ = −1
2

βijgilgjm(
1
2

ψmlabdxa ∧ dxb)

=
1
4

βijψlmabgilgjmdxa ∧ dxb,

(6.65)

where the anti-symmetry of 2-forms and eqn (2.35) were used twice. It then follows

that

(R(β))ab = −1
2

ψabcdgcigdjβij. (6.66)

Now, one can see that R is self-adjoint, so that it splits Ω2(M) orthogonally. Indeed,

notice that

(R2(β))ab =
1
2

ψabcdgcigdj(R(β))ij =
1
4

ψabcdψijstgcigdjgspgtqβpq

=
1
4

(4gasgbt − 4gatgbs + 2ψabst)gspgtqβpq

= βab − βba +
1
2

ψabstgspgtqβpq

= 2βab + (R(β))ab.

(6.67)

Then R2 = 2Id + R, so that (R − 2Id)(R + Id) = 0. It follows that the eigenvalues for R

are precisely +2 and −1, which gives the presented splitting for Ω2(M).

Now, in order to derive the second description of each part Ω2
k notice that if X ∈ X(M),

then

X � ϕ = Xk ϕijk. (6.68)

Besides, the condition

ψ ∧ β = 0 (6.69)

is equivalent by eqn (2.35) to

βijgilgjm ϕlmk = 0. (6.70)

Proposition 6.10. Let β = 1
2 βijdxi ∧ dxj ∈ Ω2. Then,

β ∈ Ω2
7 ⇐⇒ βijgilgjmψlmab = 4βab ⇐⇒ βij = Xk ϕijk,

β ∈ Ω2
14 ⇐⇒ βijgilgjmψlmab = −2βab ⇐⇒ βijgilgjm ϕlmk = 0.

(6.71)
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Proof. In order to prove the statement one may use several contractions from Theorem

6.8. Starting with Ω2
7, suppose that

βijgilgjmψlmab = 4βab. (6.72)

Multiplying it by ϕrij yields

βijgilgjmψlmab ϕrij = 4βab ϕrij

βij(4ϕrab) = 4βab ϕrij

βij ϕrab ϕ ab
s = βab ϕrij ϕ

ab
s

βij(6grs) = βab ϕ ab
s ϕrij

βij =
1

42
βab ϕrab ϕrij.

(6.73)

Then, just set Xr = 1
42 βab ϕrab. It follows that

βij = Xr ϕrij, (6.74)

which proves the first implication. Conversely, suppose βij = Xk ϕijk for some X ∈ X(M).

Then,

βijgilgjmψlmab = Xk ϕijkgilgjmψablm

= 4Xk ϕkab

= 4βab,

(6.75)

as wanted.

For the Ω2
14 part, suppose

βijgilgjmψlmab = −2βab. (6.76)

Then, multiplying by ϕsij yields

βijψablm ϕsijgilgjm = −2βab ϕsij

4βij ϕsab = −2βab ϕsij,
(6.77)

and then further multiplying both sides by gisgja gives

βijgisgja ϕsab = −1
2

βab ϕsijgisgja

= 0.
(6.78)
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Finally, if βijgilgjm ϕlmk = 0 then since

ψlmab = −glagmb + glbgma + ϕlmr ϕ r
ab (6.79)

there holds

βijgilgjmψlmab = βijgilgjm(−glagmb + glbgma + ϕlmr ϕ r
ab )

= −βab + βba

= −2βab,

(6.80)

which completes the proof.

Remark 6.11. Notice that since G2 ⊂ SO(7) then, in the Lie algebra level, one has

g2 ⊂ so(7) � Ω2(M), (6.81)

in such a way that, in fact, it is possible to see that the 14-dimensional part Ω2
14 of Ω2(M)

has

g2 � Ω2
14 (6.82)

as Lie algebras. Since the splitting is orthogonal, there holds

(g2)
⊥ = Ω2

7 (6.83)

with respect to the associated metric g.

Lemma 6.12. If β ∈ Ω2
14 then

βabgbl ϕlpq = βqlglm ϕmap − βplglm ϕmaq. (6.84)

Proof. By the last proposition, since β ∈ Ω2
14 one has βab = − 1

2 βijgimgjnψmnab. Calculat-

ing, it comes

βabgbl ϕlpq = −1
2

(
βijgimgjnψmnab

)
ϕlpqgbl

= −1
2

βijgimgjn
(
− gpm ϕqna − gpn ϕmqa − gpa ϕmnq

+ gmn ϕpna + gnq ϕmpa + gaq ϕmnp

)
= −1

2

(
βpjgjn ϕqna + βipgim ϕmqa − βqjgjn ϕpnq − βiqgim ϕmpa

)
= βqlglm ϕmap − βplglm ϕmaq,

(6.85)

where βijgilgjm ϕlmk = 0 from last proposition was also used.
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Proposition 6.13. The space Ω2
14 ⊂ Ω2(M) is a Lie algebra with respect to the commutator

[β, μ]ij = βil glmμmj − μil glmβmj. (6.86)

Proof. Since so(7) � Ω2(M) already has a Lie algebra structure, it suffices to show that

the commutator is closed in Ω2
14. By the previous results, it is known that [β, μ] ∈ Ω2

14 if

and only if

[β, μ]ijgiagjb ϕabc = 0. (6.87)

Hence, using eqn (6.84) it follows that

[β, μ]ijgiagjb ϕabc = βil glmμmjgiagjb ϕabc − μil glmβmjgiagjb ϕabc

= glmμmjgjb (βcrgrs ϕslb − βbrgrs ϕslc)− μil glmβmjgiagjb ϕabc

= −βbrgrs ϕslcglmμmjgjb − μil glmβmjgiagibgjb ϕabc

= −ϕr
lcβ

j
rμl

j + ϕb
acβl

jμ
a
l

= 0,

(6.88)

as desired.

In order to analyze the space of 3-forms Ω3(M) let (Ai
j) ∈ M(7, R) = gl(7) be a real

matrix. Then, etA ∈ GL(7, R) and one can consider the action

etA · ϕ =
1
6

ϕijk(etAdxi) ∧ (etAdxj) ∧ (etAdxk). (6.89)

Then, it follows that

d
dt

∣∣∣∣∣
t=0

etA · ϕ =
1
6

(Al
i ϕl jk + Al

j ϕilk + Al
k ϕijl)dxi ∧ dxj ∧ dxk. (6.90)

It is then possible to use the associated metric g to identify the matrix A ∈ Γ(T∗M⊗ TM)

with a bilinear form A = (Aij) = (Al
i glj). Notice that the space of sections Γ(T∗M ⊗ T∗M)

of bilinear forms can be decomposed by

Γ(T∗M ⊗ T∗M) � S2(M) ⊕ Ω2(M), (6.91)

where as usual

S2(M) = Γ
(

Sym2 (T∗M)
)

. (6.92)

The trace defined by g

Trg(A) = Aijgij (6.93)
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may be considered as well. Now, if h ∈ S2(M) one can write its traceless part as

h0 = h − 1
7
(
Trgh

)
g, (6.94)

yielding a decomposition

S2(M) � Ω0(M) ⊕ S2
0 (M) (6.95)

where S2
0 (M) corresponds to sections of traceless symmetric bilinear forms over M.

Considering the already obtained decomposition of Ω2(M), one can see that

Γ(T∗M ⊗ T∗M) � Ω0(M) ⊕ S2
0 (M) ⊕ Ω2

7 ⊕ Ω2
14. (6.96)

Then, one may write

A =
1
7

(TrA)g + A0 + A7 + A14, (6.97)

with A0 traceless symmetric and Ai ∈ Ω2
i for i = 7 or 14. Then, the application

F : Γ(T∗M ⊗ T∗M) → Ω3(M) (6.98)

given by

F(A) =
d
dt

∣∣∣∣∣
t=0

etA · ϕ (6.99)

is a linear map between Ω0 ⊕ S2
0 (M) ⊕ Ω2

7 ⊕ Ω2
14 and Ω3(M). The next result gives the

G2 splitting for Ω3(M), as follows.

