Universidade Federal do ABC

Prova de seleção para o mestrado em matemática

Instruções:

- Esta prova contém 10 questões.
- Todas as questões têm o mesmo valor.
- Faça as questões na ordem de sua preferência.
- Identifique com clareza o espaço onde fizer cada questão.
- Justifique seus passos.
- Nenhuma consulta é permitida. Em particular, calculadoras e celulares não são permitidos.
- A prova pode ser feita a lápis, mas as respostas/conclusões devem ser feitas a caneta.
- Para a correção, serão consideradas apenas as resoluções nas folhas de respostas.
- Escreva seu nome em cada folha de resposta e enumere as páginas.
- O candidato só poderá deixar o local de prova depois de transcorrida uma hora do seu início, e não poderá levar a folha de questões e nem a folha de respostas.
- Tempo máximo de prova: 4 horas.

Parte 1: Análise na Reta

- 1. Mostre que toda sequência convergente em \mathbb{R} é de Cauchy em \mathbb{R} .
- 2. Use a definição formal de limite de função real para mostrar que $\lim_{x\to 0} x^2 = 0$.
- 3. Determine se a função real $f(x) = \begin{cases} x \operatorname{sen}\left(\frac{1}{x}\right) &, & \operatorname{se} x \neq 0, \\ 0 &, & \operatorname{se} x = 0. \end{cases}$ é diferenciável em $x_o = 0$.
- 4. (a) Derive a função $f(x) = \sqrt[3]{(e^{x^2}.x^3 + 1)^2}$.
- (b) Calcule $\lim_{x\to 0^+} x^{\operatorname{sen}(x)}$.
- 5. Considere o conjunto $X = \mathbb{R} \setminus \mathbb{Z}$, isto é, o conjunto-diferença entre o conjunto dos números reais \mathbb{R} e o conjunto dos números inteiros \mathbb{Z} . Mostre que X é um conjunto aberto de \mathbb{R} . O conjunto X é um compacto de \mathbb{R} ?

Parte 2: Álgebra Linear

6. Mostre que dois espaços vetoriais com dimensões (finitas) diferentes não podem ser isomorfos.

7. Sejam V e W espaços vetoriais, $T:V\to W$ uma transformação linear e $Ker\ T$ o seu núcleo. Mostre que:

T é injetora \iff Ker $T = \{0\}$, onde 0 é o vetor nulo de V.

8. Encontre uma transformação linear $T: \mathbb{R}^4 \to \mathbb{R}^4$ tal que:

$$Ker\ T = [(1,0,1,0),(-1,0,0,1)]$$

 \mathbf{e}

$$Im T = [(1, -1, 0, 2), (0, 1, -1, 0)],$$

onde $Ker\ T$ e $Im\ T$ são o núcleo e a imagem de T, respectivamente.

- 9. Seja T a transformação linear com domínio P_2 (conjunto dos polinômios reais de grau menor ou igual a 2) e contra-domínio $\mathbb R$ definida por $T(p)=\int_0^1 p(x)dx$. Encontre a matriz de T com respeito às bases $\{x^2,x,1\}$ de P_2 e $\{1\}$ de $\mathbb R$.
- 10. Seja R a rotação em \mathbb{R}^3 ao redor do eixo z, no sentido anti-horário, com centro na origem e ângulo $\pi/2$. Ou seja, R associa a um ponto $P = (x, y, z) \in \mathbb{R}^3$ um ponto Q = (-y, x, z). Encontre o polinômio característico de R em relação a uma base de \mathbb{R}^3 e, a partir dele, determine os autovalores e autovetores de R (caso eles não existam, justifique sua conclusão com base nos cálculos feitos). Interprete geometricamente o resultado que você obteve.