Theorem 6.14. Let F : Ω0 ⊕ S2
0 (M) ⊕ Ω2

7 ⊕ Ω2
14 → Ω3 be as previously defined. Then, its

kernel is equal to Ω2
14 and the parts Ω0, S2

0 (M) and Ω2
7 are isomorphically mapped, respectively,

onto Ω3
1, Ω3

27 and Ω3
7, which are given by

Ω3
1 = { f ϕ : f ∈ C∞(M)}, (6.100)

Ω3
7 = {X � ψ : X ∈ X(M)}, (6.101)

Ω3
27 = {hijgjldxi ∧ (∂l � ϕ) : hij = hji, Trg(h) = 0}. (6.102)

Proof. Since G2 is the group preserving ϕ then by definition g2 = ker F. By dimensional

count it suffices to show that Ω2
14 is inside the kernel. One may then write for β ∈ Ω2(M)

the decomposition

βij = (β7)ij + (β14)ij , (6.103)

for which, as before, there holds

(β14)ij =
1
2
(β14)ab gapgbqψpqij. (6.104)
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Then, using the contraction between ϕ and ψ one has

(F (β14))ijk = (β14)
l
i ϕl jk + (β14)

l
j ϕilk + (β14)

l
k ϕijl

= 2
(
(β14)

l
i ϕl jk + (β14)

l
j ϕilk + (β14)

l
k ϕijl

)
,

= 2 (F (β14))ijk ,

(6.105)

and then F (β14) = 0 so that Ω2
14 ⊂ g2 = ker F, as wanted. In addition, it follows that F

is injective in Ω0 ⊕ S2
0 (M) ⊕ Ω2

7.

Maintaining the notation βij = (β7)ij + (β14)ij for β ∈ Ω2, one may now analyze the

image of Ω2
7 by F. From Proposition 6.10 it follows that

(β7)ij = βk ϕkij, (6.106)

where

βk =
1
42

(β7)ij ϕabcgkcgiagjb. (6.107)

It then follows that

(F(β7))ijk =
1

42
((β7)n ϕnilglm ϕmjk + (β7)n ϕnjlglm ϕimk + (β7)n ϕnklglm ϕijm)

=
1
42

(β7)n(gnjgik − gnkgij + ψnijk + gnkgji − gnigjk − ψnjik + gnigkj − gnjgki + ψnkij)

=
3
42

(β7)nψnijk

= Xnψnijk,

(6.108)

where Xn = 1
14(β7)n. One may therefore conclude that

F(Ω2
7) = {X � ψ : X ∈ X(M)}, (6.109)

which is denoted by Ω3
7.

The image through F of the symmetric part S2(M) = Ω0(M) ⊕ S2
0 (M) can then be

perceived. Obviously, there holds

F(Ω0(M)) = { f ϕ : f ∈ C∞(M)}, (6.110)

which is denoted Ω3
1. Besides, if hij ∈ S2

0 (M) then

F(hij) =
1
6

(hl
i ϕl jk + hl

j ϕilk + hl
k ϕijl)dxi ∧ dxj ∧ dxk

=
1
2

(hl
i ϕl jk)dxi ∧ dxj ∧ dxk

= hl
idxi ∧ (∂l � ϕ)

= hijgjldxi ∧ (∂l � ϕ),

(6.111)
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and then

F(S2
0 (M)) = {hijgjldxi ∧ (∂l � ϕ) : hij = hji, Trg(h) = 0} (6.112)

is the Ω3
14-factor, as wanted.

Remark 6.15. It follows that, in a G2-structure (M, ϕ), a 3-form η ∈ Ω3(M) is completely

characterized by the data given by a vector field X ∈ X(M) and a symmetric 2-tensor h

(which encompasses all of S = Ω0 ⊕ S0). It reads

η = hijgjldxi ∧ (∂l � ϕ) + Xl∂l � ψ

=
1
2

hl
i ϕl jkdxi ∧ dxj ∧ dxk +

1
6

Xlψlijkdxi ∧ dxj ∧ dxk.
(6.113)

Furthermore, since hij = 1
7Trg(h)gij + h0

ij, where h0
ij corresponds to the traceless part of

hij, it follows that

F(hij) =
1
2

hl
i ϕl jkdxi ∧ dxj ∧ dxk

=
3
7

Trg(h)ϕ +
1
2

(h0)l
i ϕl jkdxi ∧ dxj ∧ dxk,

(6.114)

which explicitly depicts the Ω3
1 and Ω3

27 components.

A G2-structure ϕ over M determines a Riemannian metric g and therefore one may

consider the Levi-Civita connection ∇ 1. One may then analyze the tensor field

∇ϕ ∈ Γ
(

T∗M ⊗ Λ3 (T∗M)
)

. (6.115)

In the Riemannian manifold case one was interested in the metric-compatibility property

(which was seen to be equivalent to ∇g = 0). Then, one may define a similar notion for

the G2-structure case.

Definition 6.16. Let (M, ϕ) be a G2-structure and consider the tensor field ∇ϕ ∈ Γ
(
T∗M ⊗ Λ3 (T∗M)

)
.

If

∇ϕ = 0, (6.116)

then ϕ is called a torsion-free G2-structure.

Theorem 6.17. Let X be a vector field over M. Then, ∇X ϕ lies in the subspace Ω3
7 of the

G2 splitting of Ω3(M). It follows that the covariant derivative ∇ϕ is a smooth section of

T∗M ⊗ Λ3
7 (T

∗M).
1 The notation ∇g is dropped for simplicity, since more general connections ∇ are not considered in this

section.
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Proof. Since any 3-form η can be written as η = F(A) for an unique A = h + A7, where

h ∈ S2(M) and A7 ∈ Ω2
7, it follows that

〈F(A),∇X ϕ) =
1
6

(F(A))ijk(∇X ϕ)abcgiagjbgkc

=
1
6

(Al
i ϕl jk + Al

j ϕilk + Al
k ϕijl)Xm∇m ϕabcgiagjbgkc

=
1
2

Al
i ϕl jkXm∇m ϕabcgiagjbgkc

=
1
2

AlaXm ϕl jk∇m ϕabcgjbgkc.

(6.117)

Now, Theorem 6.8 gives ϕijk ϕabcgjbgkc = 6gia. Taking the covariant derivative ∇m and

using the compatibility with g, it comes

(∇m ϕl jk)ϕabcgjbgkc = −ϕl jk(∇m ϕabc)gjbgkc. (6.118)

Therefore, eqn (6.117) is anti-symmetric in the indices l and a. Hence, the symmetric

part of Ala does not contribute to the expression, which gives the result.

Remark 6.18. The last result shows that

∇ϕ ∈ Γ
(

T∗M ⊗ Λ3
7 (T

∗M)
)

, (6.119)

so that for each X ∈ X(M) there holds

∇X ϕ ∈ Ω3
7 = {Y � ψ : Y ∈ X(M)}. (6.120)

With such characterization in mind, one may consider the following definition.

Definition 6.19. Let (M, ϕ) be a G2-structure. The torsion tensor of the G2-structure is given

by T ∈ Γ(T∗M ⊗ T∗M) such that

∇X ϕ = 2T(X) � ψ, (6.121)

for each X ∈ X(M).

In index notation, one has

∇m ϕijk = 2Tmpgpqψqijk, (6.122)

and contracting with ψnabcgaigbjgck yields

Tmn =
1

48
∇m ϕijkψnabcgiagjbgkc. (6.123)

It follows that the G2-structure satisfies ∇ϕ = 0 if an only if T = 0 and a classic result on

torsion-free G2-structures is given by
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Corollary 6.20. [58,65] The G2-structure ϕ over M is torsion free if and only if dϕ = 0 and

dψ = 0.

Moreover, since

T ∈ Γ(T∗M ⊗ T∗M) � Ω0(M) ⊕ S2
0 (M) ⊕ Ω2

7 ⊕ Ω2
14, (6.124)

one may decompose the torsion into four independent parts through

T = T1 + T0 + T7 + T14, (6.125)

where T1 = 1
7Trg(T)g and T0 is traceless symmetric. Considering the vanishing or

nonvanishing of each of its parts, a number of 24 = 16 distinct torsion classes of

G2-structures emerge from this splitting. The torsion can be seen to connect with the

curvature tensor of the underlying space and, in fact, some results are known depending

on the class. For instance, if one considers the scalar case where all parts vanish but

T1 	= 0, then the induced metric g can be shown to be positive Einstein with

Rij =
3
8

λ2gij (6.126)

and there holds dϕ = λψ [56, 58]. More details on torsion classes of G2-structures can be

found in [56–58, 66].

6.2 octonion bundle

Given a G2-structures one may present a generalization of the octonion algebra over

a 7-dimensional manifold M, called the octonion bundle OM, as seen in [33, 55]. Fix,

from now on, the G2-structure (M, ϕ) with associated metric g and volume form vol.

Definition 6.21. The octonion bundle OM over M is the rank 8 vector bundle

OM = Λ0(M) ⊕ TM, (6.127)

where Λ0(M) = M × R is the trivial line bundle and for each p ∈ M

OpM = R ⊕ TpM. (6.128)
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This bundle encompasses the real/imaginary decomposition of an octonion. A section

A ∈ Γ(OM) will be simply called an octonion. There are globally defined projections

Re : Γ(OM) → Ω0(M),

Im : Γ(OM) → X(M),
(6.129)

and the octonion A can generally be written as

A = Re(A) + Im(A) = (Re(A), Im(A)) =

(
Re(A)

Im(A)

)
. (6.130)

As before, the conjugation can also be defined by means of the equation

Ā = (Re(A),−Im(A)) . (6.131)

The metric g over M may induce a metric over OM, called the octonion metric. Namely,

for A = (a, α) ∈ Γ(OM) such metric is taken as

‖A‖2 = 〈A, A〉 = a2 + g(α, α)

= a2 + |α|2.
(6.132)

Definition 6.22. Given a G2-structure (M, ϕ) the vector cross product ×ϕ with respect to ϕ

can be defined by the expression

〈α ×ϕ β, γ〉 = ϕ(α, β, γ), (6.133)

for every vector fields α, β, γ ∈ X(M).

This vector cross product obviously satisfy all properties obtained in the first section.

For now on, whenever it is clear as to which 3-form ϕ the definition of the cross product

takes use, it shall be simply denoted by ×.

Definition 6.23. Let A, B ∈ Γ(OM) be octonions with A = (a, α) and B = (b, β). Then, the

octonions product A ◦ϕ B with respect to ϕ is defined by

A ◦ϕ B =

(
ab − 〈α, β〉

aβ + bα + α ×ϕ β

)
∈ Γ(OM). (6.134)

Remark 6.24. Notice that this definition mimics eqn (5.82). In fact, the G2-structure

globally provides with the information needed to define a cross vector × over the

tangent bundle, which is the most important ingredient when defining a normed

division algebra product. Whenever it is clear, the octonion product is simply denoted

by juxtaposition AB and it obviously has the expected properties from the division

algebra O developed in the last Chapter.
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As before, the commutator and associator operations can also be considered: let A, B

and C be octonions over M, with A and B as before and C = (c, γ). Then,

[A, B] = AB − BA

= 2α × β

= 2ϕ(α, β, ·)�,
(6.135)

and

[A, B, C] = (AB)C − A(BC)

= 2ψ(α, β, γ, ·)�.
(6.136)

This construction shows that given a G2-structure over a 7-manifold, it is possible to

fully transfer the octonion algebra structure to OM. Some useful identities in this

configuration can be perceived as follows [33].

Lemma 6.25. Let A = (0, α) be a pure imaginary octonion. Then, its exponential eA =
∞

∑
k=0

1
k!

Ak

is given by

eA = cos (‖α‖) + α
sin (‖α‖)

‖α‖ . (6.137)

Proof. It follows directly from the definition of octonion multiplication that

A = α,

A2 = −‖α‖2,

A3 = −‖α‖2α,

A4 = ‖α‖4,

(6.138)

and so on. It follows that,

eA = (1 − 1
2
‖α‖2+

1
4!
‖α‖4− . . .) + (‖α‖− 1

3!
‖α‖3+

1
5!
‖α‖5− . . .)

α

‖α‖
= cos(‖α‖) + α

sin(‖α‖)
‖α‖ .

(6.139)

Corollary 6.26. Let B = (b, β) ∈ Γ(OM) be a nonzero octonion. Then, for every k ∈ Z there

holds

Bk = ‖B‖k
(

cos (kθ) + β̂
sin (kθ)

sin (θ)

)
, (6.140)

where β̂ = β
‖B‖ and θ ∈ R with cos (θ) = b

‖B‖ and sin (θ) = ‖β̂‖.
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Lemma 6.27. For each octonion A, B, C ∈ Γ(OM) and k ∈ N there holds

(1) [A, B, C] = −[Ā, B, C],

(2) [Ak, A, C] = 0,

(3) A[A, B, C] = [A, B, C]Ā,

(4) [A, AkB, C] = Āk[A, B, C]

(5) [A, BAk, C] = [A, B, C]Āk,

(6) [Ak+1, B, C] = [Ak, B, C]Ā + [A, B, C]Ak.

In particular, the last equation gives for k = 1 and k = 2 the relations

(1) [A2, B, C] = [A, B, C](A + Ā),

(2) [A3, B, C] = [A, B, C](Ā2 + ‖A‖2+A2).

Remark 6.28. Let B ∈ Γ(OM) and consider the right and left translations

RB, LB : Γ(OM) → Γ(OM) (6.141)

respectively given by

RB A = AB

LB A = BA.
(6.142)

When B 	= 0 these maps are invertible with (RB)−1 = RB−1 and similarly for LB. Besides,

as already seen, they satisfy

Lemma 6.29. Let A, B, C ∈ Γ(OM). There holds

〈RB A, C〉 = 〈A, RBC〉 (6.143)

〈LB A, C〉 = 〈A, LBC〉. (6.144)
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6.3 isometric G2-structures

One would like to known if, given a G2-structure (M, ϕ) with associated metric gϕ, there

is another G2-structure (M, ϕ̃) with associated metric gϕ̃ such that

gϕ = gϕ̃ (6.145)

all over M. It turns out that the answer is positive so that for a fixed G2-structure

ϕ there is a family parameterized by S7/Z2 � RP7 of other G2-structures with the

same associated metric gϕ [67]. Indeed, notice that in general this can be analyzed by

looking into the quotient SO(7)/G2, which is 7-dimensional, and can be shown to be

diffeomorphic to the projective space RP7. This notion is investigated in this section

and its relation with the octonion bundle OM is considered.

Definition 6.30. Let V ∈ Γ(OM) be a non-vanishing octonion. Then, the adjoint map

AdV : Γ(OM) → Γ(OM) is defined by the expression

AdV(A) = VAV−1, (6.146)

for each A ∈ Γ(OM).

Remark 6.31. Notice that the adjoint map is invertible, since AdV−1 = (AdV)−1. Also,

there holds

AdλV = AdV , (6.147)

so that one may assume that V is unitary, without loss of generality. Besides, it preserves

the octonion metric which can be seen by the straightforward computation

〈AdV(A), AdV(B)〉 = 〈VAV−1, VBV−1〉

=
1

‖V‖2 〈VAV, VBV−1〉

= 〈V
(

V−1
)

A, BV−1V〉
= 〈A, B〉.

(6.148)

Therefore, AdV ∈ O(8). Moreover, AdV preserves the real part of O, so that it maps

imaginary octonions to imaginary octonions. Therefore, it restricts to pure imaginary

octonions, with restriction denoted by

AdV |ImO∈ O(7). (6.149)
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For simplicity, denote AdV |ImO= AdV . Let also β be a pure imaginary octonion and

V = (v0, v). There holds

AdV (β) = VβV−1

=
1

‖V ‖2 (v0 + v) β (v0 − v)

=
1

‖V ‖2 (v0 + v) (〈v, β〉 + v0β + v × β)

=
1

‖V ‖2

(
v2

0β + 2v0v × β + v〈v, β〉 + v × (v × β)
)

=
1

‖V ‖2

((
v2

0 − ‖v‖2
)

β + 2v0v × β + 2v〈v, β〉
)

.

(6.150)

It follows that, in index notation:(
AdV |ImO

)a

b
=

1
||V||2

((
v2

0 − |v|2
)

δa
b − 2v0(v � ϕ)a

b + 2vavb

)
. (6.151)

Furthermore, it may be seen that det
(

AdV |ImO

)
= +1, so that AdV |ImO∈ SO(7) [33].

Since AdV |ReO= +1, there follows AdV ∈ SO(8). The adjoint map also satisfy the

following identities:

Lemma 6.32. Let V be a nowhere-vanishing octonion. Then, for every A, B ∈ Γ(OM) there

holds

(1) (VA)(BV−1) = AdV(AB) + [A, B, V−1](V + V),

(2) (AV−1)(VB) = AB + [A, B, V−1]V.

Proposition 6.33. Let (M, ϕ) be a G2-structure and suppose V is a nowhere-vanishing octonion.

Then, for every A, B ∈ Γ(OM) there holds

(AdV (A)) (AdV(B)) = AdV(AB) + [A, B, V−1]
(

V + V̄ +
1

‖V‖2 V3
)

. (6.152)

Moreover, there holds

AdV−1 ((AdV(A)) (AdV(B))) = AB + [A, B, V−3]V3 (6.153)

=
(

AV−3
) (

V3B
)

. (6.154)
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Proof. By using the second identity from Lemma 6.32 and the ones found in Lemma

6.27, it follows that

(AdV(A)) (AdV(B)) =
(

VAV−1
) (

VBV−1
)

= (VA)
(

BV−1
)

+ [VA, BV−1, V−1]V

= (VA)
(

BV−1
)

+ V̄[A, B, V−1]
V2

‖V‖2

= (VA)
(

BV−1
)

+ [A, B, V−1]
V3

‖V‖2 .

(6.155)

Now, the first equation from Lemma 6.32 can be used to derive

(AdV(A)) (AdV(B)) = AdV(AB) + [A, B, V−1] (V̄ + V) + [A, B, V−1]
V3

‖V‖2

= AdV(AB) + [A, B, V−1]
(

V̄ + V +
V3

‖V‖2

)
,

(6.156)

which proves the first identity. Now, noting that the subalgebra generated by the two

elements V and [A, B, V−1] is associative and applying AdV−1 to the last equation yields

AdV−1 ((AdV(A)) (AdV(B))) = AB + V−1
(

[A, B, V−1]
(

V̄ + V
V3

‖V‖2

))
V

= AB +
(

V−1[A, B, V−1]
)((

V̄ + V +
V3

‖V‖2

)
V
)

.

(6.157)

Using the identities from Lemma 6.27, there holds

AdV−1 ((AdV(A)) (AdV(B))) = AB − ([A, B, V]V)

((
V̄ + V

V3

‖V‖2

)
V

‖V‖4

)
= AB − [A, B, V]

((
V̄ + V

V2

‖V‖4

))
= AB − [A, B, V]

(
V̄2 + ‖V‖2+V2

) V3

‖V‖6 .

(6.158)

From the last equation in Lemma 6.27 and the second one in Lemma 6.32, one can

finally see that

AdV−1 ((AdV(A)) (AdV(B))) = AB − ‖V‖−6[A, B, V3]V3

= AB + ‖V‖−6[A, B, V̄3]V3

= AB + [A, B, V−3]V3

=
(

AV−3
) (

V3B
)

,

(6.159)
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as wanted.

Now, given a non-vanishing octonion V one can then define a new octonion product

◦V3 given by

A ◦V3 B = AdV((AdV(A))(AdV(B))) = (AV3)(V−3B). (6.160)

It would be then natural to ask what kind of three form ϕV3 would define such product.

Notice that for every pure imaginary octonions A, B and C there holds

ϕ (AdV−1(A), AdV−1(B), AdV−1(C)) = 〈AdV−1(A) × AdV−1(B), AdV−1(C)〉
= 〈(AdV−1(A))(AdV−1(B)), AdV−1(C)〉.

(6.161)

since the adjoint restricts to the imaginary part. Obviously AdV is self-adjoint so that

ϕ (AdV−1(A), AdV−1(B), AdV−1(C)) = 〈AdV(AdV−1(A)AdV−1(B)), C〉
= 〈A ◦V3 B, C〉
= ϕV3(A, B, C).

(6.162)

Therefore,

ϕV3(A, B, C) = ϕ(AdV−1(A), AdV−1(B), AdV−1(C)). (6.163)

Remark 6.34. Notice that since AdV is invertible, then eqn (6.163) shows that ϕV3 is in

the GL(7, R) orbit of the original G2-structure ϕ. Moreover, since AdV preserves the

metric associated with ϕ, it follows that ϕV3 has the same metric associated as ϕ. In

order to better understand these relations and the octonion product defined by means

of eqn (6.160), one can define the following map:

Definition 6.35. Let (M, ϕ) be a G2-structure. Then, for each non-vanishing octonion V =

(v0, v) define the map of 3-forms σV : Ω3(M) → Ω3(M) given by

σV(ϕ) =
1

‖V‖2

((
v2

0 − ‖v‖2
)

ϕ − 2v0v � ψ + 2v ∧ (v � ϕ)
)

. (6.164)

Theorem 6.36. Let (M, ϕ) be a G2-structure. Then, for any nowhere-vanishing octonion V

there holds

σV3(ϕ)(·, ·, ·) = ϕ(AdV−1(·), AdV−1(·), AdV−1(·)). (6.165)
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Proof. For pure imaginary octonions A, B and C there holds

ϕV3 (A, B, C) = ϕ (AdV−1(A), AdV−1(B), AdV−1(C))

= 〈AdV−1(A)AdV−1(B), AdV−1(C)〉
= 〈AdV(AdV−1(A)AdV−1(B)), C〉
= 〈AB + [A, B, V3]V−3, C〉
= ϕ(A, B, C) + 〈[A, B, V3]V−3, C〉.

(6.166)

Now, let V3 = (w0, w) and so ‖V3‖2= w2
0 + |w|2= W. Then, there holds

[A, B, V3]V−3 = [A, B, w]
(w0,−w)

W

=
w0

W
[A, B, w] − 1

W
[A, B, w] × w.

(6.167)

In order to expand in index notation one may write w = wded and use ψ in order to

express the associator. It follows that

〈[ea, eb, w], ec〉 = 〈2gijψjabdwdei, ec〉
= 2gijψjabdwd〈ei, ec〉
= 2gijgicψjabdwd

= 2ψcabdwd.

(6.168)

Furthermore,

〈[ea, eb, w] × w, ec〉 = 〈2ψm
abdwdwn(em × en), ec〉

= 2ψm
abdwdwn〈em × en, ec〉

= 2ψm
abd ϕmncwdwn.

(6.169)

Considering the previous relations, it follows that

(ϕV3)abc = ϕabc +
2w0

W
ψcabdwd − 2

W
ϕcmnψm

abdwdwn. (6.170)

Now, (6.41) can be used in the form

ϕabcψ c
mnp = −3

(
ga[m ϕnp]b − gb[m ϕnp]a

)
, (6.171)

yielding

ϕcmnψm
abdwdwn = ‖u‖2ϕabc − 3w[a ϕbc]mwm, (6.172)
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which turns eqn (6.170) into

(ϕV3)abc =
(

1 − 2
W

|w|2
)

ϕabc +
2w0

W
ψcabdwd +

6
W

w[a ϕbc]mwm, (6.173)

which in coordinate-free notation is given by

ϕV3 =
1

W

((
w2

0 − ‖w‖2
)

ϕ − 2wow � ψ + 2w ∧ (w ∧ ϕ)
)

, (6.174)

as claimed.

Remark 6.37. The last result shows that ◦V3 = ◦ if and only if V3 is real. Since one

may assume V to be unitary, then the octonion product is preserved by AdV if an only

if V6 = 1. Furthermore, from Proposition 6.33, the octonion product defined by the

G2-structure σV(ϕ) for a nonvanishing octonion V is given, for A, B ∈ Γ(OM), by

A ◦V B = A ◦σV(ϕ) B = AB + [A, B, V]V−1 = (AV)(V−1B). (6.175)

Lemma 6.38. Let U and V be nonvanishing octonions. Then,

U ◦ϕ V = U ◦V V (6.176)

Proof. Let V = (v0, v). Then, the result comes directly from the octonion product

definition and from the calculation

v � σV(ϕ) =
1
V

v �
((

v2
0 − ‖v‖2

)
ϕ − 2v0v � ψ + 2v ∧ (v � ϕ)

)
=

1
V

((
v2

0 − ‖v‖2
)

v � ϕ + 2‖v‖2v � ϕ
)

= v � ϕ.

(6.177)

Therefore, multiplying by V using the product ◦V defined by σV(ϕ) is the same as using

the product ◦ defined by ϕ. One may then write the expression UV without specifying

which octonion product is being taken.

Remark 6.39. Since σV(ϕ) defines a new product ◦V then given A, B, C ∈ Γ(OM) one

may denote their associator with respect to ◦V by

[A, B, C]V = (A ◦V B) ◦V C − A ◦V (B ◦V C). (6.178)

Theorem 6.40. Let (M, ϕ) be a G2-structure. Then, given nowhere-vanishing octonions U and

V there holds

σU(σV(ϕ)) = σUV(ϕ). (6.179)
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6.4 octonion covariant derivative

Given a G2-structure (M, ϕ) one may analyze the relation between the octonion product

over OM and the (Levi-Civita) connection given by the associated metric g, being the

torsion naturally introduced. As usual, the connection ∇ satisfies the Leibniz rule

between the product of two vector fields, but extending it to the octonion bundle one

may investigate how ∇ behaves with respect to it.

Let (M, ϕ) be a G2-structure and fix from now on the Levi-Civita connection ∇ of the

metric g associated with ϕ. If A = (a, α) ∈ Γ(OM) then one may define the extension

∇X A = (∇Xa,∇Xα) (6.180)

for each X ∈ X(M).

Proposition 6.41. Let A, B ∈ Γ(OM). Then, for every X ∈ X(M) there holds

∇X (AB) = (∇X A) B + A (∇XB)− [T(X), A, B], (6.181)

where T(X) = (0, X � T) and T is the torsion of the G2-structure ϕ.

Proof. One may write A = (a, α) and B = (b, β). Then, using the octonion product

definition there holds

∇X (AB) = ∇X

(
ab − 〈α, β〉

aβ + bα + ϕ(α, β, ·)�

)
=

(
(∇Xa) b + a (∇Xb)−∇X (〈α, β〉)
∇X (aβ + bα) + ∇X

(
ϕ(α, β, ·)�) .

)
, (6.182)

whereas

(∇X A) B =

(
(∇Xa) b − 〈∇Xα, β〉

(∇Xa) β + b (∇Xα) + (∇Xα)× β

)
, (6.183)

and similarly for A (∇XB). Then, notice that since ∇ is metric-compatible and satisfies

the Leibniz rule, it follows

∇X (AB)− (∇X A) B − A (∇XB) =

(
0

∇X
(

ϕ(α, β, ·)�)− (∇Xα) × β − α × (∇Xβ)

)
.

(6.184)

However,

(∇X ϕ) (α, β, ·)� = ∇X

(
ϕ(α, β, ·)�

)
− ϕ(∇Xα, β, ·)� − ϕ(α,∇Xβ, ·)�

= ∇X

(
ϕ(α, β, ·)�

)
− (∇Xα)× β − α × (∇Xβ) ,

(6.185)
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and hence

∇X(AB) = (∇X A) B + A (∇XB)−
(

0

(∇X(ϕ)) (α, β, ·)�

)
. (6.186)

From eqn (6.121) one has ∇X(ϕ) = 2T(X) � ψ, and therefore

(∇X(ϕ)) (α, β, ·)� = 2ψ (T(X), α, β, ·)�

= [T(X), α, β],
(6.187)

which gives the result.

Remark 6.42. It is straightforward to see that if either A or B is real then the associator

vanishes and one may recover the standard Leibniz rule for ∇. Also, notice that

[T(X), A, B] = 0 (6.188)

identically for all X ∈ X(M) and A, B ∈ Γ(OM) if and only if T = 0, that is, the

Levi-Civita connection is compatible with octonion multiplication if and only if the

G2-structure is torsion-free.

It is possible to adapt the covariant derivative in order to make it compatible with

octonion multiplication [33]. Note that the torsion tensor T may be considered as a pure

octonion-valued 1-form over M, that is

T ∈ Γ(T∗M ⊗ Im(OM)) = Ω1(Im(OM)), (6.189)

with (
0

X � T

)
= T(X) ∈ Γ(Im(OM)). (6.190)

Definition 6.43. Define for each vector field X ∈ X(M) the octonion covariant derivate

DX : Γ(OM) → Γ(OM) (6.191)

by the relation

DX A = ∇X A − AT(X), (6.192)

for each A ∈ Γ(OM).

Remark 6.44. By straightforward computation there holds

DX1 = −T(X), (6.193)

for every X ∈ X(M). One may see that this derivation satisfies a quasi-derivation

property with respect to the octonion product, as follows.
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Proposition 6.45. Let A, B ∈ Γ(OM) and X ∈ X(M). It follows that

DX (AB) = (∇X A) B + A (DXB) (6.194)

Proof. Using Definition (6.192) directly, it comes

DX(AB) = ∇X(AB) − (AB)T(X), (6.195)

and then using Proposition (6.180) and associator properties there follows

DX(AB) = (∇X A) B + A (∇XB)− [T(X), A, B] − (AB)T(X)

= (∇X A) B + A (∇XB)− [A, B, T(X)] − (AB)T(X)

= (∇X A) B + A (∇XB)− A(BT(X)) + (AB)T(X) − (AB)T(X)

= (∇X A) B + A (DXB) .

(6.196)

One may also show that D has a kind of metric-compatibility with respect to the OM

extended metric, namely

g(A, B) = Re(A)Re(B) + g(Im(A), Im(B)), (6.197)

where g in the right-hand side denotes the original associated metric over M.

Proposition 6.46. Let A, B ∈ Γ(OM) and X ∈ X(M). There holds

∇X(g(A, B)) = g(DX A, B) + g(A, DXB). (6.198)

Proof. One may see that

g(DX A, B) = g(∇X A − AT(X), B)

= g(∇X A, B) − g(AT(X), B)

= g(∇X A, B) − g(T(X), AB),

(6.199)

where Lemma 6.29 was used. Similarly

g(A, DXB) = g(A,∇XB) − g(A, BT(X))

= g(A,∇XB) − g(T(X), BA).
(6.200)

Combining the previous relations yields

g(DX A, B) + g(A, DXB) = g(∇X A, B) + g(A,∇XB) − g(T(X), AB − BA). (6.201)
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Now, T(X) is pure imaginary whereas AB + BA is real, so that their inner product is

zero. Therefore,

g(DX A, B) + g(A, DXB) = g(∇X A, B) + g(A,∇XB) = ∇X(g(A, B)). (6.202)

One may now consider a change of reference given by a nonvanishing octonion V

by means of σV(ϕ) in eqn (6.175) yielding a new octonion product ◦V , as previously

analyzed.

Lemma 6.47. Let V be a nonvanishing octonion. Then, for every A, B ∈ Γ(OM) and any

X ∈ X(M) there holds

∇X (A ◦V B) = (∇X A) ◦V B + A ◦V (∇XB)− [AdV(T(X)) + V(∇XV−1), A, B]V . (6.203)

Remark 6.48. Denote by TV the torsion of the G2-structure σV(ϕ). Then, by eqn (6.181)

there follows

∇X(A ◦V B) = (∇X A) ◦V B + A ◦V (∇XB) − [TV(X), A, B]V . (6.204)

Comparing the last equation with (6.203) gives the following result.

Theorem 6.49. Let (M, ϕ) be a G2-structure with torsion T ∈ Ω1(Im(OM)). Then, the torsion

TV of σV(ϕ) for some non-vanishing octonion V ∈ Γ(OM) is given by

TV = Im(AdVT + V(∇V−1)). (6.205)

Furthermore, if V has constant norm then

TV = −(DV)V−1. (6.206)

Proof. This comes directly from eqn (6.203). Since it is defined for every A, B ∈ Γ(OM),

comparing with (6.204) yields that the imaginary parts of TV and AdVT + V(∇V−1)

must be the same. However, since TV is pure imaginary, the result follows.

However, in general Re(AdVT + V(∇V−1)) 	= 0. Notice first that since VV−1 = 1 and

since [A, V, V−1] = 0 for every A ∈ Γ(OM) then one has

∇(VV−1) = 0

V(∇V−1) + (∇V)V−1 = 0

V(∇V−1) = −(∇V)V−1.

(6.207)
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It follows that

Re(AdVT + V(∇V−1) = 〈AdVT + V(∇V−1), 1〉
= 〈V(∇V−1), 1〉
= −〈(∇V)V−1, 1〉

= − 1
‖V‖2 〈∇V, V〉

= −1
2

1
‖V‖2∇‖V‖2

= −∇ ln‖V‖.

(6.208)

In particular, if ‖V‖ is constant then the real part vanishes and therefore

TV = AdVT + V(∇V−1)

= VTV−1 − (∇V)V−1

= −(∇V − VT)V−1

= −(DV)V−1.

(6.209)

6.5 spinor bundle

To conclude this chapter, it is possible to relate this description of G2-structures with

one emerging from the so-called spinor bundle over the 7-dimensional manifold M,

as one may see in [33]. The general construction of the spinor bundle using Clifford

algebras are briefly introduced and an equivalence between the two descriptions on the

level of affinely connected spaces is presented.

Let V be a finite n-dimensional real vector space and consider the space of alternating

k-multilinear transformations Λk(V). Such space gives rise to the exterior algebra Λ(V)

by means of the well-known wedge product. If ψ, φ ∈ Λk(V) then one can define the

reversion given by

ψ̃φ = φ̃ψ̃, (6.210)

which is an algebra anti-automorphism. There also holds

ψ̃ = (−1)k(k−1)/2ψ. (6.211)
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On the other hand, the graded involution is an automorphism given by

ψ̂ = (−1)kψ, (6.212)

and the conjugation, which is the composition of the reversion and the graded involu-

tion is denoted by

ψ = (−1)k(k+1)/2ψ. (6.213)

One can also define the projection 〈 · 〉i on the i-vector part . If ψ = ψ1 + · · · + ψn, where

ψj ∈ Λj(V) for each j, then

〈ψ〉i = ψi. (6.214)

It is possible to further define the projection on the i and j part of ψ, given by

〈ψ〉i⊕j = ψi + ψj, (6.215)

and so on.

Now, let (V, g) be a quadratic space (g is a non-degenerate symmetric bilinear form

over V). The Clifford algebra associated to (V, g) is denoted by C�(V, g) and can be

perceived as a deformation of the exterior algebra Λ(V). It is a Z2-graded associative

algebra with unity 1 ∈ C�(V, g) and it is isomorphic to the exterior algebra as a vector

space and therefore it inherits the previously mentioned (anti)automorphisms and

projections. Denote by C�+(V, g) its even subalgebra. One may also write

C�(V, g) =
n⊕

i=0

Λi(V), (6.216)

so that the multivector structure of the exterior algebra can also be considered. The

Clifford algebra is endowed with a product ” · ” which is defined by the so-called

Clifford identity, which for each u, v ∈ V reads

u · v + v · u = 2g(u, v). (6.217)

In fact, if I is the ideal in the tensor algebra T(V) generated by all elements

v ⊗ v − g(v, v), (6.218)

where v ∈ V, then the Clifford algebra is given by the quotient

C�(V, g) = T(V)/I, (6.219)
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so that one can see that the Clifford product satisfies

u · v = u ∧ v + g(u, v). (6.220)

In the case V = Rn, then Sylvester’s Law of Inertia for the quadratic space (Rn, g) says

that there is an orthogonal (with respect to g) basis {e1, . . . , ep, eq, . . . , ep+q} for V, where

p + q = n, and such that

g(ei, ej) =

{
1 if 1 ≤ i ≤ p,

−1 if p + 1 ≤ i ≤ q.
(6.221)

Then one may denote (Rn, g) = Rp,q where (p, q) is called the signature of such quadratic

space. The Clifford algebra for Rp,q is then denoted by C�p,q.

Example 6.50. In the trivial case V = {0} the tensor algebra is just T(V) = R and so

C�0,0 = R. Consider now the quadratic space V = R0,1. Then, there is a vector e1 ∈ R

such that

g(e1, e1) = −1, (6.222)

where g is the quadratic form associated with R0,1. A basis for the Clifford algebra is

then given by {1, e1} and it is straightforward to see that

C�0,1 � C. (6.223)

Similarly, the quadratic space V = R0,1 has

C�1,0 � R ⊕ R. (6.224)

Example 6.51. Moving forward one may consider the space V = R0,2, for which there is

an orthonormal basis {e1, e2} such that

g(e1, e1) = g(e2, e2) = −1, g(e1, e2) = g(e2, e1) = 0. (6.225)

An arbitrary element in C�0,2 is in the form

C�0,2 � a + be1 + ce2 + de1e2, (6.226)

with a, b, c, d ∈ R and

e1 · e1 = e2 · e2 = −1, e1 · e2 = e2 · e1 = 0. (6.227)
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It follows that

(e1 · e2)2 = −1. (6.228)

Therefore, the set {1, e1, e2, e1 · e2} is a basis for C�0,2 and one can see that it is isomorphic

to the quaternion algebra H. An explicit isomorphism ρ : C�0,2 → H can be defined,

for instance by

ρ(1) = 1, ρ(e1) = i, ρ(e2) = j, ρ(e1 · e2) = k, (6.229)

where i, j and k are the imaginary units in H, such that i2 = j2 = k2 = −1 and

ij = −ji = k, jk = −kj = i and ki = −ik = j. Therefore,

C�0,2 � H. (6.230)

In a similar way, one can see that

C�2,0 � C�1,1 � M(2, R). (6.231)

In the general case V = Rp,q one need only to construct explicit isomorphisms up to

dim V = 8, since there holds

Theorem 6.52 (Atiyah-Bott-Shapiro Periodicity Theorem). For every quadratic space Rp,q

it follows that C�p,q+8 � M(16, R) ⊗ C�p,q.

In the light of the last Theorem, one may define the following table:

p − q mod 8 0 1 2 3

C�p,q M(2[n/2], R) M(2[n/2], R) ⊕M(2[n/2], R) M(2[n/2], R) M(2[n/2], C)

p − q mod 8 4 5 6 7

C�p,q M(2[n/2]−1, H) M(2[n/2]−1, H) ⊕M(2[n/2]−1, H) M(2[n/2]−1, H) M(2[n/2], H)

Table 1: Clifford Algebra Classification (n = p + q and [ · ] is the floor function) [68].

Now, a natural group sitting inside of C�p,q is the subset of invertible elements, namely

C�∗p,q = {a ∈ C�p,q : ∃a−1 ∈ C�p,q}, (6.232)

and a prominent subgroup in Clifford theory is the so-called twisted Clifford-Lipschitz

group given by

Γp,q = {a ∈ C�∗p,q : âva−1 ∈ Rp,q, ∀v ∈ Rp,q}. (6.233)

Defining the application

σ : Γp,q → Aut(C�p,q), (6.234)
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given by

σ(a)(v) = âva−1 (6.235)

then one can prove the

Theorem 6.53. Let C�p,q be the Clifford algebra for the quadratic space Rp,q and let σ : Γp,q →
Aut(C�p, q) be as previously defined. Also, let Γ+

p,q = Γp,q ∩ C�+
p,q. Then,

σ(Γp,q) � O(p, q),

σ(Γ+
p,q) � SO(p, q).

(6.236)

Moreover, there holds

ker σ = R∗, (6.237)

where R∗ = R\{0}.

Now, one may consider a norm N : C�p,q → R defined for each a ∈ C�p,q by

N(a) = |〈ãa〉0|. (6.238)

This norm satisfies the relation

N(a · b) = N(a)N(b), (6.239)

and it may be used to define the Pin(p, q) subgroup of the twisted Clifford-Lipschitz

group, given by

Pin(p, q) = {a ∈ Γp,q : N(a) = 1}. (6.240)

Then, the Spin(p, q) group is just

Spin(p, q) = Pin(p, q) ∩ C�+
p,q. (6.241)

It then follows from Theorem 6.53 that

Pin(p, q)/Z2 � O(p, q),

Spin(p, q)/Z2 � SO(p, q).
(6.242)

Then, the restriction σ : Spin(p, q) → SO(p, q) can be seen as a 2-fold covering of the

space SO(p, q). Elements of an irreducible representation of the group Spin(p, q) are

called (classical) spinors.
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This construction can be transported to an oriented manifold M as follows: one

considers a Spin(p, q)-principal bundle πs : PSpin(p,q)(M) → M with a 2-fold application

[69]

s : PSpin(p,q)(M) → PSO(p,q)(M), (6.243)

for which there holds

s(pφ) = s(p)σ(φ), (6.244)

for every p ∈ PSpin(p,q) and φ ∈ Spin(p, q). Then, in order to define spinor fields over

M one must first set the notion of a spinor bundle. Namely, it is given by the vector

bundle

S(M) = PSpin(p,q)(M) ×ρ Sp,q, (6.245)

where ρ : Spin(p, q) → End(Sp,q) is a representation of the Spin group and Sp,q is a left

module for C�p,q. This yields the following description with respect to the Clifford

algebra classification [68, 70]:

p − q mod 8 0 1 2 3

Sp,q R2[(n−1)/2] ⊕ R2[(n−1)/2]
R2[(n−1)/2]

C2[(n−1)/2]
H2[(n−1)/2]−1

p − q mod 8 4 5 6 7

Sp,q H2[(n−1)/2]−1 ⊕ H2[(n−1)/2]−1
H2[(n−1)/2]−1

C2[(n−1)/2]
R2[(n−1)/2]

Table 2: Spinor classification (n = p + q and [ · ] is the floor function) [68].

Then, one says a spinor field is precisely a section in S . More details on the definitions

and properties of the Clifford algebras can be found in [68, 71] whereas for spinor

bundles one can see [64]. Further applications of spinors and their emergence in

mathematical-physics can be also seen in [71–82].

Let now (M, ϕ) be a G2-structure and A ∈ Γ(OM) be an octonion over M. Then,

consider the algebra of left translations LA : Γ(OM) → Γ(OM), with LA(V) = AV for

every V ∈ Γ(OM). Notice that for every A, B, V ∈ Γ(OM) there holds

LALB(V) + LBLA(V) = A(BV) + B(AV)

= AB(V) + [A, B, V] + (BA)V + [B, A, V]

= (AB + BA)V,

(6.246)

so that if A and B are pure imaginary then

LALB + LBLA = −〈A, B〉Id, (6.247)
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which is precisely the defining identity of the Clifford algebra. Therefore, the octonion

algebra gives rise to a Clifford algebra (which is associative, since composition is

associative) by means of left translations. This construction is called the enveloping

algebra of the octonion algebra O. Notice that in general LALB 	= LAB.

Lemma 6.54. Let (M, ϕ) be a G2-structure over M and A, B, C ∈ Γ(OM). Then,

A(BC) = (A ◦C B)C, (6.248)

where ◦C is the octonion product defined by means of σC(ϕ). In particular,

LALBC = LA◦CBC. (6.249)

Proof. Direct computation yields

A(BC) = (AB)C + [A, B, C]

= (AB + [A, B, C]C−1)C

= (A ◦C B)C,

(6.250)

where the relation A ◦C B = AB + [A, B, C]C−1 was used.

Let now S(M) = S be the spinor bundle over the 7-manifold M and denote by 〈·, ·〉S
its inner product. Also, one may denote by 〈·, ·〉O the octonion metric with respect to

the G2-structure (M, ϕ). Then, a nowhere-vanishing unit spinor ξ ∈ Γ(S) over M also

defines a G2-structure via the expression [83]

ϕξ(α, β, γ) = −〈ξ, α · (β · (γ · ξ))〉S , (6.251)

where α, β, γ ∈ X(M).

Lemma 6.55. Let α, β, γ ∈ Γ(ImOM) and V ∈ Γ(OM) an unit octonion. Then, there holds

(σV ϕ) (α, β, γ) = −〈V, α (β (γV))〉O. (6.252)

Proof. From Lemma 6.54 it comes

α (β (γV)) = α ((β ◦V γ)V)

= (α ◦V (β ◦V γ))V.
(6.253)

Then, since ‖V‖= 1 it follows that

〈V, α (β (γV))〉O = 〈V, (α ◦V (β ◦V γ))V〉O

= 〈1, α ◦V (β ◦V γ)〉O

= −〈α, β ◦V γ〉O.

(6.254)
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Therefore, there holds

〈V, α (β (γV))〉O = −〈α, β ◦V γ〉O

= − (σV ϕ) (α, β, γ) .
(6.255)

Since the Clifford algebra product only depends on the metric, notice that the differ-

ence between eqns (6.251, 6.252) is that the first assumes a choice of metric whereas the

second assumes a choice of G2-structure ϕξ . One may then define the linear map

jξ : Γ(S) → Γ(OM) (6.256)

given by

jξ(ξ) = 1 (6.257)

jξ(V · η) = V ◦ϕξ
jξ(η), (6.258)

for every octonion V and spinor field η. Notice that if η = A · ξ for some octonion

A ∈ Γ(OM) then

jξ(η) = j(A · ξ) = A. (6.259)

If one fixes a nowhere-vanishing spinors ξ then there is a pointwise decomposition

of S as R · ξ ⊕ {X · ξ : X ∈ R7}, so that every spinor η can be writen as η = A · ξ for

some octonion A. Therefore, jξ is a pointwise isomorphism of real vector space from

spinors to octonions.

Lemma 6.56. The map jξ preserves the inner products, namely

〈η1, η2〉S = 〈jξ(η1), jξ(η2)〉O. (6.260)

Proof. Indeed, let V1 and V2 be octonions such that η1 = V1 · ξ and η2 = V2 · ξ with

V1 = (a1, v1) and V2 = (a2, v2). Then,

〈η1, η2〉S = 〈V1 · ξ, V2 · ξ〉S

= a1a2‖ξ‖2+〈v1 · V1, v2 · V2〉S
= a1a2‖ξ‖2+〈v1, v2〉‖ξ‖2

= 〈V1, V2〉O

= 〈jξ(η1), jξ(η2)〉O.

(6.261)
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With respect to the change of reference, one can see that if one fixes a non-vanishing

unit spinor ξ then under jξ by the last result there holds

ϕξ(α, β, γ) = −〈ξ, α · (β · (γ · ξ))〉S
= −〈jξ (ξ) , α

(
β
(
γ
(

jξ (ξ)
)))〉O

= −〈1, α (β (γ))〉
= 〈α, βγ〉,

(6.262)

as expected. Then, if η = A · ξ by Lemma 6.56 it follows that

ϕη(α, β, γ) = −〈η, α · (β · (γ · η))〉S
= −〈jξ (η) , α

(
β
(
γ
(

jξ (η)
)))〉O

= −〈A, α (β (γ (A)))〉,
(6.263)

where the octonion product is given with respect to ϕξ . It follows from eqn (6.252) that

ϕA·ξ = σA(ϕξ). (6.264)

Corollary 6.57. Let ξ be a nonvanishing unit spinor on a 7-dimensional manifold M and let

ϕξ be its associated G2-structure. Then, for any unit octonions U and V there holds

ϕU·(V·ξ) = ϕ(UV)·ξ . (6.265)

Proof. Theorem 6.40 asserts that

σU(σV ϕξ) = σUV ϕξ . (6.266)

On the other hand, from eqn (6.264) it comes

σU(σV ϕxi) = σU(ϕV·ξ) = ϕU·(V·ξ)

σUV ϕξ = ϕ(UV)·ξ ,
(6.267)

which gives the desired result.

Furthermore, one may endow S with a connection ∇S lifted from the Levi-Civita

connection ∇ over M. It has the property that if η = A · ξ then

∇S
Xη = (∇X A) · ξ + A · ∇S

Xξ. (6.268)

It follows that there is an endomorphism T(ξ) : X(M) → X(M) such that [41]

∇S
Xξ = −T(ξ)(X) · ξ, (6.269)

where Tξ is called the torsion tensor of ϕξ . It then follows



140 G2 -structures

Theorem 6.58. Let ξ ∈ Γ(S) be a nonvanishing unit spinor on a 7-dimensional manifold M

and ϕξ its associated G2-structure. Then, for every η ∈ Γ(S) there holds

jξ(∇S
Xη) = D(ξ)

X (jξ(η)), (6.270)

where D(ξ) is the octonion covariant derivative with respect to the G2-structure ϕξ .

Proof. From (6.269), it comes

jξ(∇S
Xξ) = −T(ξ)(X)

= D(ξ)
X 1

= D(ξ)
X jξ(ξ).

(6.271)

Then, for η = A · ξ the identity

∇S
Xη = (∇X A) · ξ + A · ∇S

Xξ (6.272)

allied with the defining relations for jξ yield

jξ(∇S
Xη) = (∇X A) · jξ(ξ) + A · jξ(∇S

Xξ)

= ∇X A − AT(ξ)(X)

= D(ξ)
X A

= D(ξ)
X jξ(η).

(6.273)

Therefore, the isomorphism S � OM provided by jξ for a choice of nonvanishing

unit spinor ξ gives an isometric relation which maps the spin bundle connection

∇S to the octonion covariant derivative Dξ . However, since the Clifford algebra is

associative, the octonion algebra contains more information. The octonion product can

be further defined in terms of projections of Clifford products as seen in [84] and the

product deformation as in eqn (6.175) can be perceived therein, and its relation with

spinor fields over the 7-sphere S7 with non-vanishing torsion can be scrutinized [34, 85].

Furthermore, with the study of G2-structures we can extend the formalism herein

introduced, emulating S7 spinors into current algebras and Kac-Moody algebras, as

in [34, 86].



CONCLUS ION

The objective of this work was to formulate more general descriptions of geometries

on manifolds which could be further considered within the framework of theoretical

physics. In order to do that, affine connections with non-vanishing torsion were

analyzed, being those key ingredients to work with the Kaluza-Klein supergravity

theories in 7 dimensions. Besides, the octonion product was integrated to 7-dimensional

manifolds and octonionic fields in this context were seen to relate to the important

notion of spinor fields in physics, which may yield generalizations in the parallelizable

7-sphere S7, as in [34, 85, 86].

A brief introduction on vector bundles and Riemannian geometry was given, and

affine connections over a manifold were considered in a way that some useful properties

of the Levi-Civita connection could still be perceived by allowing the notion of totally

anti-symmetric contorsion. The Riemannian metric was shown to be a great tool in

order to define normal coordinates and was introduced only when needed.

Then, geodesic loops were constructed onto affinely connected spaces and their

fundamental tensors considered. The tangent space was endowed with the W-algebra

operations and the fundamental tensor were related to the underlying notions of torsion

and curvature. This apparatus was then considered in the context of the Kaluza-Klein

d = 11 spontaneous compactification theory of supergravity, where the equations of

motion were seen to yield geometric constraints over the ground state by using the

techniques of geodesic loops heretofore scrutinized.

In addition, the normed division algebras were analyzed and their properties exposed.

A treatment on the algebra O was given and by means of the 3-form ϕ a G2-structure

over the vector space R7 was considered. Further on, the notion of G2-structures over

7-dimensional manifolds was analyzed, enabling such space to be endowed with an

octonion-like product, yielding interesting relations with the spinor bundle and its

covariant derivative.

141
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Apart from the above-mentioned possible generalizations for spinor fields emerging

from the octonion bundle, it is also possible to consider more general connections when

discussing the octonion covariant derivative. For instance, the results found in [33] on

this matter may be generalized for deformations of the Levi-Civita connection by a

totally anti-symmetric contorsion, since it still satisfies the metric-compatibility property,

which was extensively used. The relation between geodesic (and local) loops and more

general global (Lie) loops and the topological constraints to their existence may be

further considered. Finally, we believe there may be a link between the torsion of a

G2-structure and the underlying torsion of a connection which can be perceived locally

by the fundamental tensors of the geodesic loop.
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